
Chapter 2

Abelian Groups

In this chapter we completely classify unitary representations of locally com-
pact σ-compact metric abelian groups. The assumptions that the group is
locally compact and abelian are critical for the material developed in this
chapter, but as before we will also assume that the group G is σ-compact
and metric. We will keep the topological assumptions on G implicit and refer
to G as the abelian group G.

2.1 Pontryagin Dual

In Corollary 1.32 we saw that every irreducible representation of the abelian
group G is one-dimensional and hence defines a (continuous unitary) charac-
ter. In the context of abelian groups the following terminology is often used
instead of the phrase ‘unitary dual’ as in Definition 1.25.

Definition 2.1 (Pontryagin dual of the abelian group). The dual group
(or Pontryagin dual) of the abelian group G is defined (as an abstract group)
by

Ĝ =
{
χ : G −→ S1 | χ is a continuous character

}

with the group operations being pointwise product and inverse.

The reader not familiar with this notion of duality may use the following
exercise as a warmup for (the conclusions of which will be special cases of the
theory developed in this chapter).

Exercise 2.2 (Generalization of Fourier series). Suppose that the abelian group G
is compact, and normalize the Haar measure m to satisfy m(G) = 1. Assume furthermore
that Ĝ separates points† in G, meaning that for every g1 6= g2 in G there exists some χ ∈ Ĝ
with χ(g1) 6= χ(g2).

† We note that this assumption is in fact always satisfied. This can be checked directly
in many examples, and in general follows from Corollary 1.79 or the more specialized
Theorem 2.15.

65



66 2 Abelian Groups

(a) Show that Ĝ forms a countable orthonormal basis of L2(G).
(b) Show, for any unitary representation π, that Hπ is the orthogonal direct sum of the
eigenspaces Hχπ of weight χ ∈ Ĝ defined by

Hχπ =
{
w ∈ Hπ | πgw = χ(g)w for all g ∈ G

}
.

For many concrete groups it is not at all difficult to describe the dual
group explicitly.

Essential Exercise 2.3 (Basic examples). Prove the following isomor-

phisms of (abstract) groups: (a) Ẑ ∼= T; (b) T̂ ∼= Z; and (c) R̂ ∼= R.

It is easy to give concrete examples of non-compact groups where the
description of a unitary representation is in general more complicated than
it is in Exercise 2.2(b). In fact, let λ denote the regular representation of R
on L2(R) and let χ denote a unitary character of R. If now λgf = χ(g)f for
all g ∈ R and some f ∈ L2(R), then |f | would be constant, and so f = 0.
The same applies to any non-compact abelian group G and shows that L2(G)
cannot be a direct sum of irreducible representations. Nonetheless, we will
arrive at a complete understanding of all unitary representations of abelian
groups using only characters in this chapter.

2.1.1 Characters as Algebra Homomorphisms

Given explicit presentations of a group and its dual, many of the theorems
in this chapter have alternative and often simpler proofs. However, to handle
the general case seamlessly the following is an important tool. We recall from
Section 1.4.1 that L1(G) is a commutative Banach algebra.

Proposition 2.4 (Algebra homomorphisms of L1(G)). For the abelian

group G every character χ ∈ Ĝ induces a continuous non-trivial algebra
homomorphism from A = L1(G) to C via the formula

χA(f) =

∫
fχ dm

for f ∈ L1(G). Moreover, every continuous non-trivial algebra homomorph-

ism from A to C is of this form, for some uniquely determined χ ∈ Ĝ.
Proof. Given a unitary character χ ∈ Ĝ and f1, f2 ∈ L1(G) we have

∫
f1 ∗ f2(g)χ(g) dm(g) =

∫∫
f1(h)f2(g − h)χ(g) dm(h) dm(g)

=

∫∫
f1(h)f2(k)χ(h+ k) dm(k) dm(h)

=

(∫
f1χ dm

)(∫
f2χ dm

)
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2.1 Pontryagin Dual 67

by Fubini’s theorem, which shows that χA is indeed an algebra homomor-
phism. By the identification of the dual of L1(G) with L∞(G) (see [24,
Prop. 7.34]), χA is continuous and non-trivial since ‖χA‖ = ‖χ‖∞ = 1.

The converse is more involved. Let χA : A = L1(G) → C be a non-trivial
continuous algebra homomorphism. Then there is an element χ ∈ L∞(G)
with ‖χ‖∞ <∞ with

χA(f) =

∫

G

fχ dm

for all f ∈ L1(G). We have to show that χ can be chosen in Cb(G) and with
the property that χ(gh) = χ(g)χ(h) for all g, h ∈ G.

By assumption χA 6= 0, so there exists some f0 ∈ L1(G) with χA(f0) 6= 0.
Also, by the assumption on χA and Fubini’s theorem

χA(f)χA(f0) = χA(f ∗ f0) =
∫

G

∫

G

f(g)f0(h− g) dm(g)χ(h) dm(h)

=

∫

G

f(g)

∫

G

λg(f0)χ dm dm(g)

for all f ∈ L1(G). We now define

χ′(g) = (χA(f0))
−1
∫

G

λg(f0)χ dm,

so that χA(f) =
∫
G
fχ′ dm for all f ∈ L1(G), and in particular χ′ = χ almost

everywhere.
Notice that χ′ is defined using f0 and χ essentially by convolution. This

implies that χ′ ∈ Cb(G), since

|χ′(g)− χ′(g0)| = |χA(f0)|−1

∣∣∣∣
∫

G

(λgf0 − λg0f0)χ dm

∣∣∣∣
6 |χA(f0)|−1‖λgf0 − λg0f0‖1‖χ‖∞ −→ 0

as g → g0, since G ∋ g 7→ λgf0 ∈ L1(G) is continuous. Simplifying the
notation, we suppose that χ = χ′ ∈ Cb(G).

Now choose a sequence (Bn) of decreasing open neighbourhoods of 0 ∈ G
that form a basis of the neighbourhoods at 0. Then the sequence (ψn) defined
by

ψn =
1

m(Bn)
1Bn

for all n > 1 forms an approximate identity (see Proposition 1.43).
Now let g1, g2 ∈ G be arbitrary. Then λg1ψn = 1

m(Bn)
1Bn+g1

and so

χA
(
λg1ψn

)
=

1

m(Bn)

∫

Bn+g1

χ dm −→ χ(g1)
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68 2 Abelian Groups

as n → ∞ by continuity of χ, and similarly χA(λg2ψn) → χ(g2) as n → ∞.
Moreover, (1.17) shows (by identifying f ∈ L1(G) with νf ∈M(G)) that

λg1ψn ∗ λg2ψn = δg1 ∗ ψn ∗ δg2 ∗ ψn = δg1+g2 ∗ ψn ∗ ψn = λg1+g2(ψn ∗ ψn),

and using ψn ∗ ψn (which also forms an approximate identity by Proposi-
tion 1.43) in the same way as ψn above, we obtain from this

χA
(
λg1ψn

)
χA
(
λg2ψn

)
= χA

(
λg1ψn ∗ λg2ψn

)

= χA
(
λg1+g2 (ψn ∗ ψn)

)
−→ χ(g1 + g2)

as n→∞. Thus with the above we obtain

χ(g1 + g2) = χ(g1)χ(g2)

for g1, g2 ∈ G. In other words, χ : G → C is a continuous homomorphism to
the multiplicative structure of C. Since χ is bounded and non-zero, it follows
that χ is non-zero everywhere, and that it takes values in S1. This shows
that χA is defined by χ ∈ Ĝ. �

Using the correspondence in Proposition 2.4 as an identification, we can
and will consider the weak* topology on Ĝ ⊆ L∞(G). The following corollary
defines the important notion of Fourier transform, and gives the fundamental
properties of the Fourier transform. These will be used frequently, and often
without an explicit reference to this corollary.

Corollary 2.5 (Topology, structure, and functions on Ĝ). For the

abelian group G the dual group Ĝ is a locally compact σ-compact metric group
in the weak* topology (equivalently the compact-open topology). The Fourier
(back) transform ̂

f(χ) =

∫
fχ dm (2.1)

for f ∈ L1(G) satisfies

̂
f ∈ C0(Ĝ),

̂

f1 ∗ f2 =

̂
f1

̂
f2,

̂
f∗ =

̂
f , and ‖

̂
f‖∞ 6 ‖f‖1

for all f, f1, f2 ∈ L1(G). Moreover,
{̂
f | f ∈ L1(G)

}
⊆ C0(Ĝ) is a dense

sub-algebra with respect to the supremum norm on Ĝ.

We note that (2.1) is often referred to as the Fourier back transform (which
is the reason for the notation). However, we decided to use this formula as a
starting point, as we will see in the next section that it has (with this sign
convention) important and conveniently described relationships to unitary
representations. Because of the duality results that we will see later, the
designation of one transform as the ‘back’ one and the other, implicitly, as
the ‘forward’ one is rather arbitrary, and refers to a choice of a sign.

Proof. Let σ(L1(G)) denote the set of all non-trivial continuous algebra
homomorphisms L1(G) → C. By Proposition 2.4 these all have norm one.
Hence
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2.1 Pontryagin Dual 69

Ω = σ
(
L1(G)

)
∪ {0}

may be described as the set of all χ ∈ L∞(G) with ‖χ‖∞ 6 1 and with

∫
f1 ∗ f2χ dm =

∫
f1χ dm

∫
f2χ dm

for all f1, f2 ∈ L1(G). This implies that Ω is weak* closed, and hence weak*
compact by the Banach–Alaoglu theorem (see [24, Th. 8.10]). Since L1(G) is
separable, the weak* topology is metrizable when restricted to the closed unit
ball in L∞(G) (see [24, Prop. 8.11]). This implies that σ(L1(G)) = Ωr{0}
is locally compact, σ-compact and metrizable. We identify σ(L1(G)) with Ĝ
as in Proposition 2.4. Moreover, recall from Proposition 1.77 that the weak*
topology on P1(G) ⊇ Ĝ coincides with the compact-open topology, which

proves that Ĝ is locally compact, σ-compact and metric with respect to the
compact-open topology. In this topology it is easy to see that the group
operations are continuous.

Let f ∈ L1(G) and define the Fourier transform as in the corollary. Equiv-

alently, we may think of

̂
f as the evaluation map

evf : χ 7−→ χ(f) =

∫
fχ dm

from L1(G)′ ∼= L∞(G) to C restricted to σ(L1(G)) ∼= Ĝ. Hence by the defi-

nition of the weak* topology we see that

̂
f is continuous on Ĝ. Moreover, by

setting ̂
f(0) =

∫
f0 dm = 0

we see that

̂
f has a continuous extension to the compact space

Ω = σ(L1(G)) ∪ {0},

with

̂
f(0) = 0. In other words, 0 ∈ Ω plays the role of ∞ in the one-point

compactificiation of Ĝ, and

̂
f ∈ C0(Ĝ).

The property
̂

f1 ∗ f2(χ) = χ(f1 ∗ f2) = χ(f1)χ(f2) =

̂
f1

̂
f2(χ)

for f1, f2 ∈ L1(G) is precisely the algebra homomorphism property of the
map χ ∈ σ(L1(G)). In particular, this implies that the image of the Fourier
transform is a sub-algebra of

C0(Ĝ) ∼= {F ∈ C(Ω) | F (0) = 0}.
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70 2 Abelian Groups

For f ∈ L1(G) we defined f∗ in Section 1.4.1, which in the additive notation
becomes f∗(g) = f(−g) for all g ∈ G. Since

̂
f∗(χ) =

∫

G

f∗χ dm =

∫

G

f(g)χ(−g) dm =

̂
f(χ)

for all χ ∈ Ω = Ĝ ∪ {0}, we see that the image of L1(G) in C0(Ĝ) is closed

under conjugation. The inequality ‖
̂
f‖∞ 6 ‖f‖1 follows, since χ ∈ Ĝ satis-

fies ‖χ‖∞ = 1 which gives |
̂
f(χ)| = |

∫
fχ dm| 6 ‖f‖1.

Finally we note that the sub-algebra {f̂ | f ∈ L1(G)} ⊆ C(Ω) also sep-

arates points: if

̂
f(χ1) =

̂
f(χ2) for some χ1, χ2 ∈ Ω and all f ∈ L1(G),

then χ1 and χ2 define the same functional on L1(G) and so χ1 = χ2. Ap-
plying the Stone–Weierstrass theorem ([24, Thm. 2.40]) we see that the al-

gebra A =
{̂
f | f ∈ L1(G)

}
+ C1 is dense in C(Ω). This shows that for a

given F ∈ C0(Ĝ) and ε > 0 there exists some f ∈ L1(G) and α ∈ C such

that ‖
̂
f + α1− F‖∞ < ε. Since F (0) = 0 and

̂
f(0) = 0 we see that |α| < ε,

and hence ‖
̂
f − F‖∞ < 2ε as required. �

Essential Exercise 2.6 (Basic examples). Show that the isomorphisms
in Exercise 2.3 are also isomorphisms of topological groups. Furthermore,

show that for any d ∈ N we have the isomorphism R̂d ∼= Rd as topological
groups.

Exercise 2.7 (Continuity and bound). Let A be a commutative Banach algebra
over C. Show that any algebra homomorphism χ : A → C is continuous and satis-
fies ‖χ‖ 6 1.

2.2 Spectral Theory, First Formulations

Due to the results (and exercises) of the last section it is natural to have
a more symmetric notation for the group and its Pontryagin dual. Hence,
we also use additive notation for the abelian group Ĝ. In fact, we will
write t, t0, t1, . . . for the elements of the additive group Ĝ and for t ∈ Ĝ we
write χt : G → S1 for the associated multiplicative character. Furthermore
we define the dual pairing 〈·, ·〉 : G× Ĝ→ S1 by

G× Ĝ ∋ (g, t) 7−→ 〈g, t〉 = χt(g) ∈ S1.

In particular, in this notation we also write
̂
f(t) =

∫

G

fχt dm =

∫

G

f(g) 〈g, t〉 dm(g)

for the Fourier transform of f ∈ L1(G) at t ∈ Ĝ.

Page: 70 job: AAUnitaryRepresentations macro:svmono.cls date/time:25-Mar-2022/16:18



2.2 Spectral Theory, First Formulations 71

2.2.1 Bochner’s Theorem

We now return to the discussion of general unitary representations of the
abelian group G, and recall from Section 1.5 that for this we need to under-
stand positive-definite functions.

Theorem 2.8 (Bochner’s theorem). Let φ be a positive-definite function
on the abelian group G. Then there exists a uniquely determined finite mea-
sure µ on Ĝ such that

φ(g) =

∫

Ĝ

〈g, t〉 dµ(t) (2.2)

for all g ∈ G.

We refer to Exercise 2.9 for a quicker proof of Bochner’s theorem, but
prefer the following argument as the ideas in the proof will be used again in
Section 4.3, in a more general context.

Proof of Theorem 2.8. Suppose the finite measures µ1, µ2 both sat-
isfy (2.2). For f ∈ L1(G) we may then use Fubini’s theorem to see that

∫

G

f(g)φ(g) dm(g) =

∫

G

∫

Ĝ

f(g)〈g, t〉dµj(t) dm(g)

=

∫

Ĝ

̂
f(t) dµj(t)

for j = 1, 2. However, A = {
̂
f | f ∈ L1(G)} ⊆ C0(Ĝ) is dense with respect to

the supremum norm by Corollary 2.5. Therefore, we obtain

∫

Ĝ

F dµ1 =

∫

Ĝ

F dµ2

for all F ∈ C0(Ĝ) and the uniqueness of the measure in the Riesz represen-
tation theorem implies that µ1 = µ2.

We will now prove the existence of the measure µ by defining a linear
functional Λ on C0(Ĝ) and applying the Riesz representation theorem. By

density of A ⊆ C0(Ĝ), it is sufficient to define Λ(

̂
f) for f ∈ L1(G) and show

that
|Λ(
̂
f)| 6 φ(0)‖

̂
f‖∞. (2.3)

To this end, define

Λ(

̂
f) =

∫
fφdm (2.4)

for f ∈ L1(G) and notice that (2.3), once established, will in particular imply

that Λ(

̂
f) is indeed well-defined for any

̂
f ∈ C0(Ĝ), meaning that it does not

depend on the choice of f , but only on its Fourier transform

̂
f .
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72 2 Abelian Groups

For the proof of the bound (2.3) for the functional in (2.4) we recall from
the GNS construction (Theorem 1.74) that φ = ϕv0 is a matrix coefficient of
some v0 ∈ Hπ for some unitary representation π of G. With this we have

∫
fφdm =

∫
fϕv0 dm =

∫
f(g)

〈
πgv0, v0

〉
dm(g) = 〈π∗(f)v0, v0〉

for all f ∈ L1(G). Therefore

∣∣∣∣
∫
fφdm

∣∣∣∣ 6 ‖π∗(f)‖op‖v0‖2 = ‖π∗(f)‖opφ(0)

and so we need to estimate ‖π∗(f)‖op. For this, we recall from Section 1.4.3
that π∗(f)

∗ = π∗(f
∗). Also recall that L1(G) is an abelian Banach algebra

(since G is assumed to be abelian), which implies that π∗(f) is a normal
operator, and so its operator norm is equal to its spectral radius

‖π∗(f)‖op = lim
n→∞

∥∥∥π∗(f)2
n
∥∥∥
2−n

op
= lim

n→∞

∥∥∥π∗
(
f∗2n)∥∥∥

2−n

op
.

Combining this with the bound

‖π∗(f∗2n)‖op 6 ‖f∗2n‖1

we obtain
‖π∗(f)‖op 6 lim

n→∞
‖f∗2n‖2−n1 .

Here the limit exists because of the spectral radius formula in a commutative
Banach algebra (see [24, Cor. 11.29]) and equals

max
χ∈σ(L1(G))∪{0}

|χ(f)| = ‖
̂
f‖∞

by the identification σ(L1(G)) = Ĝ in Proposition 2.4 and the proof of Corol-
lary 2.5. To summarize, we have shown that (2.4) defines a continuous linear

functional Λ on C0(Ĝ) satisfying (2.3).
Applying the Riesz representation theorem (see [24, Th. 7.54]) to Λ, we

find a finite measure µ on Ĝ such that

∫

G

fφdm = Λ
(̂
f
)
=

∫

Ĝ

̂
f dµ (2.5)

for all f ∈ L1(G) and ‖µ‖ = ‖Λ‖ 6 φ(0). Here µ is potentially complex-
valued, and we may write dµ = F d|µ| for some (positive) finite Borel mea-

sure |µ| on Ĝ and some measurable function F satisfying

‖F‖L1
|µ|

= ‖Λ‖ 6 φ(0).
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2.2 Spectral Theory, First Formulations 73

Now set f = ψn in (2.5) for some approximate identity (ψn) and let n→∞
to obtain

φ(0) = lim
n→∞

∫
ψnφdm = lim

n→∞

∫ ̂
ψnF d|µ| =

∫
F d|µ|

since the bound ‖
̂
ψn‖∞ 6 1 and the convergence

̂
ψn(t) → 1 as n → ∞ for

every t ∈ Ĝ allows us to apply dominated convergence. However,

∫
|F | d|µ| = ‖F‖L1

|µ|
= ‖Λ‖ 6 φ(0) =

∫
F d|µ|

implies that F is real-valued and non-negative almost everywhere with respect
to |µ|, so that dµ = F d|µ| is in fact a (positive) finite Borel measure.

Finally, fix some g ∈ G, set f = λgψn in (2.5) and let n→∞ to obtain

φ(g)= lim
n→∞

∫
ψn(h)φ(g + h) dm(h)= lim

n→∞

∫ (
λgψn

)
φdm= lim

n→∞

∫ ̂

λgψn dµ.

Since ‖
̂

λgψn‖∞ 6 ‖λgψn‖1 = 1 and
̂

λgψn(t) =

∫
(λgψn)χt dm =

∫
ψn(h)χt(g + h) dm(h) −→ χt(g) = 〈g, t〉

as n → ∞ for any t ∈ Ĝ, we may again apply dominated convergence to
obtain

φ(g) =

∫
〈g, t〉 dµ(t)

as claimed. �

Exercise 2.9. Let P61(G) be as in Corollary 1.76. Let

M61(Ĝ) =
{
µ | µ is a measure on Ĝ with µ(Ĝ) ∈ [0, 1]

}
.

Define
Φ : M61(Ĝ) ∋ µ 7−→ φµ ∈ P61(G)

by

φµ(g) =

∫
〈g, t〉 dµ(t)

for g ∈ G. Show that Φ is continuous with respect to the weak* topologies on M61(Ĝ)
(resp. P61(G)). Conclude from this that

Φ
(
M61(Ĝ)

)
= P61(G),

and deduce Theorem 2.8.

The following exercise may help to develop an intuitive understanding of
spectral measures.
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74 2 Abelian Groups

Exercise 2.10. Fix a sequence (tn)n∈N in Ĝ, and define a unitary representation π of G
on Hπ = ℓ2(N) by (

πgv
)
n

= 〈g, tn〉vn
for all n ∈ N, g ∈ G, and v = (vn) ∈ Hπ. Calculate µv for v ∈ Hπ, and interpret it as
giving weights to the eigenvalues in Ĝ.

2.2.2 The Spectral Theorems

Using Bochner’s theorem (Theorem 2.8) it is now quite straightforward to
completely describe cyclic as well as general unitary representations of abelian
groups.

Corollary 2.11 (Spectral theorem for cyclic representations). Let π
be a unitary representation of the abelian group G, and let v ∈ Hπ. Applying
Bochner’s theorem to the positive-definite function ϕv defined by

ϕv(g) =
〈
πgv, v

〉

for g ∈ G, we obtain the spectral measure µv for v. Then the cyclic repre-
sentation on

〈v〉π =
〈
πgv | g ∈ G

〉
C

is unitarily isomorphic to the unitary multiplication representation M of G
on L2

µv
(Ĝ) defined by

Mg(w)(t) = 〈g, t〉w(t)

for g ∈ G, w ∈ L2
µv
(Ĝ), and t ∈ Ĝ. Moreover, the equivariant isometry

sends v ∈ Hπ to 1 ∈ L2
µv
(Ĝ) and in particular,

‖v‖2 = ϕv(0) = µv(Ĝ).

Finally, π is cyclic if and only if there exists a finite µ on Ĝ such that π is
isomorphic to the multiplication representation M on L2

µ(Ĝ).

Proof. First note that the multiplication representationMg for g ∈ G defines

a unitary representation on L2
µ(Ĝ) for any σ-finite measure µ on Ĝ. Indeed,

since 〈g, t〉 ∈ S1 for all (g, t) ∈ G × Ĝ the operator Mg : L
2
µ(X) → L2

µ(Ĝ) is
unitary for any g ∈ G. Moreover, if (gn) is a sequence in G with gn → g0
as n → ∞, then continuity of the character χt implies that 〈gn, t〉 → 〈g, t〉
as n→∞ for all t ∈ Ĝ. Given some w ∈ L2

µ(Ĝ), this then implies that

∥∥Mgn
w −Mg0

w
∥∥2
2
=

∫

Ĝ

| 〈gn, t〉 − 〈g0, t〉 |2|w(t)|2 dµ(t) −→ 0

as n→∞ by dominated convergence.
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2.2 Spectral Theory, First Formulations 75

We now consider the case of a multiplication representation defined by a
finite measure µ on Ĝ. We will show that the representation is cyclic and has
the vector 1 ∈ L2

µ(Ĝ) as a generator. Indeed, if f ∈ L1(G) and w ∈ L2
µ(Ĝ)

then

〈M∗(f)1, w〉L2
µ(Ĝ) =

∫

G

f(g)
〈
Mg1, w

〉
L2
µ(Ĝ)

dm(g)

=

∫

G

f(g)

∫

Ĝ

〈g, t〉w(t) dµ(t) dm(g)

=

∫

Ĝ

̂
f(t)w(t) dµ(t) =

〈̂
f, w

〉
L2
µ(Ĝ)

by definition of the convolution operator M∗(f) using weak integration, Fu-

bini’s theorem, and the definition of the Fourier transform

̂
f . Since the func-

tion w ∈ L2
µ(Ĝ) was arbitrary, this shows that M∗(f)1 =

̂
f ∈ 〈1〉M . By

density of the set of these functions in C0(Ĝ) with respect to the supremum
norm (see Corollary 2.5) and since µ is assumed to be a finite measure, we see

that C0(Ĝ) ⊆ 〈1〉M . By density of Cc(Ĝ) ⊆ L2
µ(Ĝ) we obtain 〈1〉M = L2

µ(Ĝ)
as claimed.

Now consider a unitary representation π and a vector v ∈ Hπ . Then the
function defined by ϕv(g) =

〈
πgv, v

〉
is positive-definite. Applying Bochner’s

theorem (Theorem 2.8) we find a finite measure µv on Ĝ such that

ϕv(g) =

∫

Ĝ

〈g, t〉 dµv(t).

Notice that the matrix coefficient of 1 ∈ L2
µ(Ĝ) is given by

〈
Mg1,1

〉
L2
µ(Ĝ)

=

∫

Ĝ

〈g, t〉 dµv(t) = ϕv(g) =
〈
πgv, v

〉

for all g ∈ G. By Proposition 1.63 this shows that π restricted to the cyclic
representation 〈v〉π generated by v is unitarily isomorphic to 〈1〉M = L2

µ(Ĝ),
and that we may assume that v is sent to 1.

The last statement in the corollary follows now too. If π is cyclic then
we have found the isomorphism. If π is isomorphic to the multiplication
representation on L2

µ(Ĝ) for a finite measure µ, then it must be cyclic since

we already showed that L2
µ(Ĝ) is cyclic (with generator 1). �

Using the cyclic case, we easily obtain a similar description of a general
representation.

Corollary 2.12 (Spectral theorem). Let π be a unitary representation of

the abelian group G. Then there exists a finite measure µ on X = Ĝ×N and
a unitary isomorphism between π and the unitary multiplication representa-
tion M of G on L2

µ(X) defined by
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Mg(w)(t, n) = 〈g, t〉w(t, n) (2.6)

for g ∈ G, w ∈ L2
µ(X), and (t, n) ∈ X.

Moreover, given a multiplication representation M of G defined by (2.6)

and a σ-finite measure on X = Ĝ× N the convolution operator M∗(f) asso-
ciated to some f ∈ L1(G) is given by the multiplication operator

M∗(f) =M
̂
f
: L2

µ(X) −→ L2
µ(X)

w 7−→
̂
fw.

Proof. That the multiplication representation is indeed a unitary repre-
sentation follows by the same argument as in the beginning of the proof of
Corollary 2.11. Next we claim that if µ is a σ-finite measure on X , then the
multiplication representation is unitarily isomorphic to a multiplication rep-
resentation defined by a finite measure µ′ on X . Indeed, since µ is σ-finite
there exists some strictly positive measurable function F with the property
that F 2 is integrable. Now define the finite measure µ′ by dµ′ = F 2 dµ
and U =MF−1 so that for w ∈ L2

µ(X) we have U(w) = F−1w and

‖Uw‖2L2
µ′

(X) =

∫
F−2|w|2 dµ′ =

∫
F−2|w|2F 2 dµ = ‖w‖2L2

µ(X),

which implies the claim since MF−1 commutes with Mg for any g ∈ G.
Let now π be a unitary representation of G. Applying Lemma 1.59 we can

split

Hπ =
⊕

n>1

〈vn〉π

into a direct sum of cyclic representations. Applying the cyclic case in Corol-
lary 2.11, we find a sequence of finite measures (µn) such that

Hπ =
⊕

n>1

〈vn〉π ∼=
⊕

n>1

L2
µn

(Ĝ).

We use these measures to define a σ-finite measure µ on X = Ĝ×N by setting

µ(B) =

∞∑

n=1

µn
(
{t ∈ Ĝ | (t, n) ∈ B}

)

for any Borel set B ⊆ X . This measure satisfies

L2
µ(X) ∼=

⊕

n>1

L2
µn

(Ĝ)

where f ∈ L2
µ(X) corresponds to the sequence (fn) defined by fn(t) = f(t, n)

for t ∈ Ĝ and n > 1. Combining the above isomorphisms, we see that
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Hπ ∼= L2
µ(X)

and the main claim in the corollary follows (using also the reduction to finite
measures proven above).

The argument for the last part of the corollary we have already seen in
the proof of Corollary 2.11. Indeed for f ∈ L1(G) and v, w ∈ L2

µ(X) we have

〈M∗(f)v, w〉L2
µ(X) =

∫

G

f(g)
〈
Mgv, w

〉
L2
µ(X)

dm(g)

=

∫

G

f(g)

∫

X

〈g, t〉 v(t, n)w(t, n) dµ(t, n) dm(g)

=

∫

X

̂
f(t)v(t, n)w(t, n) dµ(t, n) =

〈̂
fv, w

〉
L2
µ(X)

by definition of the convolution operator M∗(f) using weak integration, Fu-

bini’s theorem, and the definition of the Fourier transform

̂
f . As v, w ∈ L2

µ(X)
were arbitrary the corollary follows. �

Spectral measures as in Corollaries 2.11 and 2.12 carry complete infor-
mation about containment of one representation in another. We leave the
following special case as an exercise, and return to this question more gener-
ally in Sections 2.5.1 and 2.7, where we will also prove more refined versions
of the spectral theorem.

Essential Exercise 2.13 (Containment for characters). Let π be a uni-

tary representation of the abelian group G, let t0 ∈ Ĝ, and denote the cor-
responding character by χt0 . Characterize, in terms of spectral measures µv
for v ∈ Hπ, when χt0 is contained in π.

Exercise 2.14 (Example with infinite multiplicity). Give an example of a unitary
representation of the abelian group G for which we really have to use the space X = Ĝ×N
in Corollary 2.12, and could not have used Ĝ× {1, . . . , n} for some n ∈ N.

2.3 Plancherel Formula

We show in this section that by applying the spectral theorem (Corollary 2.11
and Corollary 2.12) to the regular representation of G we obtain a general
formulation of the Fourier transform. We will use this in the next section to
establish a duality principle between the abelian group G and its Pontryagin
dual Ĝ.

For t ∈ Ĝ we write Mt for the multiplication operator

Mt(v)(g) = 〈g, t〉v(g)
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for v ∈ L2(G) and g ∈ G. Moreover, we will write λ̂ for the regular represen-

tation of Ĝ on functions f on Ĝ, so that

λ̂t0(f)(t) = f(t− t0)

for all t, t0 ∈ Ĝ.
Theorem 2.15 (Plancherel formula). Given the abelian group G and a
normalization of its Haar measure m = mG there exists a normalization of
the Haar measure mĜ on Ĝ and a unitary isomorphism

U : L2(G) −→ L2(Ĝ)

which extends the map f 7→
̂
f for f ∈ L1(G)∩L2(G) to all of L2(G) and has

the equivariance properties

U ◦ λg =Mg ◦ U,
U ◦Mt = λ̂−t ◦ U

for all g ∈ G and t ∈ Ĝ. Moreover, the inverse U−1 : L2(Ĝ) → L2(G) is the
unique isometric extension of the map

L1(Ĝ) ∩ L2(Ĝ) ∋ F 7−→ F̂ ∈ C0(G) ∩ L2(G),

where

F̂ (g) =

∫

Ĝ

F (t)〈g, t〉dmĜ(t)

for any g ∈ G.
We split the proof of the theorem into several steps.

Lemma 2.16 (Convolution on L2(G)). For the regular representation λ of
the abelian group G on the space L2(G) and functions f ∈ L1(G), v ∈ L2(G),
we have that

λ∗(f)v = f ∗ v ∈ L2(G)

can be calculated almost everywhere by the integral formula defining convolu-
tion.

Proof. Let f ∈ L1(G) and v ∈ L2(G). Fixing another w ∈ L2(G) we may
use Fubini’s theorem to see

〈λ∗(f)v, w〉 =
∫
f(h) 〈λhv, w〉 dm(h)

=

∫∫
f(h)v(g − h)w(g) dm(g) dm(h)

=

∫
f ∗ v(g)w(g) dm(g) = 〈f ∗ v, w〉.
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This shows that the integral defining f ∗ v exists almost everywhere, defines
a function in L2(G), and equals λ∗(f)v. (We also refer to Exercise 1.55 and
the hint on p. 503 for a different argument.) �

Lemma 2.17 (Generators of L2(G)). The regular representation λ of the
abelian group G on L2(G) is cyclic. In fact, there exists some

ψ ∈ V = L1(G) ∩ L2(G)

with

̂
ψ > 0 on all of Ĝ and every such ψ is a generator for the regular

representation.

Proof.We first claim that there exists some function ψ ∈ V = L1(G)∩L2(G)

such that

̂
ψ > 0 on all of Ĝ. For this we let ψn ∈ V be an approximate

identity as in Proposition 1.43 so that

̂
ψn(t)→ 1 as n → ∞ for every t ∈ Ĝ

(by continuity of χt). Now choose cn > 0 decaying sufficiently rapidly so that

ψ =
∞∑

n=1

cnψ
∗
n ∗ ψn

converges both in L1(G) and in L2(G). Since

̂

ψ∗
n ∗ ψn =

∣∣
̂
ψn
∣∣2 this implies

together that

̂
ψ > 0 as claimed.

For the claim in the lemma that any such ψ ∈ V is a generator, we apply the
spectral theorem in the form of Corollary 2.12 to the unitary representation λ
(which we do not know to be cyclic yet). Hence we obtain a finite measure µ

on X = Ĝ× N and a unitary isomorphism

U : L2(G) −→ L2
µ(X)

such that U ◦ λ∗(f) = M
̂
f
◦ U for all f ∈ L1(G) (by the last claim in

Corollary 2.12). To see that ψ is a generator suppose that v ∈ L2(G) satis-

fies v ∈ 〈ψ〉⊥λ and let f ∈ V . Together with the identity λ∗(f)ψ = f ∗ ψ from
Lemma 2.16 and commutativity of convolution we obtain

0 = 〈λ∗(f)ψ, v〉 = 〈f ∗ ψ, v〉 = 〈ψ ∗ f, v〉 = 〈λ∗(ψ)f, v〉 =
〈̂
ψU(f), U(v)

〉
.

Now vary f in the dense subspace V ⊆ L2(G) and use continuity of the

multiplication operatorM
̂
ψ
: w ∈ L2

µ(X) 7→
̂
ψw ∈ L2

µ(X) to obtain that U(v)

is orthogonal to

̂
ψL2

µ(X). However, since

̂
ψ > 0 the image

̂
ψL2

µ(X) of the
multiplication operator M

̂
ψ

is dense, which in turn implies that U(v) = 0

and hence also v = 0. This implies the remaining claim of the lemma, namely

that L2(G) is cyclic and is generated by any ψ ∈ V with

̂
ψ > 0 on all of Ĝ. �
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Lemma 2.18 (Flattening the measure). If we apply the spectral theo-
rem in the form of Corollary 2.11 to the regular representation λ of the
abelian group G, it is possible to replace the original measure ν on Ĝ by
a σ-finite measure µ defining the same measure class as ν, such that the
map U : L2(G)→ L2

µ(G) also satisfies

U(f) =

̂
f (2.7)

for all f ∈ V = L1(G) ∩ L2(G).

We note that the measure arising in Corollary 2.11 is not at all canonical,
since it depends on the chosen generator. Lemma 2.18 ‘corrects’ this issue.

Proof of Lemma 2.18. By Lemma 2.17 we can apply Corollary 2.11 and
assume that the unitary isomorphism between the regular representation λ
and the multiplication representationM has the form U0 : L

2(G)→ L2
ν(Ĝ) for

a finite measure ν on Ĝ. Using Lemma 2.16 and the last part of Corollary 2.12,
we obtain ̂

ψU0(f) = U0(ψ ∗ f) = U0(f ∗ ψ) =
̂
fU0(ψ) (2.8)

almost everywhere (with respect to ν) and for any f ∈ V = L1(G) ∩ L2(G).
In particular,

U0(f) =

̂
ψ
−1
U0(ψ)

̂
f.

As U0(V) ⊆ L2
ν(Ĝ) is dense, it follows that U0(ψ) 6= 0 almost everywhere.

With this we define the complex-valued measurable and non-vanishing func-
tion

F =

̂
ψU0(ψ)

−1

on Ĝ, the σ-finite measure µ on Ĝ by

dµ

dν
= |F |−2,

and the map U =MF ◦U0 : L
2(G)→ L2

µ(Ĝ) (with inverse U−1
0 ◦MF−1). The

latter satisfies

‖U(f)‖2L2
µ(Ĝ) =

∫

Ĝ

|F |2|U0(f)|2 dµ =

∫

Ĝ

|U0(f)|2|F |2
dµ

dν
dν

= ‖U0(f)‖2L2
ν(Ĝ) = ‖f‖2

for all f ∈ L2(G), and by (2.8) also U(f) =

̂
f as in (2.7) for f ∈ V . Since

any two multiplication operators commute, the new unitary isomorphism still
satisfies the conclusion of the spectral thereom. �
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Lemma 2.19 (Translation invariance). Let µ be a σ-finite measure on Ĝ

satisfying ‖
̂
f‖L2

µ(Ĝ) = ‖f‖L2(G) for all f ∈ V = L1(G)∩L2(G). Then µ = mĜ

is a Haar measure on Ĝ.

Proof. By Lemma 2.16 we have L1(G) ∗ L2(G) ⊆ L2(G), which implies

that V ∗ V ⊆ V . Together with Corollary 2.5 we then see that

̂
V = U(V) is

contained in C0(Ĝ) ∩ L2
µ(Ĝ) and is a sub-algebra of C0(Ĝ). Also recall from

Lemma 2.17 that there exists some ψ ∈ V with

̂
ψ > 0.

Next we claim that µ is locally finite. Using

̂
ψ ∈ C0(Ĝ) we see that

O =
{
t ∈ Ĝ |

̂
ψ 2(t) > 1

2

̂
ψ 2(t0)

}

is a neighbourhood of t0 ∈ Ĝ. Together with

̂
ψ 2 ∈ L1

µ(Ĝ), which follows from

the fact that

̂
ψ = U(ψ) ∈ L2

µ(G), it follows that µ(O) <∞. Since t0 ∈ Ĝ was
arbitrary, it follows that µ is locally finite as claimed.

For f ∈ V and t, t0 ∈ Ĝ we have
̂

(χt0f)(t) =

∫

G

(χt0f)χt dm =

̂
f(t0 + t) = λ̂−t0

̂
f(t). (2.9)

Notice that
L2(G) ∋ f 7−→ χt0f ∈ L

2(G)

is unitary, which implies that
̂
V ∋

̂
f 7−→ λ̂−t0

̂
f (2.10)

preserves the norm and inner products for all t0 ∈ Ĝ. This is already a

translation invariance claim for µ, but restricted to the class of functions
(̂
V
)2
.

To prove that µ is translation-invariant, we show that

∫

Ĝ

F (t) dµ(t) =

∫

Ĝ

F (t0 + t) dµ(t)

for any F ∈ Cc(Ĝ) and t0 ∈ Ĝ, which in turn we show by approximating F

with elements of
(̂
V
)2
.

Indeed, by density of V in L1(G) and by Corollary 2.5 we see that

̂
V is dense

in C0(Ĝ) with respect to the supremum norm. Clearly this approximation

may be of little use since µ(Ĝ) might be infinite. To overcome this we recall

that

̂
ψ 2 ∈ L1

µ(Ĝ). Given some F ∈ Cc(Ĝ) and ε > 0, we can apply the
density claim and find a function f ∈ V such that

‖
̂
f −

̂
ψ −2F‖∞ < ε.
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We multiply this by

̂
ψ 2 and obtain

|
̂
ψ 2

̂
f − F | < ε

̂
ψ 2 (2.11)

on all of Ĝ. Integrating this inequality we obtain

∣∣∣∣
∫ ̂
ψ 2

̂
f dµ−

∫
F dµ

∣∣∣∣ < ε

∫ ̂
ψ 2 dµ.

As noted in (2.10), the integrals of the functions

̂
ψ 2

̂
f,

̂
ψ 2 ∈

(̂
V
)2

remain
unchanged when these are shifted by t0. Shifting the estimate in (2.11) by t0
and integrating again, this gives

∣∣∣∣
∫
F (t0 + t) dµ(t) −

∫
F (t) dµ(t)

∣∣∣∣ < 2ε

∫ ̂
ψ 2 dµ.

As ε > 0 was arbitrary, we deduce that

∫
F (t0 + t) dµ(t) =

∫
F (t) dµ(t)

for any F ∈ Cc(Ĝ). Since µ 6= 0 we see that µ is a Haar measure on Ĝ. �

We now show that the combination of the above lemmas gives the
Plancherel formula for G.

Proof of Theorem 2.15. By Lemma 2.17 and Lemma 2.18 we may ap-
ply the spectral theorem in the form of Corollary 2.11 and assume that the
unitary isomorphism

U : L2(G)→ L2
µ(Ĝ)

satisfies U(f) =

̂
f for all f ∈ V = L1(G) ∩L2(G). Applying Lemma 2.19, we

also see that the measure is a Haar measure µ = mĜ. The formula

U ◦ λg =Mg ◦ U

holds by Corollary 2.11. Finally,

U(Mt0
f) = λ̂−t0(U(f))

holds initially only for f ∈ V (see (2.9)), but knowing that µ is the Haar

measure on Ĝ (so that λ̂−t0 is unitary) this extends to all of L2(G).

It remains to prove the description of the inverse of U on L1(Ĝ) ∩ L2(Ĝ).

So let F ∈ L1(Ĝ) ∩ L2(Ĝ) and let (ψn) with ψn = 1
m(Bn)

1Bn
for n ∈ N be

again an approximate identity (as in Proposition 1.43) for a basis (Bn) of the
neighbourhood of 0 ∈ G with Bn = −Bn for all n ∈ N. For g ∈ G we have
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〈
U−1F, λgψn

〉
=
〈
F,

̂

λgψn

〉

=
〈
F,Mg

̂
ψn

〉

=

∫
F (t)〈g, t〉

̂
ψn(t) dt −→

∫
F (t)〈g, t〉dt = F̂ (g)

as n→∞ by using the isomorphism U and by dominated convergence (since

we have |
̂
ψn(t)| 6 ‖ψn‖1 = 1 and

̂
ψn(t)→ 1 as n→∞ for every t ∈ Ĝ).

To obtain the desired conclusion, we interpret 〈U−1F, λgψn〉 as a convo-
lution. Indeed, we have

〈
U−1F, λgψn

〉
=

∫
U−1(F )(h)ψn(h− g)︸ ︷︷ ︸

=ψn(g−h)

dm(h)

=

∫
ψn(k)U

−1(F )(g − k) dm(k)

= ψn ∗ U−1(F )(g) = λ∗(ψn)
(
U−1(F )

)
(g)

for almost every g ∈ G by using the substitution k = g−h and by Lemma 2.16.
Using Proposition 1.49 (for the regular representation), we see that

G ∋ g 7−→ 〈U−1F, λgψn〉

converges as the function λ∗(ψn)(U
−1F ) in L2(G) to U−1F as n→∞.

Even though the two notions of convergence above are different, we now
obtain U−1F = F̂ almost everywhere. Indeed, L2-convergence implies the
existence of a subsequence along which there is pointwise convergence, which
gives the desired inequality. �

2.4 Pontryagin Duality

We note that the Plancherel formula in Theorem 2.15 already expresses some
symmetry between G and Ĝ (apart from a choice of sign). Using this, we will

now establish a complete symmetry between G and its dual group Ĝ. For

this we let ̂̂G denote the Pontryagin bi-dual (that is, the Pontryagin dual of

the Pontryagin dual Ĝ) of the abelian group G. Moreover, for any g ∈ G we

define a map on Ĝ by ı(g)(t) = 〈g, t〉 = χt(g) for t ∈ Ĝ. The properties of the
Pontryagin bi-dual, the maps ı(g) for g ∈ G, and the map ı are given in the
following result.

Theorem 2.20 (Pontryagin duality). For the abelian group G the canon-

ical map ı : G→ ̂̂G is an isomorphism of topological groups.
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Let us start with some observations about the dual pairing 〈·, ·〉.

Lemma 2.21. (1) The map 〈·, ·〉 : G× Ĝ −→ S1 is continuous.

(2) ı(g) ∈ ̂̂G for any g ∈ G.
(3) The canonical map ı : G→ ̂̂G is injective and continuous.

Proof. For the proof of (1) suppose (gn) in G converges to g ∈ G and (tn)

in Ĝ converges to t ∈ Ĝ as n → ∞. Then K = {gn | n ∈ N} ∪ {g} is a
compact subset of G. By Corollary 2.5 the convergence tn → t implies in
particular that (χtn) converges uniformly to χt on K as n→∞. This implies
that 〈gn, tn〉 = χtn(gn)→ χt(g) = 〈g, t〉 as n→∞.

Property (2) now follows quickly from (1) since ı(g)(t) = 〈g, t〉 ∈ S1 de-

pends continuously on t ∈ Ĝ, and (by the definition of the group structure

on Ĝ) defines a homomorphism from Ĝ to S1.
It remains to prove (3). For g1, g2 ∈ G and t ∈ Ĝ, we have

ı(g1 − g2)(t) = χt(g1 − g2) = χt(g1)χt(g2) =
(
ı(g1)ı(g2)

−1
)
(t),

which shows that ı : G → Ĝ is a homomorphism. Let g be in Gr{0}.
By the Gelfond–Raikov theorem (Corollary 1.79) there exists some t ∈ Ĝ
with 〈g, t〉 6= 1. (Alternatively, we could also note that λg 6= I and apply the
equivariance formulas in Theorem 2.15 to obtain the same conclusion.) In

other words, ı(g)∈ ̂̂Gr{0} and we see that ı : G→ ̂̂G is injective.
To prove continuity of ı, suppose that (gn) converges to g ∈ G as n→∞

and let K ⊆ Ĝ be a compact subset. Then

L = ({gn | n ∈ N} ∪ {g})×K ⊆ G× Ĝ

is compact, and 〈·, ·〉 restricted to L is uniformly continuous. This in particular
implies that for every ε > 0 there exists some N > 1 such that

| 〈gn, t〉 − 〈g, t〉 | < ε

for all n > N and t ∈ K. In other words, the functions ı(gn) : Ĝ → S1

and ı(g) : Ĝ→ S1 are uniformly ε-close on K. Since the compact set K ⊆ Ĝ
and ε > 0 were arbitrary, Corollary 2.5 implies that ı(gn)→ ı(g) as n→∞,
and it follows that ı is continuous. �

Exercise 2.22. Show (without using Theorem 2.20) that ı : G → ̂̂G is proper. Indeed,
show first that if (gn) is a sequence in G with gn →∞ as n→∞ then λgn (v)→ 0 in the

weak* topology as n → ∞ for any v ∈ L2(G). Now try to push this statement to a claim

about the regular representation ̂̂λı(gn) on ̂̂G and the elements ı(gn) ∈ ̂̂G.

For the proof of Pontryagin duality, we will use the following general result
concerning homomorphisms of topological groups in the special case of the

canonical homomorphism ı : G→ ̂̂G.

Page: 84 job: AAUnitaryRepresentations macro:svmono.cls date/time:25-Mar-2022/16:18



2.4 Pontryagin Duality 85

Lemma 2.23. Let G and G′ be locally compact σ-compact metric abelian
groups, and let θ : G → G′ be a continuous injective group homomorphism
with θ∗(mG) = mG′ . Then θ is an isomorphism of topological groups.

Proof. Let U be an open neighbourhood of 0 ∈ G, and let V = −V be
a compact neighbourhood of 0 with V + V ⊆ U . Using θ∗mG = mG′ , we
see that the characteristic function f = 1θ(V ) belongs to L1(G′) ∩ L2(G′).
Moreover,

f ∗ f(g′) =
∫

G′

1θ(V )(h)1θ(V )(g
′ − h)

︸ ︷︷ ︸
=1θ(V )(h−g′)

dmG′(h)

= 〈λg′1θ(V ),1θ(V )〉L2(G′) = mG′

(
(θ(V ) + g′) ∩ θ(V )

)

for all g′ ∈ G′. This realises the function f∗f as the diagonal matrix coefficient
for 1θ(V ) ∈ L2(G′), and gives f ∗ f ∈ Cb(G′) and f ∗ f(0) > 0. Therefore

(f ∗ f)−1
(
(0,∞)

)
⊆ θ(V )− θ(V ) = θ(V − V ) ⊆ θ(U)

is a neighbourhood of 0 ∈ G′. As U was an arbitrary neighbourhood of 0 ∈ G
and θ is a homomorphism, this shows that θ maps open sets in G to open
sets in G′ (that is, θ is an open map).

In particular, θ(G) ⊆ G′ is an open subgroup. However, this implies
that θ(G) is also closed, since the continuity of the group operation implies
that its complement

G′rθ(G) =
⋃

g′∈G′rθ(G)

(
g′ + θ(G)

)

is open. Finally, using θ∗mG = mG′ in the form

mG′

(
G′rθ(G)

)
= mG

(
θ−1(G′rθ(G))

)
= mG(∅) = 0

shows, by the properties of Haar measure, that the open set G′rθ(G) must be
empty. In other words, the continuous injective homomorphism θ : G → G′

is open and surjective, so is a homeomorphism between G and G′. �

We will now use the Plancherel formula and its equivariance properties to
prove Pontryagin duality.

Proof of Theorem 2.20. Let ı : G → ̂̂G be the canonical homomorphism

studied in Lemma 2.21. We define the measure µ = ı∗(mG) on ı(G) ⊆ ̂̂G.
Because of Lemma 2.23, our main goal is to show that µ is the Haar measure

on ̂̂G.
For this, we let U : L2(G) → L2(Ĝ) be the unitary isomorphism from

the Plancherel formula (Theorem 2.15 applied to G). In particular, we have

that U−1(F ) = F̂ is given by the Fourier transform for
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86 2 Abelian Groups

F ∈ VĜ = L1(Ĝ) ∩ L2(Ĝ).

With this and the substitution h = −g on G, we obtain

‖
̂
F‖2

L2
µ(Ĝ)

=

∫ ∣∣
̂
F (ı(g))

∣∣2 dmG(g)

=

∫ ∣∣∣
∫
F (t) 〈t, ı(g)〉︸ ︷︷ ︸

=〈g,t〉

dmĜ(t)
∣∣∣
2

dmG(g)

=

∫ ∣∣∣
∫
F (t)〈−h, t〉dmĜ(t)

∣∣∣
2

dmG(h)

=

∫
|F̂ |2 dmG = ‖F‖2

L2(Ĝ)
.

In other words, the measure µ on ̂̂G satisfies the assumptions of Lemma 2.19

when applied to Ĝ. Therefore µ = m ̂̂G is a Haar measure on ̂̂G.
Recalling that µ = ı∗(mG) and the fact that ı : G → ̂̂G is an injective

continuous group homomorphism, Lemma 2.23 shows that ı : G → ̂̂G is in
fact an isomorphism of topological groups. �

The automatic reflexivity of the abelian group G in the Pontryagin du-
ality theorem (Theorem 2.20) allows us to prove many duality statements
that are reminiscent of finite dimensional linear algebra. In fact these duality
statements go much further, as we will see in the following subsections.

Exercise 2.24. Lemma 2.23 was phrased for abelian groups to avoid changing notation in
the middle of the chapter. Show that the assumption that the groups G and G′ are abelian
can be dropped.

Exercise 2.25. Use the discussion of this section to upgrade the statement of Exercise 1.78
as follows. Show that for G = R the weak* topology and the compact-open topology have
different neighbourhoods on E61(R) = R̂ ∪ {0} ⊆ P61(R).

2.4.1 First Duality Results, Sums and Products

Proposition 2.26 (Compactness and discreteness). Let G be an abelian

locally compact metric group. If G is compact, then Ĝ is discrete. If G is
discrete, then Ĝ is compact.

Proof. Recall from Corollary 2.5 that the topology on Ĝ is the compact-open
topology. Suppose that G is compact and t0 ∈ Ĝ belongs to the neighbour-
hood {

t ∈ Ĝ | |〈g, t〉 − 1| < 1 for all g ∈ G
}

of 0 ∈ Ĝ. Then {〈g, t0〉 | g ∈ G} is a subgroup of S1 contained in
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2.4 Pontryagin Duality 87

{z ∈ S1 | |z − 1| < 1}.

As the only such subgroup is the trivial subgroup {1} ⊆ S1, we see that t0 = 0

and hence that Ĝ is discrete.
Suppose now that G is discrete. Then the compact-open topology on Ĝ is

equal to the product topology inherited from (S1)G and

Ĝ =
{
χ ∈ (S1)G | χ(g1 + g2) = χ(g1)χ(g2) for all g1, g2 ∈ G

}

is a closed subset of the compact space (S1)G and hence is compact. �

It will be convenient to use the notation

NĜ(K, ε) =
{
t ∈ Ĝ | |〈g, t〉 − 1| < ε for all g ∈ K

}

for the neighbourhood of 0 ∈ Ĝ defined by a compact subsetK ⊆ G and ε > 0
in the compact-open topology of Ĝ. In the following, G1, G2, . . . will always
denote abelian groups that are as usual locally compact, σ-compact, and
metric, and we will refer to them simply as abelian groups.

For discrete abelian groups G1, G2, . . . we define the direct sum by

∞∑

n=1

Gn =
{
(gn) ∈

∏

n∈N

Gn | gn = 0 for all sufficiently large n ∈ N
}
,

which we again endow with the discrete topology.

Proposition 2.27 (Products and sums). The Pontryagin dual G1 ×G2

∧

of the direct product G1 ×G2 of the abelian groups G1 and G2 is canonically

isomorphic to Ĝ1× Ĝ2. If the abelian groups Gn for n ∈ N are compact, then
the Pontryagin dual of the direct product

∏∞
n=1Gn is canonically isomorphic

to the direct sum
∑∞
n=1 Ĝn. Finally, if the abelian groups Gn for n ∈ N are

discrete, then the Pontryagin dual of the direct sum
∑∞

n=1Gn is canonically

isomorphic to
∏∞
n=1 Ĝn.

We note that the isomorphisms are indeed quite natural. For instance,
in the first statement we can use (t1, t2) ∈ Ĝ1 × Ĝ2 to induce a character
on G1 ×G2 by the formula

χ(t1,t2)
(g1, g2) = 〈(g1, g2), (t1, t2)〉 = 〈g1, t2〉 〈g2, t2〉 (2.12)

for all (g1, g2) ∈ G1×G2. The isomorphism in the second and third are of the
same nature. Hence we may and will interpret the above claims as equalities
written

G1 ×G2

∧

= Ĝ1 × Ĝ2,

∞∏

n=1

Gn

∧

=
∞∑

n=1

Ĝn
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88 2 Abelian Groups

if all the Gn are compact, and

∞∑

n=1

Gn

∧

=

∞∏

n=1

Ĝn

if all the Gn are discrete.

Proof of Proposition 2.27. It is easy to see that the natural group op-
erations make G1 × G2 again into a locally compact, σ-compact, metric

abelian group. If (t1, t2) ∈ Ĝ1 × Ĝ2 then (2.12) defines an element χ(t1,t2)

of G1 ×G2

∧

. If, on the other hand, χ ∈ G1 ×G2

∧

we may compose χ with
the embedding of G1 into G1 × G2, which defines a continuous homomor-
phism G1 → G1 ×G2 → S1 by

g1 7−→ (g1, 0) 7−→ χ(g1, 0).

Hence there exists a uniquely determined t1 ∈ Ĝ1 with χ(g1, 0) = 〈g1, t1〉
for all g1 ∈ G1. Similarly there exists a uniquely determined t2 ∈ Ĝ2

with χ(0, g2) = 〈g2, t2〉 for all g2 ∈ Ĝ2. Since χ is a homomorphism, this
gives

χ(g1, g2) = χ(g1, 0)χ(0, g2) = χ(t1,t2)
(g1, g2)

for all (g1, g2) ∈ G1 × G2. It follows that (2.12) defines an isomorphism

between Ĝ1 × Ĝ2 and G1 ×G2

∧

, which is easily seen to be an isomorphism of
groups.

To see continuity of this isomorphism in both directions, it is sufficient
to consider neighbourhoods of the identity. So suppose first that K1 ⊆ G1

and K2 ⊆ G2 are compact and ε > 0. If now χ(t1,t2)
∈ N

Ĝ1×G2
(K1 ×K2, ε)

then by restriction to G1 × {0} and {0} × G2 we obtain t1 ∈ N
Ĝ1

(K1, ε)

and t2 ∈ N
Ĝ2

(K2, ε). For the converse, we note that if K ⊆ G1 × G2 is

compact, then K ⊆ K1 ×K2 for the compact projections K1 and K2 of K
to G1 and G2. If now t1 ∈ NĜ1

(K1,
ε
2 ) and t2 ∈ NĜ2

(K2,
ε
2 ) then

∣∣χ(t1,t2)
(g1, g2)− 1

∣∣ =
∣∣〈g1, t1〉

(
〈g2, t2〉 − 1

)
+ 〈g1, t1〉 − 1

∣∣ < ε

for all (g1, g2) ∈ K, and hence χ(t1,t2)
∈ N

Ĝ1×G2
(K, ε).

Suppose now that G1, G2, . . . are all compact and G =
∏∞
n=1Gn is

equipped with the product topology. Any χ ∈ Ĝ restricts as before to any
factor Gm for m ∈ N, and we obtain that there exists a uniquely deter-

mined tm ∈ Ĝm with

χ(0, . . . , 0, gm, 0, . . . ) = 〈gm, tm〉

for all gm ∈ Gm, where (0, . . . , 0, gm, 0, . . . ) denotes the element of
∏∞
n=1Gn

that has gm as its mth entry, and otherwise only zeroes. By continuity of χ
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2.4 Pontryagin Duality 89

there exists a neighbourhood U of 0 ∈ G such that |χ(g)−1| < 1 for all g ∈ U .
By definition of the product topology there exists some N ∈ N such that

{0}N ×
∞∏

n=N+1

Gn ⊆ U.

Therefore,

χ
(
{0}N ×

∞∏

n=N+1

Gn

)

is a subgroup of S1 contained in {z ∈ S1 | |z − 1| < 1}, which must therefore
be trivial. Hence tm = 0 for all m > N and χ is given by

χ
(
(gn)n

)
=

N∏

n=1

〈gn, tn〉 (2.13)

for all (gn)n ∈ G. Using the projections from G to its factors Gn for n ∈ N it

follows that (2.13) defines an element of Ĝ for any (tn)n ∈
∏N
n=1 Ĝn and N

in N. Since Ĝ and
∑∞

n=1 Ĝn are both discrete by Proposition 2.26, this proves
the second claim.

The third claim follows from the second by applying it to Ĝn and using
Pontryagin duality (Theorem 2.20). �

Exercise 2.28. Prove the last claim in Proposition 2.27 directly, without relying on Pon-
tryagin duality.

2.4.2 Dual Homomorphisms

Let now G1 and G2 be locally compact, σ-compact, metric, abelian groups
and let θ : G1 → G2 be a continuous group homomorphism. Then there exists

a dual map θ̂ : Ĝ2 → Ĝ1 defined by

〈g, θ̂(t)〉 = 〈θ(g), t〉 (2.14)

for g ∈ G1 and t ∈ Ĝ2.

Lemma 2.29 (Dual homomorphisms).With the assumptions above, equa-

tion (2.14) defines a continuous group homomorphism θ̂ : Ĝ2 → Ĝ1, called the
dual homomorphism of θ. Under the canonical isomorphism between the bi-
duals and the original groups in Theorem 2.20 the dual homomorphism of θ̂ is
given by θ. Moreover, if θ′ : G2 → G3 is another continuous group homomor-
phism with values in a locally compact, σ-compact, metric abelian group G3,

then θ̂′ ◦ θ = θ̂ ◦ θ̂′ : Ĝ3 → Ĝ1.
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90 2 Abelian Groups

Proof. Clearly the right hand side of (2.14) belongs to S1 for every g ∈ G1

and t ∈ Ĝ2. Fixing t and varying g we can use the fact that θ is a continuous
group homomorphism to see that the map G1 ∋ g 7→ 〈θ(g), t〉 indeed defines

an element θ̂(t) ∈ Ĝ1.
For g ∈ G1 and t1, t2 ∈ G2 we have

〈
g, θ̂(t1 + t2)

〉
= 〈θ(g), t1 + t2〉
= 〈θ(g), t1〉〈θ(g), t2〉
=
〈
g, θ̂(t1)

〉〈
g, θ̂(t2)

〉
=
〈
g, θ̂(t1) + θ̂(t2)

〉
,

which shows that θ̂ : Ĝ2 → Ĝ1 is a homomorphism.
As θ̂ is a homomorphism, it suffices to prove continuity at the identity

of Ĝ2 to obtain continuity on all of Ĝ2. So let K ⊆ G1 be some compact
subset and ε > 0 and use these to define the neighbourhood N

Ĝ1
(K, ε).

Then θ(K) ⊆ G2 is compact (since θ is continuous), so it defines a neighbour-
hood N

Ĝ2
(θ(K), ε). It is now easy to see that t ∈ N

Ĝ2
(θ(K), ε) and g ∈ K

implies that ∣∣〈g, θ̂(t)
〉
− 1
∣∣ = |〈θ(g), t〉 − 1| < ε

and hence θ̂(t) ∈ N
Ĝ1

(K, ε), which gives continuity of θ̂ at 0 ∈ Ĝ2, as required.

For g ∈ G1 and t ∈ Ĝ2 we have†

〈̂̂θ(g), t〉 =
〈
g, θ̂(t)

〉
= 〈θ(g), t〉,

which proves that ̂̂θ = θ.
Finally for θ′ and t ∈ Ĝ3 as in the last part of the lemma we have

〈g, θ̂′ ◦ θ(t)〉 = 〈θ′(θ(g)), t〉 = 〈θ(g), θ̂′(t)〉 = 〈g, θ̂ ◦ θ̂′(t)〉

for all g ∈ G1, and the lemma follows. �

Recall from Exercise 2.6 that R̂d ∼= Rd by the formula 〈g, t〉 = e2πig·t

for g, t ∈ Rd, where g · t = ∑d
j=1 gjtj is the standard inner product on Rd

for d > 1. Suppose now d, e > 1 and that A : Rd → Re is a linear map. Then
the dual homomorphism Â is equal to the dual map At in the sense of linear
algebra, and so is defined by the transpose of the matrix defining A if we use
the standard basis on Rd and Re. In fact,

〈
g, Ât

〉
= 〈Ag, t〉 = e2πi(Ag·t) = e2πi(g·A

tt) =
〈
g,Att

〉

for all g ∈ Rd and t ∈ Re, which proves the claim.

† This is to be interpreted as 〈t, ̂̂θ(ı(g))〉 = 〈θ̂(t), ı(g)〉 = 〈g, θ̂(t)〉.
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2.4 Pontryagin Duality 91

We finish the subsection by stating another duality claim for homomor-
phisms, which we will prove at the end of the next subsection as a corollary
of our discussion regarding quotients.

Corollary 2.30 (Injectivity and dense image). Let θ : G1 → G2 be a
continuous group homomorphism from the abelian group G1 to the abelian
group G2. Then

(1) θ is injective if and only if θ̂ has dense image; and

(2) θ has dense image if and only if θ̂ is injective.

2.4.3 Subgroups and Quotients*

For a closed subgroup H of the abelian group G, we define

G/H = {g +H | g ∈ G}

as the quotient group, and equip G/H with the quotient topology. Recall
that G/H is abelian, and by the more general Proposition C.3 it also follows
that G/H in the quotient topology is a locally compact σ-compact metric
abelian group.

The annihilator H⊥ of a closed subgroup (or even a subset) H of the
abelian group G is defined by

H⊥ =
{
t ∈ Ĝ | 〈h, t〉 = 1 for all h ∈ H

}
.

Proposition 2.31 (Duality of subgroups and quotients). Let H ⊆ G

be a closed subgroup of the abelian group G. Then H⊥ ⊆ Ĝ is a closed sub-
group which, together with the quotient group, satisfies the following duality
statements.

(1) Ĝ/H ∼= H⊥ via the pairing defined by 〈g + H, t〉 = 〈g, t〉 for t ∈ H⊥

and g +H ∈ G/H.

(2) Ĥ ∼= Ĝ/H⊥ via the pairing defined by 〈h, t + H⊥〉 = 〈h, t〉 for h ∈ H

and t+H⊥ ∈ Ĝ/H⊥.

(3)
(
H⊥)⊥ ∼= H, where we identify ̂̂G with G using Theorem 2.20.

Proof. By definition,

H⊥ =
⋂

h∈H
ker
(
Ĝ ∋ t 7−→ 〈h, t〉

)
,

and so by Lemma 2.21 we see that H⊥ is a closed subgroup of Ĝ.
We note that any t ∈ H⊥ induces a well-defined homomorphism
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92 2 Abelian Groups

χ : G/H ∋ g +H 7−→ 〈g, t〉 ∈ S1,

which by definition of the quotient topology is also continuous. On the other
hand, a character χ on G/H induces by composition a character

χ ◦ p : G→ S1

on G which must correspond to some t ∈ H⊥. This gives the identifica-

tion between Ĝ/H and H⊥, which is clearly also compatible with the group
structures. It remains to show that this identification is a homeomorphism.

By Proposition C.3 compact subsets K ′ ⊆ G/H are precisely of the
form K ′ = p(K) for some compact set K ⊆ G. This shows that the neigh-

bourhood N
Ĝ/H

(K ′, ε) of 0 ∈ Ĝ/H corresponds to the neighbourhood

H⊥ ∩NĜ(K, ε)

of 0 ∈ H⊥ for any K ′ = p(K) and ε > 0, which completes the proof of (1).

Next we prove (3). Clearly we have H ⊆
(
H⊥)⊥. Suppose that g ∈ GrH .

Recall from Lemma 2.21(3) that ı : G/H → ̂̂G/H is injective which, by defi-
nition, means that for g+H 6= 0+H in G/H there exists a character on G/H
that maps g +H to z 6= 1 in S1. By (1), this implies the existence of t ∈ H⊥

with 〈g, t〉 = z 6= 1. However, this implies that g /∈
(
H⊥)⊥, proving (3).

The isomorphism in (2) now follows from Pontryagin duality (Theo-

rem 2.20) by applying (1) to the subgroup H⊥ in Ĝ. �

Example 2.32 (Duality between projection and embedding). Let H ⊆ G be
a closed subgroup of the abelian group G. Using the first isomorphism in
Proposition 2.31 the dual of the canonical map p : G→ G/H is the canonical

embedding map from Ĝ/H = H⊥ to Ĝ since

〈g, p̂(t)〉 = 〈p(g), t〉 = 〈g +H, t〉 = 〈g, t〉.

for g ∈ G and t ∈ H⊥. Similarly we may use the second isomorphism to
conclude that the dual of the embedding ı : H → G is given by the canonical
projection from Ĝ to Ĥ = Ĝ/H⊥ as

〈h, ı̂(t)〉 = 〈h, t〉 = 〈h, t+H⊥〉

for all h ∈ H and t ∈ Ĝ.

Using Proposition 2.31 we can now prove the duality claim regarding in-
jectivity and dense image for homomorphisms.

Proof of Corollary 2.30. Suppose that θ has dense image and t ∈ Ĝ2

satisfies θ̂(t) = 0. Then we have 1 = 〈g, θ̂(t)〉 = 〈θ(g), t〉 for all g ∈ G1, or
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2.4 Pontryagin Duality 93

equivalently χt(Im θ) = 1. Since Im θ = G2 and χt is continuous, this implies

that t = 0 and hence that θ̂ is injective.
Suppose now that Im θ 6= G2. Then by Proposition 2.31 there exists a

non-trivial t ∈ (Im θ)⊥ ⊆ Ĝ2. For this t and all g ∈ G1 we then have

〈g, θ̂(t)〉 = 〈θ(g), t〉 = 1,

which implies that θ̂(t) = 0 and hence that θ̂ is not injective.
This proves (2), which together with Pontryagin duality and the iden-

tity ̂̂θ = θ in Lemma 2.29 also implies (1). �

Exercise 2.33 (Kernel and closure of image). Let θ : G1 → G2 be a homomorphism
as in Corollary 2.30.

(a) Show that
(
Im θ

)⊥
= ker θ̂.

(b) Show that
(
ker θ

)⊥
= Im θ̂.

Exercise 2.34 (Connectedness and torsion). Let G be a compact metric abelian
group. Show that G is connected if and only if Ĝ has no torsion elements (that is, if
and only if t ∈ Ĝ with nt = 0 and n > 1 implies that t = 0).

Exercise 2.35. LetA ⊆ G be an arbitrary subset of a topological group. Prove that (A⊥)⊥

is the closure of the group generated by A.

2.4.4 Projective and Direct Limits*

We wish to discuss two more constructions that are once again dual to each
other under Pontryagin duality. We start with the projective limit, which
in a sense generalizes the direct product, and is defined as follows. Suppose
that (Gn) is a sequence of abelian groups, and θn : Gn+1 → Gn is a continuous
surjective homomorphism with compact kernel for every n ∈ N. Then the
projective limit of the system (Gn, θn) is defined to be the closed subgroup

G = lim←−(Gn, θn) =
{
(gn) ∈

∞∏

n=1

Gn

∣∣∣∣∣ θn(gn+1) = gn for every n ∈ N

}

of the product
∏∞
n=1Gn equipped with the product topology.

The second construction is the direct limit, which in a sense general-
izes the direct sum. For this, suppose that (Hn) is a sequence of abelian
groups and ın : Hn → Hn+1 is a homomorphism such that ın : Hn → ın(Hn)
is an isomorphism of topological groups between Hn and the open sub-
group ı(Hn) ⊆ Hn+1 for every n ∈ N. We use ın to identify Hn with the
subgroup ın(Hn) and define the direct limit of the system (Hn, ın) as

H = lim−→(Hn, ın) =
∞⋃

n=1

Hn. (2.15)
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This is a small cheat, as we use the identification to suppress the set-theoretic
construction of the direct limit in the category of sets,† that is of a set H∞
and maps φn : Hn → H∞ with H∞ =

⋃∞
n=1 φn(Hn) and φn+1 ◦ ın = φn

for all n ∈ N. As we want to focus here on the algebraic and topological
properties of lim−→(Hn, ın), this will simplify our discussion a little. In concrete
examples this step may need to be treated more carefully (see Exercise 2.36).

Exercise 2.36. Let q > 1 be an integer, define Hn = Z and ×q = ın : Hn → Hn+1

by ın(k) = qk for all k ∈ Hn = Z and n ∈ N. Describe the direct limit lim−→(Z,×q).

Using the fact that (2.15) is an increasing union, the group operation
on H are defined in an obvious way: for h1, h2 ∈ H there exists some n ∈ N
with h1, h2 ∈ Hn and hence h1h2, h

−1
1 are defined in H by the using the

group operations in Hn.
The topology on lim−→(Hn, ın) is defined by the property that each Hn is

(homeomorphically embedded as) an open subset of lim−→(Hn, ın). More pre-
cisely, let the abelian groupsHn and embeddings ın : Hn → Hn+1 be as in the
definition of the direct limit lim−→(Hn, ın). Due to the assumed properties of ın
we have that Hn can be considered to be an open subgroup of Hn+1. This
allows us to define the topology on H as in (2.15) as the inductive topology,
in which a subset O ⊆ H is open if and only if O ∩Hn is open for all n ∈ N.
In particular, Hn ⊆ H is open for every n ∈ N.

Proposition 2.37 (Projective and direct limits). Under the assump-
tions above, the projective limit lim←−(Gn, θn) and the direct limit lim−→(Hn, ın)
are again locally compact σ-compact metric abelian groups.

Proof. We first discuss the topological group lim←−(Gn, θn). From continuity
of θn : Gn+1 → Gn for n ∈ N and the definition of the product topology, it
follows that G = lim←−(Gn, θn) is a closed subset of

∏∞
n=1Gn. As the maps are

also homomorphisms, G is in fact a closed subgroup, and hence is a metric
abelian topological group. For the local and the σ-compactness, we claim that
the surjective map θn : Gn+1 → Gn with compact kernel is a proper map.
Given (gn) ∈ G = lim←−(Gn, θn) we then can find a compact neighbourhood K
of g1 ∈ G1 and obtain the neighbourhood

(
K ×

∞∏

n=2

Gn

)
∩G =

( ∞∏

n=1

Kn

)
∩G,

for K1 = K and Kn+1 = θ−1
n (Kn) for all n ∈ N. By Tychonoff’s theo-

rem,
∏∞
n=1Kn is compact and so G is locally compact. Writing G1 as a

† For example, one can use the set

H∞ = {1} ×H1 ⊔
⊔

n>2

{n} ×Hnrın−1(Hn−1) ⊆ N×
⋃

n∈N

Hn.

We leave the definition of the maps φn and the proof of the identity φn+1 ◦ ın = φn
for n ∈ N to the reader.
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2.4 Pontryagin Duality 95

countable union of compact sets and applying the argument above once more,
we also see that G is σ-compact.

To prove the claim we simplify notation and suppose that θ : G → G′

is a surjective continuous homomorphism with compact kernel between the
abelian groups G and G′. Let K ′ ⊆ G′ be compact. By Proposition C.3 there
exists a compact subset K ⊆ G with K ′ = θ(K) and hence

θ−1(K) = K + ker θ

is compact as claimed.
Suppose now that the abelian groups Hn and embeddings ın : Hn → Hn+1

are as in the definition of the direct limit lim−→(Hn, ın). Due to the assumed
properties of ın we have that Hn can be considered to be an open subgroup
of Hn+1. This allows us to define H as in (2.15) equipped with the obvi-
ous operations and the inductive topology. Recall that Hn ⊆ H is open for
every n ∈ N. Since each Hn is locally compact, σ-compact, and has second
countable topology, the same is true for H , and in particular H is metric. If
a sequence in H converges to some h ∈ Hn, then by openness of Hn in H , all
but finitely many terms of the sequence must lie in Hn. From this it is easy
to conclude that H is also a topological group. �

For the discussion of the Pontryagin dual of projective and direct limits
the following two notions and their relation will be useful. We say that a
continuous homomorphism θ : G → G′ is a proper projection if it is onto
and has compact kernel (which as we have shown in the above proof indeed
implies properness of the map). Furthermore we say that ı : H → H ′ is an
open embedding if it is an isomorphism betweenH and an open subgroup ı(H)
of H ′.

Lemma 2.38 (Proper projections and open embeddings). Let G,G′

and H,H ′ be locally compact σ-compact metric abelian groups.

(1) If θ : G → G′ is a proper projection, then θ̂ : Ĝ′ → Ĝ is an open embed-
ding.

(2) If ı : H → H ′ is an open embedding, then ı̂ : Ĥ ′ → Ĥ is a proper projec-
tion.

Proof. We suppose that θ is a proper projection. Then surjectivity of θ
implies injectivity of θ̂ by Corollary 2.30. Moreover, the last claim in Propo-
sition C.3 shows that θ = θ ◦ p, where p : G → G/ ker θ is the canonical
projection map and θ : G/ ker θ → G′ is an isomorphism. Dually, we then

have θ̂ = p̂ ◦ θ̂, where θ̂ is an isomorphism and

p̂ : Ĝ/ ker θ = (ker θ)⊥ → Ĝ

is the canonical embedding by Example 2.32. Furthermore we have
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96 2 Abelian Groups

Ĝ/(ker θ)⊥ = k̂er θ

by Proposition 2.31. By assumption ker θ is compact, which implies that k̂er θ
is discrete by Proposition 2.26. Therefore, (ker θ)⊥ is an open subgroup of Ĝ

and it follows that θ̂ embeds Ĝ′ onto the open subgroup θ̂
(
Ĝ′
)
= (ker θ)⊥ ⊆ Ĝ

as claimed.
We suppose now that ı : H → H ′ is a continuous embedding such

that ı(H) ⊆ H ′ is an open subgroup and ı : H → ı(H) is a group iso-
morphism. Identifying H with ı(H), the dual homomorphism to the em-

bedding ı : H → H ′ is the canonical projection ı̂ : Ĥ ′ → Ĥ ′/H⊥ with ker-

nel H⊥ = Ĥ ′/H by Example 2.32. Since H ′/H is discrete, Proposition 2.26
shows that ker ı̂ = H⊥ is compact. �

With these preparations, we can now prove the duality between the two
limit constructions.

Proposition 2.39 (Duality of limits). Let the projective limit lim←−(Gn, θn)
and the direct limit lim−→(Hn, ın) be as in Proposition 2.37. Then

lim←−(Gn, θn)
∧

= lim−→(Ĝn, θ̂n),

where we use the open embedding ın = θ̂n : Ĝn → Ĝn+1 for all n ∈ N to
define the direct limit. Dually,

lim−→(Hn, ın)
∧

= lim←−(Ĥn, ı̂n),

where we use the proper projection θn = ı̂n : Ĥn+1 → Ĥn for n ∈ N to define
the projective limit.

Proof. Lemma 2.38 shows that if (Hn, ın) satisfies the assumptions for the
construction of

H = lim−→(Hn, ın)

then (Ĥn, ı̂n) satisfies the assumptions for the construction of

G = lim←−(Ĥn, ı̂n).

Suppose now h ∈ H and (tn) is a sequence inG. Then there exists somem ∈ N
with h ∈ Hm, and we define

〈h, (tn)〉lim = 〈h, tm〉.

We wish to prove that this is the dual pairing between H and Ĥ ∼= G. Note
that

〈h, tm+1〉 = 〈ım(h), tm+1〉 = 〈h, ı̂m(tm+1)〉 = 〈h, tm〉
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2.4 Pontryagin Duality 97

since ı̂n(tn+1) = tn for all (tn) in G and n ∈ N by construction of the projec-

tive limit G = lim←−(Ĥn, ın). Thus the expression 〈h, (tn)〉lim is independent of
the choice of m, which easily implies that

H ∋ h 7−→ 〈h, (tn)〉lim ∈ S1 (2.16)

defines a multiplicative homomorphism. Using the fact that Hn is an open

subgroup of H and tn ∈ Ĥn we also obtain continuity of the character defined
by (2.16) for each n > 1. In other words, we have a well-defined homomor-

phism Φ : G → Ĥ , which sends (tn) to the character in (2.16). Moreover, if
we have Φ((tn)) = 0 for some (tn) ∈ G, then 〈Hn, tn〉 = 1 for all n ∈ N, and
so Φ is injective.

Now let χ be a character on H . Restricting χ to any of the open sub-
groups Hn for n ∈ N, we obtain the character χ|Hn on Hn. Hence there

exists a uniquely determined tn ∈ Ĥn with

χ(h) = 〈h, tn〉

for all h ∈ Hn. For h ∈ Hn we also have h = ın(h) ∈ Hn+1, and so

〈h, tn〉 = χ(h) = 〈ın(h), tn+1〉 = 〈h, ı̂n(tn+1)〉

for all h ∈ Hn. This implies that tn = ı̂n(tn+1) for all n ∈ N. Therefore (tn)

lies in G, and we have shown that Φ : G→ Ĥ is onto and so gives the desired
identification.

To see that Ĥ and G are also isomorphic as topological groups, we note
that H =

⋃∞
n=1Hn is an open cover and hence any compact set K ⊆ H

belongs to some Hm. It follows that NĤ(K, ε) corresponds under the isomor-

phism from Ĥ to G = lim←−(Ĥn, ı̂n) to the set

{(tn) ∈ G | tm ∈ NĤm(K, ε)}.

As the latter is an open subset of G (with respect to the restriction of the

product topology), we conclude that the map from G to Ĥ is continuous.

Proposition C.3 now implies that the above isomorphism from G to Ĥ as
abstract groups is in fact an isomorphism for topological groups.

The dual statement concerning the Pontryagin dual of lim←−(Gn, θn) follows
from Lemma 2.38, the above, and Pontryagin duality (Theorem 2.20). �
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98 2 Abelian Groups

2.4.5 Local Fields*

By definition a local field K is a locally compact σ-compact non-discrete
metric field, where all field operations are assumed to be continuous. Our
main goal here is to prove the following self duality statement.

Proposition 2.40 (Self-duality). A local field K is isomorphic as an addi-

tive group to its own Pontryagin dual K̂. In fact, for any non-trivial charac-
ter χ ∈ K̂ we can define an isomorphism of topological groups

K ∋ t 7−→ χt ∈ K̂

by χt : K ∋ a 7→ χt(a) = χ(at).

A useful tool, both for our discussion and for the further study and clas-
sification of local fields, is the induced absolute value defined by

|a|K =
mK(aM)

mK(M)
,

where a ∈ K, mK is a Haar measure for the group (K,+), and M ⊆ K is any
Borel subset with positive finite measure.

Lemma 2.41 (Properties of the absolute value). Let K be a local field.
The absolute value | · |K : K→ [0,∞) is positive in the sense that |a|K > 0 for
all a ∈ Kr{0}, well-defined, multiplicative in the sense that

|a1a1|K = |a1|K|a2|K

for all a1, a2 ∈ K, continuous, and proper. Moreover, an → 0 as n → ∞ if
and only if |an|K → 0 as n→∞.

Proof. For a = 0 we have aM = {0} for any M as in the definition of |a|K,
and the assumption that K is non-discrete implies that |0|K = 0. That |a|K is
well-defined (that is, independent of the choice of Haar measure mK and the
set M) follows as in our discussion of the modular character in Section 1.2.4.
In fact, for any a ∈ Kr{0} defining µa(B) = mK(aB) for Borel subsets B ⊆ K
gives a Haar measure µa on (K,+) and hence, by uniqueness, µa must be a
positive multiple of mK. In particular, |a|K > 0 for all a ∈ Kr{0}.

To see multiplicativity, suppose without loss of generality that a1, a2 are
elements of Kr{0}. Then

|a1a2|K =
mK(a1a2M)

mK(M)
=
mK(a1a2M)

mK(a2M)

mK(a2M)

mK(M)
= |a1|K|a2|K

for any M ⊆ K as in the definition of | · |K. We will assume in the following
that M ⊆ K is a compact neighbourhood of 0 ∈ K.

Page: 98 job: AAUnitaryRepresentations macro:svmono.cls date/time:25-Mar-2022/16:18



2.4 Pontryagin Duality 99

For the proof of continuity of | · | : K → [0,∞) at 0, we will need the fol-
lowing topological claim for the local field K. For any open neighbourhood U
of 0 ∈ K there exists some neighbourhood V of 0 ∈ K such that VM ⊆ U .
Indeed, for any a ∈ M there exists (by continuity of multiplication) open
neighbourhoods Va of 0 and Oa of a such that VaOa ⊆ U . By compactness
of M we can find a finite subcover

M ⊆ Oa1 ∪ · · · ∪Oam
and so it follows that VM ⊆ U for

V = Va1 ∩ · · ·Vam .

To see continuity of | · |K at 0, we let ε > 0 and choose U to be an open
neighbourhood of 0 with measure mK(U) < mK(M)ε. Let V be an open
neighbourhood of 0 with VM ⊆ U as above. For a ∈ V we then obtain

|a|K =
mK(aM)

mK(M)
6

mK(U)

mK(M)
< ε.

As ε > 0 was arbitrary it follows that | · |K is continuous at 0 ∈ K.
To see continuity of | · |K at 1 we first prove an analogue of the above

topological claim. By local compactness and local finiteness ofmK there exists
an open set O ⊇M with finite Haar measure. We define

Bn = {a ∈ O | d(a,M) < 1
n}

for a ∈ K. Since O ⊇ B1 ⊇ B2 ⊇ · · · is a decreasing sequence, O has finite
Haar measure, and

M =

∞⋂

n=1

Bn,

we have mK(M) = limn→∞mK(Bn). Let ε > 0 and choose n > 1 such that

mK(Bn) < (1 + ε)mK(M).

Just as in the proof of the above topological claim, we can use compact-
ness of M , openness of Bn, and the inclusion 1 ·M ⊆ Bn to find an open
neighbourhood V of 1 ∈ K with VM ⊆ Bn. For a ∈ V we then obtain

|a|K =
mK(aM)

mK(M)
6
mK(Bn)

mK(M)
< 1 + ε.

Therefore
(1 + ε)−1 < |a|K < 1 + ε

for all a ∈ V with a−1 ∈ V , since |a−1|K = |a|−1
K by the multiplicative

property. As ε > 0 was arbitrary and {a ∈ V | a−1 ∈ V } is a neighbourhood
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100 2 Abelian Groups

of 1, we obtain the continuity of | · |K at 1 ∈ K. Continuity at a0 ∈ Kr{0}
now follows from the identity

|a|K = |aa−1
0 a0|K = |aa−1

0 |K|a0|K

for a ∈ K.
It remains to prove that | · |K is proper, and that a sequence (an) in K

converges to 0 if (|an|K) converges to 0 as n→∞. Let M ⊆ K be a compact
neighbourhood of 0 ∈ K as above, and suppose in addition that 1 ∈ M .
Let U0 ⊆ M be an open neighbourhood of 0 with Haar measure satisfy-
ing mK(U0) 6

1
2mK(M). Let V0 be an open neighbourhood of 0 ∈ K satisfy-

ing V0M ⊆ U0 as in the topological claim above. For the following we choose
and fix some t ∈ V0r{0}. Then |t|K 6 1

2 (by the argument proving continuity
at 0 above) and so

|tn|K = |t|nK −→ 0 (2.17)

as n → ∞. Moreover, t = t · 1 ∈ tM ⊆ U0 ⊆ M , and by induction tn ∈ M
for all n > 1. By compactness of M the sequence (tn) has a convergent
subsequence. However, because of the established positivity and continuity
of the absolute value, we conclude from (2.17) that 0 is the only possible limit
point of a convergent subsequence. By compactness, we obtain tn → 0 ∈ K
as n→∞.

For ℓ ∈ N we now define Pℓ = t−ℓ(MrtM) and obtain

K =M ∪
∞⋃

ℓ=1

Pℓ.

Indeed, for any a ∈ KrM we have tna → 0 as n → ∞, so there exists a
minimal ℓ > 1 with tℓa ∈M (satisfying tℓa /∈ tM), and hence a ∈ Pℓ.

We also define
c = min{|a|K | a ∈MrtM},

and note that c > 0 since MrtM ⊆ M is compact and does not contain 0.
It now follows that any a = t−ℓa0 ∈ Pℓ with a0 ∈ MrtM and ℓ ∈ N has
absolute value

|a|K = |t−ℓa0|K = |t|−ℓK |a0|K > 2ℓc.

As

M ∪
L⋃

ℓ=1

Pℓ = t−LM

is compact for every L > 1 and |a|K > 2L+1c for all a ∈ Kr(t−LM), it follows
that the absolute value is a proper function.

Now suppose that (an) is a sequence in K with |an|K → 0 as n → ∞.
Then an ∈M for all sufficiently large n since by the above, |a|K > 2c if a /∈M ,
and we may again use compactness of M , positivity, and continuity of the
absolute value to conclude that an → 0 as n→∞. �
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2.4 Pontryagin Duality 101

Proof of Proposition 2.40. Let χ ∈ K̂ be any non-trivial character. We
define χt : K ∋ a 7→ χt(a) = χ(at) for any t ∈ K as in the proposition.
Since K ∋ a 7→ at ∈ K is a continuous homomorphism of the additive groupK
it follows that χt ∈ K̂ for any t ∈ K. For t1, t2, a ∈ K we also have

χt1+t2(a) = χ
(
(t1 + t2)a

)
= χ(t1a)χ(t2a) = χt1(a)χt2(a),

and so Φ : K ∋ t 7→ χt ∈ K̂ is a homomorphism. By assumption, χ is a non-
trivial character. So let a0 ∈ K be chosen with χ(a0) 6= 1. If now t ∈ Kr{0}
then

χt(
1
t a0) = χ(t 1t a0) = χ(a0) 6= 1,

which shows that χt is non-trivial and hence Φ is injective.
To see continuity of Φ, letM ⊆ K be compact and fix ε > 0. By continuity

of χ,
U = {a ∈ K | |χ(a)− 1| < ε}

is an open neighbourhood of 0 ∈ K. By compactness ofM there exists an open
neighbourhood V of 0 such that VM ⊆ U (just as in the topological claim in
the proof of Lemma 2.41). Therefore t ∈ V gives |χt(a)− 1| = |χ(at)− 1| < ε
for all a ∈M . Equivalently, t ∈ V implies that

χt ∈ NK̂
(M, ε),

which gives continuity of Φ.
Next we claim that Φ is proper. So let (tn) be a sequence in K with the

property that tn →∞ as n→∞. By Lemma 2.41, we have

an = t−1
n a0 −→ 0

as n → ∞. This shows that (χtn) has no convergent subsequence with re-
spect to the compact-open topology. In fact, uniform convergence of (χtnk

)

on the compact set {0} ∪ {an | n ∈ N} to a character χ′ would imply
that limk→∞ χtnk

(ank) = χ′(0) = 1, but we have χtn(an) = χ(a0) for

all n > 1, and χ(a0) 6= 1. This shows that χtn → ∞ as n → ∞, and hence
that Φ is proper.

It follows that Φ(K) ⊆ K̂ is a closed subgroup of K̂. To identify the sub-
group Φ(K) we suppose that a ∈ Φ(K)⊥ ⊆ K, so that 〈a, Φ(t)〉 = χt(a) = 1
for all t ∈ K. If a 6= 0 we can set t = a−1a0 and obtain the contradic-
tion χt(a) = χ(aa−1a0) = χ(a0) 6= 1. Hence Φ(K)⊥ = {0} and Proposi-

tion 2.31 implies that Φ(K) = K̂. By the last claim in Proposition C.3 we

now obtain that Φ : K → K̂ is an isomorphism of topological groups, which
concludes the proof. �

We note that the above applies to the local fields R and C. In particular,
Proposition 2.40 and Proposition 2.27 together give a complete (but much
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102 2 Abelian Groups

longer) proof of Exercise 2.6. Let us briefly describe a second class of local
fields that are especially important in number theory.

Fix a prime p ∈ N. The local field Qp is defined as the completion of Q
with respect to the so-called p-adic norm defined by

|a|p =
{
0 if a = 0;

p−k if a = pk mn ∈ Q× for k ∈ Z,m, n ∈ ZrpZ.

The definition of | · |p implies that |ab|p = |a|p|b|p for all a, b ∈ Q. Similarly,
if a = pk mn and b = pℓ rs with k, ℓ ∈ Z and m,n, r, s ∈ ZrpZ, then

|a+ b|p =
∣∣∣pmin(k,ℓ)

(
pk−min(k,ℓ)m

n + pℓ−min(k,ℓ) r
s

)∣∣∣
p

6 max(p−k, p−ℓ) = max
(
|a|p, |b|p

)
6 |a|p + |b|p.

As in the study of norms on vector spaces, it now follows that |a− b|p defines
a metric on Q which extends to the completion Qp of Q. Moreover, the p-adic
norm extends from Q to a continuous function on Qp defined by setting

|a|p = dp(a, 0)

for all a ∈ Qp. From these properties it follows that multiplication and addi-
tion extend continuously from Q to Qp. In fact, by the above discussion we
have

|a+ b|p 6 max
(
|a|p, |b|p

)
6 |a|p + |b|p (2.18)

and
|ab|p = |a|p|b|p (2.19)

for all a, b ∈ Q. This implies that sums and products of Cauchy sequences inQ
are again Cauchy sequences in Q. Hence we obtain the definition of addition
and multiplication on Qp so that (2.18) and (2.19) also hold for a, b ∈ Qp.

To see that Qp is a topological field, we claim that any Cauchy se-
quence (an) in Qr{0} with limit a ∈ Qpr{0} satisfies that (a−1

n ) is again
a Cauchy sequence. With δ = 1

2 |a|p it follows that |an|p > δ for all n > N
and some N > 1. Therefore

|a−1
m − a−1

n |p 6 |a−1
m a−1

n (an − am)|p 6 δ−2|am − an|p

for all m,n > N , which implies the claim since (an) is a Cauchy sequence.
Thus a 7→ a−1 is continuous on Qpr{0}. Now the limit b = limn→∞ a−1

n ∈ Qp
of course satisfies

ab = lim
n→∞

ana
−1
n = 1.

The subgroup Zp of Qp is defined as the closure of Z in Qp, and so |a|p 6 1
for all a ∈ Zp. We recall that if n ∈ ZrpZ, then there exists some ℓ such
that nℓ ≡ 1 modulo p. In other words, there exists some a ∈ Z with the
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2.4 Pontryagin Duality 103

property that nℓ = 1− ap, which implies that

(nℓ)−1 =
1

1− ap =

∞∑

j=0

(ap)j

is a series in Z that converges in Zp ⊆ Qp since

∣∣∣ 1

1− ap −
J∑

j=0

(ap)j
∣∣∣
p
=

∣∣∣∣∣
1− (1− ap)∑J

j=0(ap)
j

1− ap

∣∣∣∣∣
p

=

∣∣∣∣
(ap)J+1

1− ap

∣∣∣∣
p

6 p−(J+1)

for J > 1. This implies that for k > 0 and m,n ∈ ZrpZ we have

pk
m

n
= pkmℓ(nℓ)−1 ∈ Zp.

Since |a|p ∈ {0} ∪ pZ for all a ∈ Q, we obtain that

Zp = B1(0) = {a ∈ Qp | |a|p 6 1} = {a ∈ Qp | |a|p < p} = Bp(0)

is the closed unit ball in Qp and is simultaneously an open ball. Using (2.19)
and multiplication by powers of p we deduce that open and closed balls with
centre 0 have the form

pkZp = Bp−k(0) =
{
a ∈ Qp | |a|p 6 p−k

}

= Bp1−k(0) =
{
a ∈ Qp | |a|p < p1−k

}

for some k ∈ Z. By (2.18), these sets form additive subgroups of Qp. More-
over, (2.19) shows that Zp is a subring and that the sets pkZp ⊆ Zp are ideals
for any k > 0.

For k > 1 division by pk with remainder in Z implies that

Z =

pk−1⊔

m=0

(m+ pkZ),

where the sets m+pkZ for m ∈ {0, . . . , pk−1} on the right-hand side are the
closed balls of radius p−k around m with respect to | · |p, intersected with Z.
Taking the closure in Qp, we obtain

Zp =
pk−1⊔

m=0

(m+ pkZp). (2.20)

As these balls have distance at least p−k+1, the union is disjoint. This shows
that Zp is totally bounded as a metric space. In particular, as Zp is complete
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by definition, we see that Zp is compact and so Qp is locally compact and σ-
compact.

Exercise 2.42. Show that any element a ∈ Zp may be written as

a =

∞∑

k=0

akp
k

with ak ∈ {0, 1, . . . , p− 1} for k > 0, and that any a ∈ Qp may be written as

a =

∞∑

k=ℓ

akp
k

with ak ∈ {0, 1, . . . , p− 1} for all k > ℓ and some ℓ ∈ Z.

Exercise 2.43. Use (2.20) to show that Zp/pkZp ∼= Z/pkZ = Cpk for all k > 1 and

deduce that we may identify Zp with the projective limit lim←−
(
Cpk , θk

)
where

θk : Cpk+1 −→ Cpk

m+ pk+1Z 7−→ m+ pkZ

is the canonical projection map for all k > 1.

Exercise 2.44. Show that Qp can be obtained as the inductive limit Qp = lim−→(p−ℓZp, ıℓ),
where

ıℓ : p−ℓZp −→ p−ℓ−1Zp
a 7−→ a

is the inclusion map for all ℓ > 0.

Exercise 2.45. Find an explicit formula for a non-trivial character on Qp, and use this

to exhibit an explicit isomorphism between Qp and Q̂p.

Exercise 2.46. (a) Show that the absolute value | · |Qp in Lemma 2.41 agrees with the p-

adic norm | · |p on Qp.
(b) Describe the Haar measure on Qp.

Exercise 2.47. (a) Show that for a finite set S of primes in N the ring Z[ 1
p
| p ∈ S] gives

rise by diagonal embedding to a discrete subgroup of R×
∏
p∈S Qp.

(b) Show that

Z[ 1
p
| p ∈ S]
∧

∼=
(
R×

∏
p∈S Qp

)
/Z[ 1

p
| p ∈ S].

Exercise 2.48. Show that for any non-empty set S of primes there is an injective homo-

morphism R →֒ Z[ 1
p
| p ∈ S]
∧

with dense image.(4)

The case of the characteristic p local field defined by the field of formal
Laurent series

Fp((X)) =
{ ∞∑

k=ℓ

akX
k | ℓ ∈ Z, ak ∈ Fp = Z/pZ for all k > ℓ

}
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2.5 Spectral Measures 105

is quite similar to the above. The norm | · | : Fp((X))→ R>0 is defined by

∣∣∣∣∣
∞∑

k=ℓ

akX
k

∣∣∣∣∣ =
{
0 if ak = 0 for all k ∈ Z,

p−ℓ if ℓ ∈ Z and aℓ 6= 0.

The ring

Fp[[X ]] =
{ ∞∑

k=0

akX
k | ℓ ∈ Z, ak ∈ Fp for all k > 0

}

is an open and compact neighbourhood of 0, and all other open and closed
balls about 0 can be obtained by multiplication by Xℓ for ℓ ∈ Z. We leave
the details as an exercise.

Exercise 2.49. Show that Fp((X)) is a locally compact σ-compact metric field if we de-
clare Fp((X)) to be the inductive limit over ℓ of X−ℓFp[[X]] and use the inductive topology
on the latter group.

We conclude this topic by noting that any local field K is isomorphic to
exactly one of the following three types of field:

• (Archimedean) K = R or K = C;
• (Non-Archimedean of zero characteristic) K = Qp or K is a finite field
extension of Qp for some prime p ∈ N;
• (Non-Archimedean of positive characteristic) K = Fp((X)) or K is a finite
field extension of Fp((X)), for some prime p ∈ N.

We refer to Weil [75, Sec. I.3] for this classification of local fields.

2.5 Spectral Measures

We already encountered spectral measures implicitly in Bochner’s theorem
(Theorem 2.8), and explicitly in the description of cyclic representations
(Corollary 2.11). In particular, Theorem 2.8 shows the existence and unique-
ness of diagonal spectral measures as defined below. Here we study them in
greater detail and also consider more general non-diagonal matrix coefficients,
whose existence and uniqueness will be shown in Proposition 2.52.

Definition 2.50 (Spectral measures). Let π be a unitary representation
of the abelian group G. For any v ∈ Hπ the (principal or diagonal) spectral

measure µv is the finite measure on Ĝ with the property that

〈
πgv, v

〉
=

∫

Ĝ

〈g, t〉 dµv(t)
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106 2 Abelian Groups

for all g ∈ G. For v, w ∈ Hπ the (non-diagonal) spectral measure µv,w is a

finite complex-valued measure on Ĝ such that

〈
πgv, w

〉
=

∫
〈g, t〉 dµv,w(t)

for all g ∈ G.
In most of our discussion we will consider only one unitary representation π

and will write µv and µv,w for the spectral measures of v, w ∈ Hπ as in the
above definition. If we want to emphasise the unitary representation used in
the definition of the spectral measure, we will write µπv or µπv,w. The main
properties of spectral measures are summarized in the next result.

Proposition 2.51 (Geometry of diagonal spectral measures). Let π
be a unitary representation of the abelian group G. The (diagonal) spectral
measures µv for v ∈ Hπ satisfy the following for all v, w, v1, v2, · · · ∈ Hπ.
(1) We have ‖µv‖ = µv(Ĝ) = ‖v‖2.
(2) If w ∈ 〈v〉π, then µw ≪ µv. Indeed, if w ∈ 〈v〉π corresponds under a

unitary isomorphism as in the cyclic spectral theorem (Corollary 2.11)

to F ∈ L2
µv
(Ĝ), then dµw = |F |2 dµv.

(3) If 〈v1〉π ⊥ 〈v2〉π, then µv1+v2 = µv1 + µv2 .
(4) If v =

∑∞
k=1 vk is convergent with 〈vk〉π ⊥ 〈vℓ〉π for all k 6= ℓ ∈ N,

then µv =
∑∞

k=1 µvk .
(5) If µv1 ⊥ µv2 , then 〈v1〉π ⊥ 〈v2〉π.
(6) If w ∈ 〈v〉π and µv ≪ µw, then 〈w〉π = 〈v〉π.
(7) If µv1 ⊥ µv2 , then we even have 〈v1 + v2〉π = 〈v1〉π ⊕ 〈v2〉π.

We note that we will be able to give a better motivated proof of (6) and (7)
using the measurable functional calculus in the next section.

Proof of Proposition 2.51. The equality in (1) already appeared in Corol-
lary 2.11. Applying Corollary 2.11, we have that π restricted to 〈v〉π is uni-

tarily isomorphic to L2
µv
(Ĝ), where v corresponds to 1. Let F ∈ L2

µv
(Ĝ)

correspond to w. Then

〈πgw,w〉 = 〈MgF, F 〉L2(Ĝ,µv)
=

∫
〈g, t〉|F (t)|2 dµv(t)

for all g ∈ G, showing that dµw = |F |2 dµv, and hence (2).
Suppose that 〈v1〉π ⊥ 〈v2〉π as in (3). Then

∫
〈g, t〉dµv1+v2(t) = 〈πg(v1 + v2), v1 + v2〉 = 〈πgv1, v1〉+ 〈πgv2, v2〉

=

∫
〈g, t〉dµv1(t) +

∫
〈g, t〉dµv2(t)

=

∫
〈g, t〉d(µv1 + µv2)(t)
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2.5 Spectral Measures 107

for all g ∈ G, which proves (3) by uniqueness of spectral measures in
Bochner’s theorem (Theorem 2.8).

Suppose now that v =
∑∞

k=1 vk as in (4) and define uN =
∑N

k=1 vk,
respectively wN =

∑∞
k=N+1 vk, for some N > 1, so that v = uN + wN .

By (3), we have µv = µuN + µwN , and by induction also µuN =
∑N
k=1 µvk .

By (1) we have ‖µwN‖ = ‖wN‖2 → 0 as N →∞, which implies that

µv = lim
N→∞

(
µuN + µwN

)
=

∞∑

k=1

µvk .

Now suppose that µv1 ⊥ µv2 as in (5). We write v2 as a sum v2 = w + w̃

with w ∈ 〈v1〉π and w̃ ∈ 〈v1〉⊥π . Since 〈w〉π ⊆ 〈v1〉π and 〈w̃〉π ⊥ 〈v1〉π, we
obtain µv2 = µw + µw̃ from (3). By (2) we have µw ≪ µv1 , which together
with the assumption µv1 ⊥ µv2 implies µw = 0 and so also

‖w‖2 = µw(Ĝ) = 0

by (1). Therefore v2 = w̃ ∈ 〈v1〉⊥π , and (5) follows.
For the proof of (6), we apply the cyclic spectral theorem (Corollary 2.11)

to the subspace 〈v〉π and assume without loss of generality that π =M and

v = 1 ∈ L2(Ĝ, µ)

for a finite measure µ = µv. We also recall from Corollary 2.12 that we

have M∗(f) =M
̂
f
for all f ∈ L1(G). It follows that

̂

L1(G)w ⊆ 〈w〉M and, by

density of

̂

L1(G) ⊆ C0(Ĝ), also C0(Ĝ)w ⊆ 〈w〉M for all w ∈ L2
µ(Ĝ). Suppose

now that w ∈ L2
µ(Ĝ) satisfies µ≪ µw. By (2) we have dµw = |w|2 dµ, which

implies that w(t) 6= 0 for µ-almost every t ∈ Ĝ. Finally, recall that C0(Ĝ) is

dense inside L2
µw

(Ĝ). Now pick some F ∈ L2
µ(Ĝ) and note that

F̃ = w−1F ∈ L2
µw

(Ĝ).

Applying the density claim to F̃ , we find a sequence (Fn) in C0(Ĝ) that

converges to F̃ in L2
µw

(Ĝ). Together, it follows that Fnw ∈ 〈w〉M and

‖Fnw − F‖2L2
µ(Ĝ)

=

∫
|Fnw − F̃w︸︷︷︸

=F

|2 dµ

=

∫
|Fn − F̃ | dµw = ‖Fn − F̃‖2L2

µw
(G̃)
−→ 0

as n → ∞. Hence F ∈ 〈w〉M also, and we obtain 〈w〉M = L2
µ(Ĝ) as claimed

in (6).
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108 2 Abelian Groups

It remains to prove (7). By (5) we have 〈v1〉π ⊥ 〈v2〉π. We let w = v1 + v2
and conclude from (3) that µw = µv1 + µv2 . Since µv1 ⊥ µv2 we can

decompose Ĝ as Ĝ = B1 ⊔ B2 for some measurable sets B1, B2 ⊆ Ĝ
with µvj (Ĝ

rBj) = 0 for j = 1, 2. Using the cyclic spectral theorem (Corol-

lary 2.11), the function 1B1
∈ L2(Ĝ, µw) corresponds to some u1 ∈ 〈v1+v2〉π ,

which by (2) has spectral measure dµu1
= 1B1

dµw = dµv1 . In particu-
lar, µu1

⊥ µv2 , which by (5) implies 〈u1〉π ⊥ 〈v2〉π and so u1 ∈ 〈v1〉π .
Since µu1

= µv1 , property (6) implies 〈v1〉π = 〈u1〉π ⊆ 〈v1 + v2〉π . This also
implies 〈v2〉π ⊆ 〈v1 + v2〉π , which concludes the proof. �

We now discuss the main properties of the non-diagonal spectral measures.
These will be crucial in the next section.

Proposition 2.52 (Non-diagonal spectral measures). For any unitary
representation π of the abelian group G there exists a map

Hπ ×Hπ −→MC(Ĝ)

(v, w) 7−→ µv,w

sending a pair (v, w) to the spectral measure µv,w satisfying

〈
πgv, w

〉
=

∫
〈g, t〉 dµv,w(t) (2.21)

for all g ∈ G (as in Definition 2.50) and the following additional properties.

(1) µv,w depends linearly on v ∈ Hπ and semi-linearly on w ∈ Hπ.
(2) µw,v = µv,w for all v, w ∈ Hπ.
(3) ‖µv,w‖ 6 ‖v‖‖w‖ for all v, w ∈ Hπ.
(4) 〈π∗(f)v, w〉 =

∫ ̂
f dµv,w for all f ∈ L1(G).

(5) If the unitary isomorphism in Corollary 2.11 sends v, w ∈ 〈u〉π to the

functions Fv, Fw ∈ L2
µu
(Ĝ) respectively, then dµv,w = FvFw dµu.

(6) If v =
∑∞
k=1 vk, w =

∑∞
k=1 wk, and vk, wk ∈ 〈uk〉π, 〈uk〉π ⊥ 〈uℓ〉π for

all k 6= ℓ ∈ N and some sequence (uk) in Hπ, then we have

µv,w =

∞∑

k=1

µvk,wk .

Moreover, for a pair (v, w) ∈ Hπ × Hπ the property (2.21) for all g ∈ G
(alternatively, property (4) for all f ∈ L1(G)) uniquely determines the mea-
sure µv,w.

Let us highlight a particular case in the following exercise.

Essential Exercise 2.53. Let π be a unitary representation of the abelian
group G. Assume the existence and properties of the non-diagonal spectral
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2.5 Spectral Measures 109

measures as in Proposition 2.52. Show for v, w ∈ Hπ that µv,w = 0 if and
only if 〈v〉π ⊥ 〈w〉π .

Proof of Proposition 2.52. Let v, w ∈ H and assume that a finite
complex-valued measure µv,w satisfies (2.21) for all g ∈ G. For any f ∈ L1(G)
we then have

〈π∗(f)v, w〉 =
∫

G

f(g)〈πgv, w〉dm(g)

=

∫

G

f(g)

∫

Ĝ

〈g, t〉dµv,w(t) dm(g) =

∫

Ĝ

̂
f(t) dµv,w(t)

by definition of the convolution operator, property (2.21), Fubini’s the-
orem, and the definition of the Fourier transform. This shows (4) and

that
∫
Ĝ

̂
f dµv,w is uniquely determined by v, w for all f ∈ L1(G). Since

̂

L1(G)

is dense in C0(Ĝ) by Corollary 2.5 the identification of finite signed measures

on Ĝ with linear functionals on C0(Ĝ) in the Riesz representation theorem
(see [24, Th. 7.54]) implies the uniqueness claim.

Let us next turn to the existence part of the argument. For this we first
prove (5). So suppose that v, w ∈ 〈u〉π are sent to Fv, Fw ∈ L2

µu
(Ĝ) under

the unitary isomorphism in Corollary 2.11. Then

〈
πgv, w

〉
=
〈
MgFv, Fw

〉
=

∫
〈g, t〉Fv(t)Fw(t) dµu(t)

for all g ∈ G, which already implies (5). To obtain the existence we set u = v
and decompose w = w1 + w2 with w1 ∈ 〈v〉π and w2 ∈ 〈v〉⊥π , which implies

〈
πgv, w

〉
=
〈
πgv, w1 + w2

〉
=
〈
πgv, w1

〉

for all g ∈ G, and so µv,w = µv,w1
exists by the above discussion, proving (5).

This also implies (3) since

‖µv,w‖ =
∫
|1Fw1

| dµv 6 ‖1‖2‖Fw1
‖2 = ‖v‖‖w1‖ 6 ‖v‖‖w‖

by the Cauchy–Schwarz inequality.
To prove linearity in v ∈ Hπ for a fixed w ∈ Hπ notice that

〈
πg(α1v1 + α2v2), w

〉
= α1

〈
πgv1, w

〉
+ α2

〈
πgv2, w

〉

= α1

∫
〈g, t〉dµv1,w(t) + α2

∫
〈g, t〉dµv2,w(t)

=

∫
〈g, t〉d(α1µv1,w + α2µv2,w)(t)
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110 2 Abelian Groups

for any g ∈ G, v1, v2 ∈ Hπ and α1, α2 ∈ C. By uniqueness of the spectral
measures, linearity in the first argument follows. Semi-linearity with respect
to the second argument follows in the same way, which gives (1).

To prove (2) we fix v, w ∈ Hπ. Then
∫
〈g, t〉dµw,v(t) = 〈πgw, v〉 = 〈v, πgw〉 = 〈π−gv, w〉

=

∫
〈−g, t〉dµv,w(t) =

∫
〈g, t〉dµv,w(t)

for all g ∈ G, which implies (2) by the uniqueness claim.
It remains to prove (6). Suppose first that v = v1 + v2, w = w1 + w2

with vk, wk ∈ 〈uk〉 for k = 1, 2 and some u1, u2 ∈ Hπ with 〈u1〉π ⊥ 〈u2〉π .
Then we have

〈πgv, w〉 = 〈πgv1, w1〉+ 〈πgv2, w2〉

=

∫
〈g, t〉dµv1,w1

(t) +

∫
〈g, t〉dµv2,w2

(t)

=

∫
〈g, t〉d(µv1,w1

+ µv2,w2
)(t)

for all g ∈ G, which implies µv,w = µv1,w1
+ µv2,w2

. This extends by in-
duction to finite sums, and by (3) to the general case (see also the proof of
Proposition 2.51(4)). �

A second way to obtain the existence of the non-diagonal spectral measures
is to use the polarization identity as outlined in the next exercise.

Exercise 2.54. Let π be a unitary representation of the abelian group G. For v ∈ Hπ
let µv be the diagonal spectral measure of v. Show that

µv,w = 1
4

(
µv+w − µv−w + iµv+iw − iµv−iw

)

defines the non-diagonal spectral measure for every v, w ∈ Hπ.

The ease with which we were able to encode various properties of unitary
representations into properties of diagonal and non-diagonal spectral mea-
sures indicates how natural spectral measures are. In the following sections,
we will also see how powerful the use of spectral measures can be.

2.5.1 Containment

In this section we use spectral measures to give a complete characterisa-
tion of containment for cyclic unitary representations (thus for now avoiding
questions concerning multiplicity, which we postpone to Section 2.7). The
following generalizes Exercise 2.13.
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2.6 Functional Calculus 111

Proposition 2.55 (Containment). Let π be a cyclic representation with
generator v ∈ Hπ and let ρ be a cyclic representation with generator w ∈ Hρ
of the abelian group G. Then π < ρ if and only if µπv ≪ µρw.

Proof.We assume first that π < ρ. Simplifying the notation we may suppose
that Hπ = 〈v〉ρ ⊆ Hρ = 〈w〉ρ with π = ρ|Hπ

. By Proposition 2.51(2) this
implies µv ≪ µw as claimed.

So assume now that µπv ≪ µρw and let

F =

(
dµπv
dµρw

) 1
2

.

Using Corollary 2.11 we assume that Hρ = L2(Ĝ, µρw). Since µπv is a finite

measure, we have F 2 ∈ L1(Ĝ, µρw) and so F ∈ Hρ = L2(Ĝ, µρw). Hence we
have

〈
MgF, F

〉
=

∫
〈g, t〉F (t)2 dµρw(t) =

∫
〈g, t〉 dµπv (t) =

〈
πgv, v

〉

for all g ∈ G by Corollary 2.11. Applying Proposition 1.63 we obtainHπ < Hρ
as desired. �

2.6 Functional Calculus

As we have used many times, we note that a unitary representation π of G
gives rise to a module structure on Hπ for the Banach algebra L1(G). Also
notice that for the abelian group G we have already seen the Banach algebra
homomorphism

̂ : L1(G) −→ C0(Ĝ) ⊆ L
∞(Ĝ).

Using the non-diagonal spectral measures from the previous section, we ex-
tend here the scalars of the module Hπ to scalars in L ∞(Ĝ).

Proposition 2.56 (Functional calculus for L ∞(Ĝ)). For any unitary
representation π of the abelian group G we have a module structure on Hπ
for the algebra L ∞(Ĝ) that extends the module structure for L1(G). More

formally, for any F ∈ L ∞(Ĝ) there exists a bounded operator πFC(F ) on Hπ
that depends linearly on F and satisfies

(1) ‖πFC(F )‖op 6 ‖F‖∞, and if a measurable subset B ⊆ Ĝ has the property

that µv(ĜrB) = 0 for all v ∈ Hπ, then we also have

‖πFC(F )‖op 6 ‖F‖B,∞ = sup{|F (t)| | t ∈ B}.

(2) πFC(F )
∗ = πFC(F ),
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112 2 Abelian Groups

(3) πFC(

̂
f) = π∗(f) for all f ∈ L1(G), and

(4) πFC(F1)πFC(F2) = πFC(F1F2) for F1, F2 ∈ L ∞(Ĝ).
(5) If ρ is a unitary representation of G and B : Hπ → Hρ is a bounded

and equivariant operator, then we also have B ◦ πFC(F ) = ρFC(F ) ◦ B
for F ∈ L ∞(Ĝ).

(6) If Hπ ∼= L2
µ(X) for a finite measure µ on X = Ĝ×N as in the spectral the-

orem (Corollary 2.12), then πFC(F ) corresponds under the isomorphism
to the multiplication operator MF on L2

µ(X).

Moreover, for F ∈ L ∞(Ĝ) the operator πFC(F ) is uniquely characterized by
the formula

〈πFC(F )v, w〉 =
∫

Ĝ

F dµv,w (2.22)

for all v, w ∈ Hπ.

Proof. Let B ⊆ Ĝ be as in (1) (for example, B = Ĝ). By Proposi-
tion 2.52(5)–(6) or Exercise 2.54, the assumption on B also implies that

µv,w(ĜrB) = 0

for all v, w ∈ Hπ. We are going to define πFC(F ) for F ∈ L ∞(Ĝ) using (2.22)
and the Fréchet–Riesz representation theorem. In fact, by Proposition 2.52
the map

Hπ ×Hπ ∋ (v, w) 7−→
∫
F dµv,w =

∫

B

F dµv,w

depends linearly on v ∈ Hπ, semi-linearly on w, and satisfies the estimate

∣∣∣∣
∫

B

F dµv,w

∣∣∣∣ 6 ‖F‖B,∞‖µv,w‖ 6 ‖F‖B,∞‖v‖‖w‖

by Proposition 2.52(3). This implies that

Hπ ∋ w 7−→
∫
F dµv,w

is a bounded linear functional, which therefore has the form w 7→ 〈w, vF 〉 for
some uniquely determined vF ∈ Hπ with ‖vF ‖ 6 ‖F‖B,∞‖v‖. Equivalently,
we have 〈vF , w〉 =

∫
F dµv,w. Using the linearity of µv,w in v, we also see

that vF depends linearly on v ∈ Hπ and so uniquely defines a bounded
operator

Hπ ∋ v 7−→ πFC(F )v = vF ∈ Hπ
with ‖πFC(F )‖op 6 ‖F‖B,∞ as claimed in (1). Note that a function F

in L ∞(B) can be extended trivially (or in any measurable way) to all of Ĝ,
and also gives rise to the operator πFC(F ) independent of the extension.
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Clearly
∫
F dµv,w depends, for a given v, w ∈ Hπ, linearly on F , which

implies that πFC(F ) depends linearly on F ∈ L ∞(Ĝ).

Given F ∈ L ∞(Ĝ), we have

〈πFC(F )
∗v, w〉 = 〈v, πFC(F )w〉 = 〈πFC(F )w, v〉

=

∫
F dµw,v =

∫
F dµv,w =

〈
πFC(F )v, w

〉

by Proposition 2.52(2) for any v, w ∈ Hπ, which implies the conjugation
formula πFC(F )

∗ = πFC(F ) as claimed in (2).

For F =

̂
f with f ∈ L1(G) we have

〈
πFC(

̂
f)v, w

〉
=

∫ ̂
f dµv,w = 〈π∗(f)v, w〉

for all v, w ∈ Hπ, by definition of the spectral measure µv,w in Proposi-

tion 2.52. Therefore πFC(

̂
f) = π∗(f) as claimed in (3).

Next we prove (6), and assume first that Hπ = 〈u〉π ∼= L2
µ(Ĝ) as in the

cyclic spectral theorem (Corollary 2.11). By Proposition 2.52(5) we have

for v, w ∈ 〈u〉π corresponding to Fv, Fw ∈ L2
µ(Ĝ) that dµv,w = FvFw dµu,

and so

〈πFC(F )v, w〉Hπ
=

∫
FFvFw dµu = 〈MFFv, Fw〉L2

µ(Ĝ)

for all v, w ∈ 〈u〉π and all F ∈ L ∞(Ĝ). This proves the claim for cyclic rep-
resentations. However, by linearity and continuity of all operators involved,
this extends to the general case.

To prove (4), we now simply apply the spectral theorem in Corollary 2.12
and property (6) proven above. Under the unitary and equivariant isomor-

phism Hπ ∼= L2
µ(X) for X = Ĝ×N we have that πFC(F1), πFC(F2), πFC(F1F2)

correspond to MF1
,MF2

,MF1F2
respectively, satisfying MF1

MF2
=MF1F2

.
It remains to prove (5). So suppose that ρ is a unitary representation, and

let v ∈ Hπ and w ∈ Hρ. Then
∫
〈g, t〉dµρBv,w(t)=〈ρgBv,w〉=〈Bπgv, w〉=〈πgv,B∗w〉=

∫
〈g, t〉dµπv,B∗w(t)

for all g ∈ G, which implies that µρBv,w = µπv,B∗w by uniqueness of spectral

measures. We note that µρBv,w is a spectral measure defined by ρ, and µπv,B∗w

is a spectral measure defined by π. For F ∈ L ∞(Ĝ) we then have
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〈BπFC(F )v, w〉 = 〈πFC(F )v,B
∗w〉

=

∫
F dµπv,B∗w

=

∫
F dµρBv,w

= 〈ρFC(F )Bv,w〉 .

As this holds for all v ∈ Hπ and w ∈ Hρ, property (5), and hence the
proposition, follow. �

The following exercises should help the reader to become more familiar
with the concepts introduced here.

Essential Exercise 2.57 (Functional calculus and invariance). Let π
be a unitary representation of the abelian group G. Show that a closed
subspace V ⊆ Hπ is invariant under π if and only if it is invariant un-
der πFC(L

∞(Ĝ)).

Essential Exercise 2.58 (Functional calculus and spectral measures).
Let π be a unitary representation of the abelian group G. Show that

dµπFC(F )v = |F |2 dµv, dµπFC(F )v,w = F dµv,w

for v, w ∈ Hπ and F ∈ L ∞(Ĝ).

Exercise 2.59. Let π be a unitary representation of the abelian group G. Show that

πgπFC(1{t}) = 〈g, t〉πFC(1{t})

for all elements g in G and t in Ĝ.

As mentioned above, the functional calculus gives a different approach to
the proof of the last two parts of Proposition 2.51.

Proof of Proposition 2.51(6) and (7). Let π be a unitary representation
of the abelian group G, and let w ∈ 〈v〉π such that µv ≪ µw as in (6). We

apply the cyclic spectral theorem and suppose v = 1 ∈ L2(Ĝ, µ) for µ = µv.

Then w ∈ L2(Ĝ, µ) and dµw = |w|2 dµ (by Proposition 2.51(2)) imply with

our assumption that w(t) 6= 0 for µ-almost every t ∈ Ĝ. For n ∈ N we now
define

Fn(t) =

{
w(t)−1 if |w(t)| > 1

n ,

0 if not.

Using the measurable functional calculus in Proposition 2.56 (see also Exer-
cise 2.57 and its hint on p. 506), we obtain πFC(Fn)w ∈ 〈w〉π and

πFC(Fn)w = 1{t∈Ĝ||w(t)|>1/n}
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which converges to v = 1{t|w(t) 6=0} = 1 in L2(Ĝ, µ) as n→∞ (by dominated
convergence). Therefore v ∈ 〈w〉π as claimed.

Suppose now as in (7) that µv1 ⊥ µv2 . By Proposition 2.51(5), we have

〈v1〉π ⊥ 〈v2〉π

and so 〈v1 + v2〉π ⊆ 〈v1〉π ⊕ 〈v2〉π. By Proposition 2.51(3) we also have

µv1+v2 = µv1 + µv2

and we can find measurable sets B1, B2 with Ĝ = B1⊔B2 with µvj (ĜrBj) = 0
for j = 1, 2. We define

wj = πFC(1Bj )(v1 + v2) ∈ 〈v1 + v2〉π

for j = 1, 2. By Exercise 2.58 (see also its hint on p. 506), we have

dµwj = |1Bj |
2 dµv1+v2 = 1Bj

dµv1 + 1Bj
dµv2 = dµvj

for j = 1, 2. By Proposition 2.51(5) we obtain w1 ∈ 〈v2〉⊥π and w2 ∈ 〈v1〉⊥π .
Together with v1 + v2 = πFC(1B1

+ 1B2
)(v1 + v2) = w1 + w2 we obtain

that v1 = w1 ∈ 〈v1 + v2〉π and v2 = w2 ∈ 〈v1 + v2〉π, which proves (7). �

2.6.1 Projection-Valued Measures

As a special case of the functional calculus above, we obtain for a unitary
representation π of the abelian group G a projection-valued measure defined
by

B(Ĝ) ∋ B 7−→ ΠB = πFC(1B),

which gives for every Borel subset B ⊆ Ĝ an orthogonal projection ΠB onto
the subspace of Hπ corresponding to ‘the generalized sum of eigenspaces for
all characters in B’ as we will explain now.

The projection-valued measure allows us to reconstruct the functional cal-
culus and, in particular, to reconstruct the unitary representation. In fact
if F ∈ L ∞(Ĝ) and F0 =

∑n
j=1 cj1Bj is an approximation of F by a simple

function, then

∥∥πFC(F )−
n∑

j=1

cjΠBj

∥∥
op

= ‖πFC(F − F0)‖op 6 ‖F − F0‖∞

shows that πFC(F ) can be approximated by the finite sums
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n∑

j=1

cjΠBj
= πFC(F0).

We make the definition

∫

Ĝ

F0 dΠ =
n∑

j=1

cjΠBj
.

With this interpretation we can now define

∫

Ĝ

F dΠ = πFC(F ) = lim
F0:‖F0−F‖∞→0

πFC(F0),

where convergence holds in the uniform topology.
Also notice that for g ∈ G we may define a function Fg ∈ L ∞(Ĝ) by

setting Fg(t) = 〈g, t〉. Since

〈
πFC(Fg)v, w

〉
=

∫

Ĝ

〈g, t〉 dµv,w(t) =
〈
πgv, w

〉

for all v, w ∈ Hπ, this has the property that

πFC(Fg) = πg =

∫

Ĝ

〈g, ·〉 dΠ. (2.23)

As mentioned above, this suggests that for any measurable B ⊆ Ĝ we
may think of ImΠB = ΠBHπ as the generalized sum of the eigenspaces for
characters† χt with t ∈ B. The generalization concerns the integral and the
fact that, strictly speaking, there may not be a single eigenvector, but only
approximate eigenvectors. Similarly, πFC(F ) can now be interpreted as the

operator that multiplies (generalized) eigenvectors in Hπ for eigenvalue t ∈ Ĝ
by F (t). Informally, we may also write (2.23) in the form

πgv =

∫

Ĝ

〈g, t〉Πtv dm(t)

and think of Πtv as the projection of v ∈ Hπ to the eigenspace in Hπ cor-
responding to the character χt. However, as the latter may be trivial for
all t ∈ Ĝ this formally makes no sense, and this is the reason we prefer the
notation of (2.23). This provides a useful viewpoint, but does not provide
additional formal properties. We refer to [24, Sec. 12.7] for a more thorough
discussion of spectral-valued measures.

† Whenever we have a collection of operators that commute with each other, an eigenvalue
is really a function on the collection of operators, and here—in the context of unitary
representations—a unitary character on the group.
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Exercise 2.60. If B1 and B2 are disjoint measurable sets, show that ΠB1
and ΠB2

are
orthogonal projections.

Essential Exercise 2.61. Let π be a unitary representation of the abelian
group G. Let B1, B2, . . . be a sequence of pairwise disjoint measurable subsets
of Ĝ and define B =

⊔∞
n=1Bn. Show that

ΠB = πFC(1B) =

∞∑

n=1

πFC(1Bn) =

∞∑

n=1

ΠBn
,

where the convergence holds in the strong operator topology. Find an example
where the convergence of the series fails in the uniform topology.

2.7 Spectral Theory and Multiplicity

In this section we will revisit the spectral theorem for the abelian group G,
and derive with some more work a version that presents all the information
regarding multiplicity.

2.7.1 Maximal Spectral Type

Proposition 2.62 (Maximal spectral type). Let π be a unitary rep-
resentation of the abelian group G. Then there exists a vector vmax ∈ Hπ
with spectral measure µmax = µvmax

with the property that µv ≪ µmax for
any v ∈ Hπ. The measure equivalence class of µmax is uniquely characterized
by this property, and is called the maximal spectral type. Moreover, given
some v0 ∈ Hπ the vector vmax can be chosen so that v0 ∈ 〈vmax〉π.
Proof. We apply the spectral theorem in the form of Corollary 2.12, and
find orthonormal vectors v1, v2, . . . of Hπ such that

Hπ =
⊕

n>1

〈vn〉π ∼=
⊕

n>1

L2
µn

(Ĝ)

with µn = µvn for all n > 1. We now define vmax =
∑

n>1
1
nvn and obtain

from Proposition 2.51(4) that the spectral measure µmax = µvmax
is given by

µmax =
∑

n>1

1

n2
µn.

For u ∈ Hπ we then have u =
∑

n>1 un with un ∈ 〈vn〉π for n > 1, which
also implies that µun ≪ µn ≪ µmax for all n > 1. It follows from Proposi-
tion 2.51(4) and the definition of absolute continuity that
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µu =
∑

n>1

µun ≪ µmax.

As u ∈ Hπ was arbitrary, it follows that µmax is indeed a maximal spectral
measure for π.

We now prove the claimed uniqueness of the measure class of µmax. Sup-
pose that v ∈ Hπ is another vector with the property that µu ≪ µv for
all u ∈ Hπ . Setting u = vmax gives µmax = µvmax

≪ µv. Setting u = v in the
discussion above gives µv ≪ µmax, and hence µmax and µv lie in the same
measure class.

Now let v0 ∈ Hπ be arbitrary, and write V = 〈v0〉⊥π , so that we may
write Hπ = 〈v0〉π ⊕ V . We apply the above to find a vector w ∈ V of max-
imal spectral type for the representation π|V . Next apply the Lebesgue de-
composition theorem (see [24, Sec. 3.1.3]) to µw and µv0 to write µw as a
sum µw = µabs + µsing, where µabs ≪ µv0 and µsing = µw|B ⊥ µv0 for some

measurable subset B ⊆ Ĝ. By the cyclic spectral theorem (Corollary 2.11)

there exists some wsing ∈ 〈w〉π ⊆ V corresponding to 1B ∈ L2
µw

(Ĝ), which by
Proposition 2.51(2) has spectral measure dµwsing

= 1B dµw = dµsing ⊥ µv0 .

(Equivalently, we may set wsing = πFC(1B)w and apply Exercises 2.57
and 2.58.) We define vmax = v0 + wsing and note that

µvmax
= µv0 + µsing

by Proposition 2.51(3) and 〈w〉π ⊆ V = 〈v0〉⊥π . Proposition 2.51(7) also im-
plies that 〈vmax〉π = 〈v0〉π ⊕ 〈wsing〉π, and in particular 〈vmax〉π contains v0.
For any u = u0 + u1 ∈ Hπ = 〈v0〉π ⊕ V with u0 ∈ 〈v0〉π and u1 ∈ V we again
have, by various parts of Proposition 2.51, that

µu = µu0
+ µu1

≪ µv0 + µw = µv0 + µabs + µsing ≪ µv0 + µsing = µvmax
.

This concludes the proof. �

Corollary 2.63 (Spectral theorem with descending measures). Let π
be a unitary representation of the abelian group G. Then there exists a (pos-
sibly finite) sequence of vectors u1, u2, . . . in Hπ such that Hπ =

⊕
n>1〈un〉π

and µmax = µu1
≫ µu2

≫ · · · .

Proof. Let v1, v2, . . . be a basis of Hπ. Applying Proposition 2.62 gives a
vector u1 = vmax whose spectral measure represents the maximal spectral
type and whose cyclic representation contains v1.

Now project the vector v2 to 〈u1〉⊥π and apply Proposition 2.62 above
again to find a vector u2 with the property that v2 ∈ 〈u1〉π ⊕ 〈u2〉π and such
that µu2

represents the maximal spectral type of π|〈u1〉⊥π .
Proceeding like this we can make sure that each of the basis vectors vn

in Hπ belongs to Vn = 〈u1〉π ⊕ 〈u2〉π ⊕ · · · ⊕ 〈un〉π and that the maximal
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2.7 Spectral Theory and Multiplicity 119

spectral type on the orthogonal complement V ⊥
n is realized by un+1 for n ∈ N.

This gives the corollary. �

Weakening the notion of maximal spectral measure, we also obtain the
following topological object related to a unitary representation. For this, note
that the support of two measures in the same measure class agree, which
makes the following independent of the choice of the maximal measure.

Definition 2.64 (Support of π). Let π be a unitary representation of the

abelian groupG. Then the support supp(π) ⊆ Ĝ of π is defined as the support
of the maximal spectral measure from Proposition 2.62.

Exercise 2.65. Let π be a unitary representation of an abelian group. Show that any
two vectors in Hπ of maximal spectral type (that is, vectors whose spectral measures are
maximal spectral measures) have isomorphic cyclic representations.

2.7.2 Spectral Multiplicity*

Theorem 2.66 (Spectral theorem with multiplicities). Let π be a uni-
tary representation of the abelian group G. Then there exists a collection

(µ1, µ2, . . . , µ∞) = (µn)n∈N∪{∞}

of finite measures on Ĝ that satisfy the following properties and so completely
describe the unitary representation π.

(1) For m 6= n ∈ N ∪ {∞} the measures µm ⊥ µn are singular. In fact,
if µmax be a maximal spectral measure as in Proposition 2.62 then there
exists a measurable partition {Pn | n ∈ N ∪ {∞}} of Ĝ with the property
that µn = µmax|Pn for all n ∈ N ∪ {∞}.

(2) The representation π is unitarily isomorphic to the multiplication repre-
sentation on

⊕
n∈N

(
L2
µn

(Pn)
)n⊕

(
L2
µ∞

(P∞)
)∞

, where
(
L2
µ∞

(P∞)
)∞

de-
notes the Hilbert space direct sum of countably many copies of L2

µ∞
(P∞).

(3) Even though the isomorphism in (2) is not canonical, the subspace H(n)
π

of Hπ corresponding to
(
L2
µn

(Pn)
)n

for n ∈ N ∪ {∞} is independent of
the choice of the isomorphism.

(4) The measure class of µn for n ∈ N ∪ {∞} is uniquely determined by (1)
and (2).

Proof of (1) and (2). Let u1, u2, . . . be as in Corollary 2.63. We claim that
it is possible to replace u2, u3, . . . by another sequence w2, w3, . . . without

changing their respective cyclic subspaces so that
dµwn
dµmax

∈ {0, 1} almost

everywhere with respect to µmax = µu1
. To see this, fix n > 2, let Fn =

dµun
dµmax

and
Bn = {t ∈ Ĝ | Fn(t) > 0}.
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Then the function

F̃n(t) =

{
F

− 1
2

n (t) t ∈ Bn,
0 t ∈ ĜrBn

satisfies F̃n ∈ L2
µun

(Ĝ) since

∫

Ĝ

F̃n
2
dµun =

∫

Bn

F−1
n dµun =

∫

Bn

F−1
n Fn dµmax = µmax(Bn) <∞.

We see from Proposition 2.51(2) that the vector wn ∈ 〈un〉π corresponding

to F̃n ∈ L2
µun

(Ĝ) has spectral measure

µwn = |F̃n|2 dµun = |F̃n|2Fn dµmax = µmax|Bn ,

since |F̃n|2Fn = 1Bn
. Moreover, µwn defines the same measure class as µun

(since F̃n > 0 µun -almost everywhere). Hence by Proposition 2.51(6) we see
that 〈wn〉π = 〈un〉π. This proves the claim.

So we suppose now that the vectors u1, u2, . . . are as in Corollary 2.63

with µmax = µu1
, and in addition that

dµun
dµmax

= 1Bn
for some measurable

set Bn ⊆ Ĝ for all n > 2. Since µmax = µu1
≫ µu2

≫ · · · and

µun
(
ĜrBn

)
= 0

for all n > 2, we have

0 = µum
(
ĜrBn

)
= µmax(BmrBn)

by definition of absolute continuity for all m > n. We now replace B2

by B1 ∩ B2, B3 by B1 ∩ B2 ∩ B3 and so on, without changing their defin-
ing properties. Hence we may also assume that these subsets comprise a
descending chain Ĝ = B1 ⊇ B2 ⊇ · · · of measurable subsets with the
property that µun = µmax|Bn for all n ∈ N. We now define µn = µmax|Pn
where Pn = BnrBn+1 for all n ∈ N, and µ∞ = µ|P∞

where P∞ =
⋂
n>1Bn.

This gives the unitary and equivariant isomorphism

L2
µun

(Ĝ) = L2
µun

(Bn) ∼=
⊕

k∈{n,...,∞}
L2
µk
(Pk),

where the projection map from the left to the factors on the right is simply
multiplication by the characteristic function of Pk for n 6 k 6 ∞. Together
with Corollary 2.63 this gives

Hπ ∼=
⊕

n>1

L2
µun

(Ĝ) ∼=
⊕

n>1

( ⊕

k∈{n,...,∞}
L2
µk
(Pk)

)
∼=

⊕

n∈N∪{∞}

(
L2
µn

(Pn)
)n
.
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The first isomorphism is equivariant by Corollary 2.63, the second is realized
by multiplication operators and so commutes with the multiplication repre-
sentation, and the final isomorphism is simply a permutation of the invariant
factors. This proves (1) and (2). �

2.7.3 The Multiplicity Subspaces*

Next we will prove that the multiplicity n subspace H(n)
π in Theorem 2.66(3)

is canonical for every n ∈ N ∪ {∞}. The canonical description of H(n)
π uses

spectral measures, and will be easy to prove using our knowledge of them
together with some measure-theoretic constructions.

For every n ∈ N the subspace H(>n)
π is given by

H(>n)
π = {v ∈ Hπ | v has spectral multiplicity at least n},

where we say that v ∈ Hπ has spectral multiplicity at least n if there exist n
vectors

v1 = v, v2, . . . , vn ∈ Hπ
such that 〈vk〉π ⊥ 〈vℓ〉π for 1 6 k < ℓ 6 n and µπvk = µπv for k 6 n. We also
define

H(n)
π = H(>n)

π ∩
(
H(>n+1)
π

)⊥
(2.24)

as the relative orthogonal complement of H(>n+1)
π within H(>n)

π . Similarly,

for n =∞ the infinite multiplicity subspace H(∞)
π is given by

H(∞)
π =

⋂

n∈N

H(>n)
π . (2.25)

We note that the above definition of H(n)
π for n ∈ N ∪ {∞} is canonical,

since spectral measures are uniquely determined by a given vector and the
unitary representation.

Before starting with the argument for part (3) of the theorem, we wish
to set up some helpful further notation. In fact, it will be convenient to
write V∞ = ℓ2(N), Vn = Cn for n ∈ N, and in either case ‖·‖V for its standard
Hilbert space norm and 〈·, ·〉V for its inner product. For any n ∈ N ∪ {∞}
we may and will think of an element v = (vj)j ∈

(
L2
µn

(Pn)
)n

as a Vn-valued
function

Pn ∋ t 7−→ (vj(t))j ∈ Vn
satisfying ‖v‖2 =

∑
j ‖vj‖2 =

∫
Pn
‖(vj(t))j‖2V dµn(t) (by a simple form of

Fubini’s theorem). We denote the space of measurable, square-integrable, Vn-
valued functions by

Page: 121 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:18



122 2 Abelian Groups

L2
µn

(Pn,Vn) =
{
v : Pn → Vn

∣∣∣∣ ‖v‖2 =
∫

Pn

‖v(t)‖2V dµn(t) <∞
}
.

Using this notation, parts (1) and (2) of the theorem, and the fact that the

definition of H(n)
π in (2.24) and (2.25) is canonical, we may and will assume

that
Hπ =

⊕

n∈N∪{∞}
L2
µn

(Pn,Vn) (2.26)

and that the representation is given by the multiplication representation.
Using the identity µn = µmax|Pn for the measurable partition

{Pn | n ∈ N ∪ {∞}}

of Ĝ, we may even identify an element v ∈ Hπ with a function on Ĝ, which
satisfies v|Pn ∈ L2

µn
(Pn,Vn) for all n ∈ N ∪ {∞} and for which

Ĝ ∋ t 7−→ ‖v(t)‖V

is square-integrable with respect to µmax. For n ∈ N∪{∞} and a measurable
subset B ⊆ Pn we will also write L2

µn
(B,Vn) for the subspace of L2

µn
(Pn,Vn)

consisting of functions that vanish on PnrB.

Using these identifications it remains to prove that H(n)
π = L2

µn
(Pn,Vn)

for n ∈ N ∪ {∞}. For this we need the following measurable construction.

Lemma 2.67 (Measurable selection of orthonormal basis). Let n ∈ N
and n 6 m ∈ N ∪ {∞}. Then there exists a measurable map sending a
vector v1 ∈ {v ∈ Vm | ‖v‖ = 1} to a list (v1, v2, . . . , vn) consisting of n
orthonormal entries.

Proof. Given v1 we may apply the Gram–Schmidt orthonormalization pro-
cedure to the list of vectors v1, e1, e2, . . . . As usual, we discard at each step
the vector if its projection onto the orthogonal complement of the span of
the previous vectors vanishes. This gives a definition of the required or-
thonormal basis in a measurable way. In fact, on each of the measurable
subsets 〈e1〉C, 〈e1, e2〉Cr〈e1〉C, . . . of Vn with the same discarding steps, the
new vectors depend continuously on v1. For instance, for the second vector v2
we have v2 = e2 if v1 ∈ 〈e1〉C and

v2 =
1

‖v1 − 〈v1, e1〉e1‖
(
v1 − 〈v1, e1〉e1

)

if v1 /∈ 〈e1〉C. �

Exercise 2.68. Give a more careful general definition of vk for k ∈ {2, . . . , n} in
Lemma 2.67.
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Proof of Theorem 2.66(3) using spectral measures. As mentioned

above, the definition of H(n)
π for n ∈ N ∪ {∞} given in (2.24)–(2.25) using

spectral measures is canonical (as spectral measures are uniquely determined
by a given vector and the unitary representation). This and parts (1) and (2)
allow us to assume that π is the multiplication representation on the Hilbert
space in (2.26). It remains to prove that

H(>n)
π =

⊕

m>n

L2
µm

(Pm,Vm)

for n ∈ N, where m is allowed to be ∞. This will give H(n)
π = L2

µn
(Pn,Vn)

for n ∈ N and H(∞)
π = L2

µ∞
(P∞,V∞).

For this, we note that the definition of spectral measures shows that

dµπv (t) =
∑

n∈N∪{∞}
‖v(t)‖2V dµn(t) = ‖v(t)‖2V dµmax (2.27)

and, more generally,

dµπv,w(t) =
∑

n∈N∪{∞}
〈v(t), w(t)〉V dµn(t) = 〈v(t), w(t)〉V dµmax (2.28)

for t ∈ Ĝ and all v, w ∈ Hπ (also see Proposition 2.52).
We suppose first that v ∈ ⊕

m>n L
2
µm

(Pm,Vm). Using (2.27) we see

that the spectral measure is given by F 2 dµn, where F (t) = ‖v(t)‖V for
all t ∈ ⋃m>n Pm. We also define B = {t ∈ ⋃m>n Pm | F (t) 6= 0}. For t ∈ B
we apply Lemma 2.67 to ṽ1(t) = F−1v(t) to obtain the orthonormal vec-

tors ṽ1(t), ṽ2(t), . . . , ṽn(t). We extend these functions trivially to all of Ĝ. By
measurability of the construction in Lemma 2.67, we now obtain the vectors

vk = F ṽk ∈ L2
µn

(Pn,Vn)

for k ∈ {2, . . . , n}. We also define v1 = v. This ensures that

‖vk(t)‖V = F (t) = ‖v(t)‖V

for all k > 1 and t ∈ Ĝ, which implies that these n vectors have the same
spectral measures as v by (2.27). Moreover, we also have 〈vk(t), vℓ(t)〉V = 0
by construction for k 6= ℓ and all t ∈ Pn. Hence 〈vk〉π ⊥ 〈vℓ〉π by (2.28) and
Exercise 2.53 (see also the hint on p. 506), which proves the requirement for v
to have spectral multiplicity at least n.

Suppose now that v ∈ H(>n)
π ⊆⊕m∈N∪{∞} L

2
µm

(Pm,Vm) has the property
that there exist n vectors v1 = v, v2, . . . , vn with orthogonal cyclic represen-
tations and spectral measures equal to µv. As in the previous step, we can
define B = {t ∈ Ĝ | ‖v(t)‖V 6= 0}. We note that 〈vk(t), vℓ(t)〉V = 0 for
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almost every t ∈ Ĝ (with respect to µmax) for 1 6 k < ℓ 6 n. Indeed,
Exercise 2.53 shows that we have µπvk,vℓ = 0, which, together with (2.28),

gives 〈vk(t), vℓ(t)〉V = 0 for almost every t ∈ Ĝ. This shows that the n vec-
tors v1(t), v2(t), . . . , vn(t) are, for almost every t ∈ B, orthogonal. For t ∈ Pm
and m < n the vectors vk(t) take values in Vm = Cm, which shows
that µmax(B ∩ Pm) = 0. Hence we have the opposite inclusion

H(>n)
π ⊆

⊕

m>n

L2
µm

(Pm,Vm).

Together with the first part of the proof, this gives equality, and so that

H(n)
π = L2

µn
(Pn,Vn)

for n ∈ N ∪ {∞}. �

Proof of (4) in Theorem 2.66. By the above, we know that H(n)
π ⊆ Hπ is

a canonical invariant subspace that is isomorphic to the multiplication repre-
sentation on

(
L2
µn

(Pn)
)n
. However, by the properties of spectral measures in

Proposition 2.62 (see also Proposition 2.51(2) and (4)) this implies that µn
is a maximal spectral measure of π|H(n)

π
, which in particular implies that its

measure class is uniquely and canonically determined by π. �

We note that the phrase countable Lebesgue spectrum is used, for exam-
ple, in dynamical systems to refer to the case of a measure-preserving in-
vertible transformation (corresponding to the case G = Z in Proposition 1.3)
where µmax = µ∞ represents the measure class of the Lebesgue measure
on Ẑ = T. Other possibilities are described using the terminology pure point
(or discrete) spectrum, continuous spectrum or mixed spectrum, but these
do not reflect any multiplicity information. We refer to Cornfeld, Fomin and
Sinăı [14] for more on how spectral methods are used in the study of measure-
preserving dynamical systems.

2.8 The Centralizer of the Representation*

At times it is useful to understand the centralizer of a unitary representation.
Let π be a unitary representation of the abelian group G, and µmax a maxi-
mal spectral measure associated to π as in Proposition 2.62. Applying Theo-
rem 2.66, we find a partition {Pn | n ∈ N∪{∞}} and measures µn = µmax|Pn
so that

Hπ ∼=
⊕

n∈N∪{∞}
L2
µn

(Pn,Vn), (2.29)
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2.8 The Centralizer of the Representation 125

where we again write Vn = Cn for n ∈ N, V∞ = ℓ2(N), L2
µn

(Pn,Vn) for the
space of square-integrable Vn-valued functions on Pn for n ∈ N ∪ {∞}, and
the representation on the right is the multiplication representation M .

Proposition 2.69 (The centralizer of π). With the above assumptions the
centralizer of π,

C(π) = {B ∈ B(Hπ) | B is equivariant}

corresponds under the isomorphism 2.29 to the set of all operators

T =
⊕

n∈N∪{∞}
Tn

with the following properties:

(1) For n ∈ N the operator Tn can be identified with an n-by-n matrix hav-
ing entries in the ring L∞

µn
(Pn). More formally, Tn ∈ Matn,n

(
L∞
µn

(Pn)
)

maps v ∈ L2
µn

(Pn,Vn) to Tnv ∈ L2
µn

(Pn,Vn) defined by

(Tnv)(t) = Tn(t)v(t) ∈ Vn = Cn

for t ∈ Pn.
(2) The operator T∞ can be defined by a measurable map T∞ : P∞ → B(V∞)

such that
(T∞v)(t) = T∞(t)v(t)

for t ∈ P∞ and v ∈ L2
µ∞

(P∞,V∞).
(3) We have ‖T ‖ = sup

n∈N∪{∞}
ess sup
Pn

‖Tn(·)‖op <∞.

We note that measurability of the map T∞ : P∞ → B(V∞) is defined by
measurability of the inner products

P∞ ∋ t 7−→ 〈T∞(t)v, w〉V

for all pairs v, w ∈ V∞ (also see Exercise 2.70).

Exercise 2.70. Show that the Borel σ-algebra Bτ generated by open sets on B(V∞) with
respect to the strong operator topology τ and the Borel σ-algebra Bτw generated by open
sets on B(V∞) with respect to the weak operator topology τw coincide. Also show that
the above notion of measurability agrees with measurability of the map t 7→ T∞(t) with
respect to the σ-algebra Bτ = Bτw .

Proof of Proposition 2.69. To simplify notation, we assume that the
isomorphism in (2.29) is an identity. Suppose that T is in the centralizer
of π.

Linearity over L ∞(Ĝ). For F ∈ L ∞(Ĝ) and
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v ∈ Hπ =
⊕

n∈N∪{∞}
L2
µn

(Pn,Vn)

we have, by the properties of the measurable functional calculus in Proposi-
tion 2.56(5) and (6), that T also commutes with πFC(F ) =MF , so that

T (Fv) = T (MF v) =MFT (v) = FT (v). (2.30)

Put in algebraic terms, we see that T is linear with respect to the L ∞(Ĝ)-
module structure of Hπ. Below we will upgrade this to the statement that T
itself has a pointwise definition, as in the proposition.

Applying this for the characteristic functions of the elements of the parti-
tion {Pn | n ∈ N ∪ {∞}} we obtain

T (L2
µn

(Pn,Vn)) = T (M1Pn
Hπ) =M1Pn

T (Hπ) ⊆ L2
µn

(Pn,Vn)

for n ∈ N ∪ {∞}. We will describe the restriction of T to L2
µn

(Pn,Vn) for
every n ∈ N ∪ {∞}.
Matrix coefficients lie in L∞

µn
(Pn). We fix n ∈ N ∪ {∞} and two vec-

tors v, w ∈ Vn that will be considered as constant functions on Pn belonging
to L2

µn
(Pn,Vn). We will now describe the inner product 〈(Tv)(t), w〉V as a

function of t ∈ Pn. In fact, we claim that

(
Pn ∋ t 7−→ Fv,w(t) = 〈(Tv)(t), w〉V

)
∈ L∞

µn
(Pn)

and, moreover,
‖Fv,w‖∞ 6 ‖T ‖op‖v‖V‖w‖V . (2.31)

For this, we define

B = {t ∈ Pn | |Fv,w(t)| > ‖T ‖op‖v‖V‖w‖V}, (2.32)

set f = 1B and f2 = arg(Fv,w)1B . Then f1, f2 ∈ L∞
µn

(Pn) ∩ L2
µn

(Pn)

with ‖f1‖2 = ‖f2‖2 = µ(B)
1
2 . Together with (2.30), we deduce that the

integral in

〈Tf1v, f2w〉L2
µn

(Pn,Vn) = 〈f1Tv, f2w〉L2
µn

(Pn,Vn)

=

∫

B

f1(t)f2(t) 〈(Tv)(t), w〉V︸ ︷︷ ︸
=Fv,w

dµn(t)

=

∫

B

|Fv,w| dµn

exists for v, w ∈ Vn and is bounded by
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‖T ‖op‖f1v‖2‖f2w‖2 6 ‖T ‖op‖f1‖2‖v‖V‖f2‖2‖w‖V
6 ‖T ‖op‖v‖V‖w‖Vµ(B).

Combining the last two facts and recalling the definition of B in (2.32), this
implies that µ(B) = 0, and hence (2.31).

The case of n ∈ N. We now fix some n ∈ N and define

Tn(t) =
(
(Te1)(t), (Te2)(t), . . . , (Ten)(t)

)
∈Matn,n(C)

for t ∈ Pn or, keeping t ∈ Pn implicit,

Tn = (Te1, T e2, . . . , T en),

where we again write ek for the kth basis vector of Vn considered as a con-
stant function in L2

µn
(Pn,Vn). Writing Tek as a column vector belonging

to L2
µn

(Pn,Vn), we obtain from the above that Tn ∈ Matn,n
(
L∞
µn

(Pn)
)
. In-

deed, for j, k ∈ {1, . . . , n} the (j, k)th matrix entry is given by

Tn,j,k = 〈Tek, ej〉V ∈ L∞
µn

(Pn).

It follows that we can use Tn to define a bounded operator on L2
µn

(Pn,Vn)
by

L2
µn

(Pn,Vn) ∋



v1
...
vn


 7−→ Tn



v1
...
vn


 =



Tn,1,1v1 + · · ·+ Tn,1,nvn

...
Tn,n,1v1 + · · ·+ Tn,n,nvn


 .

To see that the operator T restricted to L2
µn

(Pn,Vn) agrees with the operator
defined by Tn, we suppose that v =

∑
k vkek ∈ L2

µn
(Pn,Vn). If we assume in

addition that vk ∈ L∞
µn

(Pn) for k = 1, . . . , n, then we can use (2.30) to obtain

Tv =
∑

k

vkT (ek) =
∑

j,k

vk 〈T (ek), ej〉V︸ ︷︷ ︸
Tn,j,k

ej = Tnv.

Since L∞
µn

(Pn) is a dense subspace of L2
µn

(Pn), we deduce that T restricted
to L2

µn
(Pn,Vn) coincides with the operator defined above by the matrix Tn.

The case n = ∞. Next we study the case n = ∞. Just as in the finite-
dimensional case, we will use T to define operators T∞(t) ∈ B(V∞) for almost
every t ∈ P∞, use these to define an operator T∞ on L2

µ∞
(P∞,V∞), and show

that T restricted to L2
µ∞

(P∞,V∞) is equal to T∞. For this, we let

W = {w1, w2, . . .}

be a dense subset of V∞ that is also a subspace over the field Q[i]. Fixing
indices j, k ∈ N, considering wj , wk ∈ L2

µ∞
(P∞,V∞) again as constant func-
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tions on P∞, and using (2.31) we see that 〈(Twj)(t), wk〉V ∈ L∞
µ∞

(P∞) is
bounded by ‖T ‖op‖wj‖V‖wk‖V for almost every t ∈ P∞ . Moreover, we also
have that 〈(Twj)(t), wk〉V depends linearly on the vectors wj , wk as elements
of the vector space W over Q[i], almost surely. Collecting these countably
many null sets, applying density of W in V∞, and applying the Riesz repre-
sentation theorem on V∞, it follows that for almost every t ∈ P∞ we have

〈(Twj)(t), wk〉V = 〈T∞(t)wj , wk〉V

for some bounded operator T∞(t) ∈ B(V∞) satisfying ‖T∞(t)‖op 6 ‖T ‖op.
Measurability of P∞ ∋ t 7→ T∞(t) (that is, of the map t 7→ 〈T∞(t)v, w〉V for
all v, w ∈ V∞) follows once again from density of W .

We let e1, e2, . . . be the standard orthonormal basis of V∞ and may assume
that ek ∈ W for k ∈ N. Similarly to the finite-dimensional case we can now
use T∞(t) for t ∈ P∞ to define a bounded operator T∞ on L2

µ∞
(P∞,V∞) by

sending
∑

k vkek ∈ L2
µ∞

(P∞,V∞) to

(
T∞

(∑

k

vkek

))
(t) =

∑

j,k

〈T∞(t)ek, ej〉Vvk(t)ej (2.33)

for all t ∈ P∞. Indeed, we first note that each summand on the right is
measurable by construction and that

∑

j

∣∣∣
〈∑

k

T∞(t)vk(t)ek, ej

〉
V

∣∣∣
2

=
∥∥∥T∞(t)

∑

k

vk(t)ek

∥∥∥
2

V

6 ‖T ‖op
∥∥∥
∑

k

vk(t)ek

∥∥∥
2

V

for almost every t ∈ P∞. Moreover,

∫

P∞

∥∥∥
∑

k

vk(t)ek

∥∥∥
2

V
dµ∞(t) <∞

by assumption on
∑

k vkek. This shows that (2.33) gives a well-defined oper-
ator with norm ‖T∞‖op 6 ‖T ‖op.

It remains to see that the operator T∞ coincides with T when it is restricted
to L2

µ∞
(P∞,V∞). The construction of T∞ implies that

〈
(Tek)(t), ej

〉
V =

〈
T∞(t)ek, ej

〉
V

for almost every t ∈ P∞ and all j, k ∈ N. This implies that

(Tek)(t) = T∞(t)ek
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for all k ∈ N. For N ∈ N and f1, . . . , fN ∈ L∞
µ∞

(P∞) we now have by (2.30)
that

T
(∑

k6N

fkek

)
=
∑

k6N

fkTek =
∑

k6N

fkT∞ek = T∞

(∑

k6N

fkek

)
.

Varying N ∈ N and the functions in L∞
µ∞

(P∞), this gives a dense sub-
set of L2

µ∞
(P∞,V∞). It follows that T∞ is indeed the restriction of T

to L2
µ∞

(P∞,V∞).

The operator norms. We note that we could also have used the above
argument for n ∈ N, so that we also have ‖Tn(t)‖op 6 ‖T ‖op for almost
every t ∈ Pn and n ∈ N. In particular, we have

sup
n∈N∪{∞}

ess sup
t∈Pn

‖Tn(t)‖op 6 ‖T ‖op.

To see the opposite inequality, let S denote the supremum on the left and
let v, w ∈ Hπ. Then

|〈Tv, w〉| 6
∑

n∈N∪{∞}

∫

Pn

|〈Tn(t)v(t), w(t)〉V | dµmax(t)

6

∫

Ĝ

S‖v(t)‖V‖w(t)‖V dµmax(t) 6 S‖v‖‖w‖

by the description of Hπ , the pointwise definition of T obtained above, the
Cauchy–Schwarz inequality on Vn for n ∈ N ∪ {∞}, and finally the Cauchy–

Schwarz inequality on L2
µmax

(Ĝ). However, this implies that ‖T ‖op 6 S.

The converse. The converse statement that any T =
⊕

n∈N∪{∞} Tn as in

the proposition defines a bounded operator we leave as an exercise (see Exer-
cise 2.71). As the unitary representation corresponds under the isomorphism
to the multiplication representation, it follows that a so-defined operator T
belongs to the centralizer of π. This gives the proposition. �

Exercise 2.71. Show that any operator T =
⊕
n∈N∪{∞} Tn as in Proposition 2.69 defines

a bounded equivariant operator by the following steps.
(a) Let n ∈ N, let (X, µ) be a finite measure space and let T lie in Matn,n

(
L∞
µ (X)

)
.

Show that T induces a bounded operator on L2
µ

(
X,Vn

)
satisfying (Tv)(t) = T (t)v(t)

for v ∈ L2
µ

(
X,Vn

)
and almost every t ∈ X (where we use matrix multiplication on the

right), and that ‖T‖op = ess supt∈X ‖T (t)‖op .
(b) Let n =∞ and let (X, µ) be a finite measure space. Show that a measurable map

T : X ∋ t 7−→ B(V∞)

with ess supt∈X ‖T (t)‖op < ∞ induces a bounded operator T on L2
µ

(
X,V∞

)
satisfy-

ing (Tv)(t) = T (t)v(t) for v ∈ L2
µ

(
X,V∞

)
and almost every t ∈ Ĝ, and that T satis-

fies ‖T‖op = ess supt∈X ‖T (t)‖op .

(c) Let µ be a finite measure on Ĝ, and let {Pn | n ∈ N∪{∞}} be a countable measurable
partition of Ĝ. Suppose Tn is defined as in (a) or (b), using µn = µ|Pn for n ∈ N ∪ {∞}.
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Suppose, moreover, that
sup

n∈N∪{∞}
ess sup
t∈Pn

‖T (t)‖op <∞.

Show that this implies that T =
⊕
n∈N∪{∞} Tn is a bounded operator on

⊕

n∈N∪{∞}

L2
µn

(Pn,Vn)

that is equivariant for the canonical multiplication representation of G.

2.9 Summary and Outlook

The rather complete understanding of unitary representations of abelian
groups in terms of:

• spectral measures, which completely encode matrix coefficients;
• the measurable functional calculus, which allows us to isolate parts of the
spectrum at will;
• the spectral theorem with complete multiplicity data; and
• their centralizer

obtained in this chapter is rewarding and important in itself. However, it will
also be the key for understanding the unitary dual and unitary representa-
tions of other groups. Most notably, this applies to metabelian groups (that is,
semi-direct products of two abelian groups) as discussed in Chapter 3. More-
over, the abelian theory (together with Section 3.1) will also be important
for understanding certain aspects of unitary representations of semi-simple
groups like SL3(R) as we will see in Chapter 7.

Pontryagin duality and the Plancherel formula are useful tools for con-
structing and understanding concrete abelian groups. Moreover, local fields
as introduced in Section 2.4.5 are of fundamental importance to modern num-
ber theory.(5)

The reader may continue with Chapter 3 or 5, returning to Chapters 3
and 4 when needed.
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