Chapter 2
Abelian Groups

In this chapter we completely classify unitary representations of locally com-
pact o-compact metric abelian groups. The assumptions that the group is
locally compact and abelian are critical for the material developed in this
chapter, but as before we will also assume that the group G is o-compact
and metric. We will keep the topological assumptions on G implicit and refer
to G as the abelian group G.

2.1 Pontryagin Dual

In Corollary [[.321 we saw that every irreducible representation of the abelian
group G is one-dimensional and hence defines a (continuous unitary) charac-
ter. In the context of abelian groups the following terminology is often used
instead of the phrase ‘unitary dual’ as in Definition

Definition 2.1 (Pontryagin dual of the abelian group). The dual group
(or Pontryagin dual) of the abelian group G is defined (as an abstract group)
by

G= {X: G — S' | x is a continuous character}

with the group operations being pointwise product and inverse.

The reader not familiar with this notion of duality may use the following
exercise as a warmup for (the conclusions of which will be special cases of the
theory developed in this chapter).

Exercise 2.2 (Generalization of Fourier series). Suppose that the abelian group G

is compact, and normalize the Haar measure m to satisfy m(G) = 1. Assume furthermore
that G separates pointsﬁl in G, meaning that for every g; # g5 in G there exists some x € G

with x(g1) # x(92)-

T We note that this assumption is in fact always satisfied. This can be checked directly
in many examples, and in general follows from Corollary [I.79] or the more specialized
Theorem [2.15]
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66 2 Abelian Groups

(a) Show that G forms a countable orthonormal basis of L%(G).
(b) Show, for any unitary representation , that H, is the orthogonal direct sum of the
eigenspaces HX of weight x € G defined by

HY = {w € M, | myw = x(g)w for all g € G}.
For many concrete groups it is not at all difficult to describe the dual
group explicitly.
Essential Exercise 2.3 (Basic examples). Prove the following isomor-
phisms of (abstract) groups: (a) Z = T; (b) T = Z; and (¢) R =2 R.

It is easy to give concrete examples of non-compact groups where the
description of a unitary representation is in general more complicated than
it is in Exercise [Z2(b). In fact, let A denote the regular representation of R
on L?(R) and let x denote a unitary character of R. If now A f = x(g)f for
all ¢ € R and some f € L%(R), then |f| would be constant, and so f = 0.
The same applies to any non-compact abelian group G and shows that L?(G)
cannot be a direct sum of irreducible representations. Nonetheless, we will
arrive at a complete understanding of all unitary representations of abelian
groups using only characters in this chapter.

2.1.1 Characters as Algebra Homomorphisms

Given explicit presentations of a group and its dual, many of the theorems
in this chapter have alternative and often simpler proofs. However, to handle
the general case seamlessly the following is an important tool. We recall from
Section [L4T that L(G) is a commutative Banach algebra.

Proposition 2.4 (Algebra homomorphisms of L'(G)). For the abelian
group G every character x € G induces a continuous non-trivial algebra
homomorphism from A= LY(G) to C via the formula

xalf) = [rxdm

for f € LY(G). Moreover, every continuous non-trivial algebra homomorph-
ism from A to C is of this form, for some uniquely determined x € G.

PROOF. Given a unitary character y € G and fy, f, € LY(G) we have

/ fu % Fa(9)x(g) dm(g) = / F1(0) fo(g — R)x(g) dm(h) dm(g)
- / Fr(R) Fa(R)x(h + k) dm(k) dm(R)

(o) )
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2.1 Pontryagin Dual 67

by Fubini’s theorem, which shows that x 4 is indeed an algebra homomor-
phism. By the identification of the dual of L}(G) with L>°(G) (see [24
Prop. 7.34]), x4 is continuous and non-trivial since ||x 4|l = |x]lo = 1.

The converse is more involved. Let x4: A = L'(G) — C be a non-trivial
continuous algebra homomorphism. Then there is an element xy € L*°(G)
with [|x|/e < 0o with

) = [ fedm
G
for all f € L*(G). We have to show that x can be chosen in Cy(G) and with
the property that x(gh) = x(g)x(h) for all g,h € G.

By assumption y 4 # 0, so there exists some f, € L'(G) with x 4(fy) # 0.
Also, by the assumption on x 4 and Fubini’s theorem

xalF)xalfo) = xalf * fo) = /G /G £(9) ol — g) dm(g)x(h) dm(R)
- / £(9) / Ay (fo)x dm dm(g)
G G

for all f € L*(G). We now define

¥(9) = (ealfo)™ /G Ay (fo)x dm,

so that x 4(f) = [ fx'dm for all f € L'(G), and in particular x’ = x almost
everywhere.

Notice that x’ is defined using f, and x essentially by convolution. This
implies that x’ € Cy(G), since

X' (9) = X' (90)] = [xa(fo)| ™"

/G (Mg fo— Agy fo)x dm
< |XA(fO)|_1||)‘ng - )‘qofOHIHXHoo —0

as g — go, since G 3 g — A, fo € L*(G) is continuous. Simplifying the
notation, we suppose that y = x’ € C,(G).

Now choose a sequence (B,,) of decreasing open neighbourhoods of 0 € G
that form a basis of the neighbourhoods at 0. Then the sequence (1,,) defined
by

1

Y = mﬂBn

for all n > 1 forms an approximate identity (see Proposition [[L43)).

Now let g;, g, € G be arbitrary. Then A\ ¥, = ﬁ]anJrg1 and so

1
XA (/\g11/)n) = m /Bn+g1 xdm — x(g1)
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68 2 Abelian Groups

as n — oo by continuity of x, and similarly x 4(\g,¥) — x(g2) as n — oc.
Moreover, (LIT7) shows (by identifying f € L*(G) with v; € M(G)) that

)\911% * )‘gzwn = 6g1 * wn * 6g2 * wn = 5gl+g2 * wn * wn = )‘glJrgz (wn * wn)u

and using 1, * 1, (which also forms an approximate identity by Proposi-
tion [[L43]) in the same way as v,, above, we obtain from this

X-A ()\91 w") X-A ()\92 wn) = X-A ()\91 w" * )\92 wn)
= XA (Agytg, (Un % 1n)) — x(91 + 92)

as n — oo. Thus with the above we obtain

x(91 + g2) = x(91)x(92)

for g1, 9> € G. In other words, x: G — C is a continuous homomorphism to
the multiplicative structure of C. Since x is bounded and non-zero, it follows
that x is non-zero everywhere, and that it takes values in S!. This shows
that y 4 is defined by x € G. ]

Using the correspondence in Proposition [2.4] as an identification, we can
and will consider the weak* topology on G C L°°(@G). The following corollary
defines the important notion of Fourier transform, and gives the fundamental
properties of the Fourier transform. These will be used frequently, and often
without an explicit reference to this corollary.

Corollary 2.5 (Topology, structure, and functions on é) For the
abelian group G the dual group Gisa locally compact o-compact metric group
in the weak™® topology (equivalently the compact-open topology). The Fourier
(back) transform

F) = / Fxdm (2.1)

for f € L\G) satisfies | € Co(G), fi* fo = fifo, [ = F, and ||fllc < I/l
for all f, f1, fa € L*(G). Moreover, {f | f € L*(G)} C Cy(G) is a dense
sub-algebra with respect to the supremum norm on G.

We note that (2)) is often referred to as the Fourier back transform (which
is the reason for the notation). However, we decided to use this formula as a
starting point, as we will see in the next section that it has (with this sign
convention) important and conveniently described relationships to unitary
representations. Because of the duality results that we will see later, the
designation of one transform as the ‘back’ one and the other, implicitly, as
the ‘forward’ one is rather arbitrary, and refers to a choice of a sign.

PROOF. Let o(L*(G)) denote the set of all non-trivial continuous algebra
homomorphisms L'(G) — C. By Proposition 2.4] these all have norm one.
Hence
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2.1 Pontryagin Dual 69

2 =0(LY(G)) u{o}
may be described as the set of all x € L*(G) with ||x]le < 1 and with

/f1*f2de:/f1de/f2de

for all f,, fo € L*(G). This implies that 2 is weak* closed, and hence weak*
compact by the Banach—Alaoglu theorem (see [24, Th. 8.10]). Since L}(G) is
separable, the weak™ topology is metrizable when restricted to the closed unit
ball in L>(G) (see [24, Prop. 8.11]). This implies that o(L}(G)) = 2~{0}
is locally compact, o-compact and metrizable. We identify o(L*(G)) with G
as in Proposition 2.4l Moreover, recall from Proposition [.77] that the weak*
topology on P}(G) 2 G coincides with the compact-open topology, which
proves that G is locally compact, o-compact and metric with respect to the
compact-open topology. In this topology it is easy to see that the group
operations are continuous.

Let f € L*(G) and define the Fourier transform as in the corollary. Equiv-

alently, we may think of 7 as the evaluation map
ever x — x(f) = /fxdm

from L'(G)' = L>(G) to C restricted to o(L!(G)) = G. Hence by the defi-
nition of the weak* topology we see that 7 is continuous on G. Moreover, by
setting

F0) = [ fodm=o
we see that 7 has a continuous extension to the compact space
2 =o(L'(G)) u{0},
with 7(0) = 0. In other words, 0 € {2 plays the role of co in the one-point

compactificiation of @, and f € CO((A?).
The property

Fix £200 = x(f1 * f2) = x(f)x(f2) = Fifa(x)

for f1, fo € L'(G) is precisely the algebra homomorphism property of the
map x € o(LY(G)). In particular, this implies that the image of the Fourier
transform is a sub-algebra of

Co(G) = {F € C(2) | F(0) = 0}
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70 2 Abelian Groups

For f € L'(G) we defined f* in Section [LZI] which in the additive notation
becomes f*(g) = f(—g) for all g € G. Since

~

:ﬁﬁ=éﬁwm=lj@ﬂﬂﬂm=ﬂw

for all y € 2 = GuU {0}, we see that the image of L'(G) in CO(@) is closed
under conjugation. The inequality H\f”OO < |If]]; follows, since x € G satis-
fies [|x|loc =1 which gives [f(x)| = | [ fxdm| < |/fl:-

Finally we note that the sub-algebra {f | f € L*(G)} C C(£2) also sep-

arates points: if 7(){1) = \f(xz) for some x1,x2 € §2 and all f € LY(G),
then x; and Y, define the same functional on L'(G) and so x; = x2. Ap-
plying the Stone—Weierstrass theorem ([24, Thm. 2.40]) we see that the al-

gebra A = {7 | f € LYG)} + C1 is dense in C(£2). This shows that for a
given F € Cy(@) and ¢ > 0 there exists some f € LY(G) and a € C such
that ||f 4+ al — F|| < . Since F(0) = 0 and f(0) = 0 we see that |a| < ¢,
and hence ||f — F||. < 2¢ as required. O

Essential Exercise 2.6 (Basic examples). Show that the isomorphisms
in Exercise are also isomorphisms of topological groups. Furthermore,

show that for any d € N we have the isomorphism R4 22 R? as topological
groups.

Exercise 2.7 (Continuity and bound). Let A be a commutative Banach algebra
over C. Show that any algebra homomorphism x: A — C is continuous and satis-
fies ||x|| < 1.

2.2 Spectral Theory, First Formulations

Due to the results (and exercises) of the last section it is natural to have
a more symmetric notation for the group and its Pontryagin dual. Hence,
we also use additive notation for the abelian group G. In fact, we will
write t,tq,t1,... for the elements of the additive group G and for t € G we
write x;: G — S! for the associated multiplicative character. Furthermore
we define the dual pairing (-,-): G x G — S! by

G x G 3 (g,t) — (9,t) = x4(g) € S™.

In particular, in this notation we also write
70 = [ ruam= [ 1(6) (6.0 amio)

for the Fourier transform of f € L}(G) at t € G.

Page: 70 job: AAUnitaryRepresentations macro: svmono.cls date/time: 25-Mar-2022/16:18



2.2 Spectral Theory, First Formulations 71

2.2.1 Bochner’s Theorem

We now return to the discussion of general unitary representations of the
abelian group G, and recall from Section [[L5] that for this we need to under-
stand positive-definite functions.

Theorem 2.8 (Bochner’s theorem). Let ¢ be a positive-definite function
on the abelian group G. Then there exists a uniquely determined finite mea-
sure i on G such that

olg) = /G (0,1) du(t) (2.2)
forall g € G.

We refer to Exercise for a quicker proof of Bochner’s theorem, but
prefer the following argument as the ideas in the proof will be used again in
Section 3] in a more general context.

PrROOF OF THEOREM [Z8 Suppose the finite measures pq, s both sat-
isfy Z2). For f € L'(G) we may then use Fubini’s theorem to see that

/G f(9)¢(g) dm(g) = /G /a f(9){g,t) du;(t) dm(g)
— [ F®du
G

for j = 1,2. However, A= {J | f € L*(G)} C Cy(G) is dense with respect to
the supremum norm by Corollary Therefore, we obtain

/Fdﬂlz/Fdl@
€ G

for all F' € Cy(G) and the uniqueness of the measure in the Riesz represen-
tation theorem implies that p; = puo.

We will now prove the existence of the measure p by defining a linear
functional A on Cy(G) and applying the Riesz representation theorem. By

density of A C Cy(@), it is sufficient to define A(f) for f € L*(G) and show
that

A< SO0)] Flloo- (2.3)

To this end, define
AG) = [ odm (2.4)
for f € L'(G) and notice that ([2.3]), once established, will in particular imply
that A(f) is indeed well-defined for any f € Cy(@), meaning that it does not

depend on the choice of f, but only on its Fourier transform f
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72 2 Abelian Groups

For the proof of the bound (Z3)) for the functional in (24 we recall from
the GNS construction (Theorem [[.74)) that ¢ = ¢, is a matrix coefficient of
some vy € H, for some unitary representation 7 of G. With this we have

[ roam= [ s, am = [ £(g) (x,00,v0) dmlg) = (. (£)00: v0)

for all f € L*(G). Therefore

'/fd)dm' < ma(Dllopllvoll® = [l (f)lopd(0)

and so we need to estimate ||, (f)l[,p- For this, we recall from Section
that 7, (f)* = 7, (f*). Also recall that L!'(G) is an abelian Banach algebra
(since G is assumed to be abelian), which implies that =, (f) is a normal
operator, and so its operator norm is equal to its spectral radius

*2" 2
T (f*)

op

on 2" .
() = lim
op n—00

17 (Dllop = Jim |
Combining this with the bound

7. (FZ ) lop < I1F27 11

we obtain -
I (F)llop < B [[£2"13"

Here the limit exists because of the spectral radius formula in a commutative
Banach algebra (see [24, Cor. 11.29]) and equals

ma XD =111l

X
x€o (L (G))u{0}

by the identification o(L*(G)) = G in Proposition 24 and the proof of Corol-
lary 23] To summarize, we have shown that ([2:4) defines a continuous linear

~

functional A on Cy(G) satistying 23]
Applying the Riesz representation theorem (see [24] Th. 7.54]) to A, we
find a finite measure p on G such that

[ fodm=a(f) = [ Fau (2.5)
G G
for all f € LY(G) and ||u|| = ||A| < ¢(0). Here p is potentially complex-

valued, and we may write dy = F d|u| for some (positive) finite Borel mea-
sure |u| on G and some measurable function F' satisfying

1Pl = 141 < 6(0)
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2.2 Spectral Theory, First Formulations 73

Now set f = 1, in (2.5)) for some approximate identity (1,,) and let n — co
to obtain

$(0) = lim ¢%¢mn:1m1/igpﬂm:i/de
n— oo n— 00

since the bound ||¢, || < 1 and the convergence ¥, (t) — 1 as n — oo for
every t € GG allows us to apply dominated convergence. However,

[ 1#1dl = 1Py, = 4] < 60) = [ P

implies that F'is real-valued and non-negative almost everywhere with respect
to |ul, so that du = F'd|u| is in fact a (positive) finite Borel measure.
Finally, fix some g € G, set f = A4, in ([2.3) and let n — oo to obtain

o(9)=lm_[wn(Wyotg + ) dm()=lim_ [ (\,) 6dm=lim [ X7, dn

n—00

Since ||>‘q1/)n||oo g ||)‘q¢n||1 =1 and

At (t) = /(Agwn>xt dm = /¢n<h>xt<g+h> dm(h) — x4(9) = (9,t)

~

as n — oo for any ¢t € G, we may again apply dominated convergence to
obtain

wm=/wwm@

as claimed. O

Exercise 2.9. Let P<(G) be as in Corollary [76] Let
MSHE) = {u| p is a measure on G with u(G) € [0, 1}

Define N
&: MSYHG) 5 p—s ¢, € PSYG)

by
6u(9) = / (g,1) du(t)

for g € G. Show that @ is continuous with respect to the weak* topologies on Mgl(é)
(resp. PSY(G)). Conclude from this that

o(MSHG)) = PSHG),
and deduce Theorem [2.8]

The following exercise may help to develop an intuitive understanding of
spectral measures.
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74 2 Abelian Groups

Exercise 2.10. Fix a sequence (t,),cy in é, and define a unitary representation 7 of G
on H, = £2(N) by

(ng)n =(g,t, )V,
foralln € N, g € G, and v = (v,,) € H,. Calculate p, for v € H,, and interpret it as
giving weights to the eigenvalues in G.

2.2.2 The Spectral Theorems

Using Bochner’s theorem (Theorem [Z8) it is now quite straightforward to
completely describe cyclic as well as general unitary representations of abelian
groups.

Corollary 2.11 (Spectral theorem for cyclic representations). Let 7
be a unitary representation of the abelian group G, and let v € H,.. Applying
Bochner’s theorem to the positive-definite function p, defined by

Pu (g) = <7Tgvv ’U>

for g € G, we obtain the spectral measure u, for v. Then the cyclic repre-
sentation on

(), =(myv|ge G>C
is unitarily isomorphic to the unitary multiplication representation M of G
on Lﬁv (G) defined by

My (w)(t) = (g, 1) w(t)
for g € G, w € Liv (é), and t € G. Moreover, the equivariant isometry
sends v € H, tol € L7, (@) and in particular,

0] = ©,(0) = 1, (G).

Finally, 7 is cyclic if and only if there exists a finite u onACA? such that 7 is
isomorphic to the multiplication representation M on LZ(G).

PROOF. First note that the multiplication representation M, for g € G' defines
a unitary representation on Lﬁ(é) for any o-finite measure p on G. Indeed,
since (g,t) € S! for all (g,t) € G x G the operator M,: L2(X) — Li(@) is
unitary for any g € G. Moreover, if (g,,) is a sequence in G with g, — g
as n — oo, then continuity of the character y; implies that (g,,t) — {(g,t)
as n — oo for all t € G. Given some w € Li(@), this then implies that

2
[ My, w — Mg wl||, = /G {9, t) — (g0, t) [Plw(t)]? du(t) — 0

as n — oo by dominated convergence.
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2.2 Spectral Theory, First Formulations 75

We now consider the case of a multiplication representation defined by a
finite measure p on G. We will show that the representation is cyclic and has
the vector 1 € L2(G) as a generator. Indeed, if f € L'(G) and w € L2(G)
then

(M (N1, w) 2 @) = /Gf(g) (My1,w) 12 ) dmlg)
z/f(g)/Jg,wa)dﬂ(t)dm(g)
G G
= [ Fayumaut) = (Fu)

2(@)

by definition of the convolution operator M, (f) using weak integration, Fu-

bini’s theorem, and the definition of the Fourier transform 7 Since the func-
tion w € L%(G) was arbitrary, this shows that M,(f)1 = f e (1), By

-~

density of the set of these functions in Cy(G) with respect to the supremum
norm (see Corollary [20]) and since p is assumed to be a finite measure, we see
that Cy(G) C (1), By density of C.(G) C L2(G) we obtain (1), = L2(G)
as claimed.

Now consider a unitary representation 7 and a vector v € H,. Then the
function defined by ¢, (g) = (7,v,v) is positive-definite. Applying Bochner’s
theorem (Theorem ZR) we find a finite measure y, on G such that

vo(g) = /A (g,1) dp, (2).
a
Notice that the matrix coefficient of 1 € LZ(CA?) is given by

(M,1,1),, —/é<g,t> dp (1) = @4 (9) = (mgv, v)

for all g € G. By Proposition this shows that 7 restricted to the cyclic
representation (v), generated by v is unitarily isomorphic to (1), = L2(G),
and that we may assume that v is sent to 1.

The last statement in the corollary follows now too. If 7 is cyclic then
we have found the isomorphism. If 7 is isomorphic to the multiplication
representation on Lﬁ(G) for a finite measure u, then it must be cyclic since

we already showed that Li(é) is cyclic (with generator 1). O

Using the cyclic case, we easily obtain a similar description of a general
representation.

Corollary 2.12 (Spectral theorem). Let w be a unitary representation of
the abelian group G. Then there exists a finite measure p on X = G x N and
a unitary isomorphism between m and the unitary multiplication representa-
tion M of G on L2(X) defined by
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76 2 Abelian Groups

Mg(w)(t, n) = (g, t)w(t,n) (2.6)

forge G, we Li(X), and (t,n) € X.
Moreover, given a multiplication representation M of G defined by (2.6)

and a o-finite measure on X = G x N the convolution operator M,(f) asso-
ciated to some f € LY(Q) is given by the multiplication operator

2 2
M, (f) = M?: Li,(X) — L;(X)
w— 7w
Proor. That the multiplication representation is indeed a unitary repre-
sentation follows by the same argument as in the beginning of the proof of
Corollary 21Tl Next we claim that if p is a o-finite measure on X, then the
multiplication representation is unitarily isomorphic to a multiplication rep-
resentation defined by a finite measure ¢’ on X. Indeed, since p is o-finite
there exists some strictly positive measurable function F' with the property

that F2 is integrable. Now define the finite measure p' by dy’ = F?du
and U = Mp-1 so that for w € L2 (X) we have U(w) = F~'w and

10wz, x) = / F ol dy' = / F2wlF du = o], x),

which implies the claim since Mp-1 commutes with M, for any g € G.
Let now 7 be a unitary representation of G. Applying Lemma [[.59 we can

split
Hy = @ <Un>7r

n>1

into a direct sum of cyclic representations. Applying the cyclic case in Corol-
lary 2101 we find a sequence of finite measures (p,,) such that

He = Dlvn) =PI, (G

n>1 n>1
We use these measures to define a o-finite measure yon X = GxN by setting

wB)=> p,({t€G|(tn) € B})

n=1

for any Borel set B C X. This measure satisfies

LX) = PL; (@

n>1

where fAE L2(X) corresponds to the sequence (f,,) defined by f,,(t) = f(t,n)
for t € G and n > 1. Combining the above isomorphisms, we see that
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2.3 Plancherel Formula s
~ T2
Hrr = L,u (X)

and the main claim in the corollary follows (using also the reduction to finite
measures proven above).

The argument for the last part of the corollary we have already seen in
the proof of Corollary 211 Indeed for f € L*(G) and v,w € L7 (X) we have

<M*(f)vvw>Lﬁ(X) = /Gf(g) <Mgvvw>Lﬁ(X) dm(g)
— [ 16 [ to.t) ott,mjutEm dutt,m) dm(o)
G X
= [ Tt nuim dute.m - (P,

by definition of the convolution operator M, (f) using weak integration, Fu-

bini’s theorem, and the definition of the Fourier transform f. As v, w € L2(X)
were arbitrary the corollary follows. O

Spectral measures as in Corollaries 2.11] and carry complete infor-
mation about containment of one representation in another. We leave the
following special case as an exercise, and return to this question more gener-
ally in Sections 2.5.1] and 2.7, where we will also prove more refined versions
of the spectral theorem.

Essential Exercise 2.13 (Containment for characters). Let 7 be a uni-
tary representation of the abelian group G, let ¢, € @, and denote the cor-
responding character by x, . Characterize, in terms of spectral measures p,,
for v € H,, when x,, is contained in 7.

Exercise 2.14 (Example with infinite multiplicity). Give an example of a unitary
representation of the abelian group G for which we really have to use the space X = G x N
in Corollary 2T2] and could not have used G X {1,...,n} for some n € N.

2.3 Plancherel Formula

We show in this section that by applying the spectral theorem (Corollary 211
and Corollary ZT2]) to the regular representation of G we obtain a general
formulation of the Fourier transform. We will use this in the next section to
establish a duality principle between the abelian group G and its Pontryagin
dual G.

For t € G we write M, for the multiplication operator

My (v)(g) = {g,t)v(9)
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78 2 Abelian Groups

for v € L?(G) and g € G. Moreover, we will write X for the regular represen-
tation of G’ on functions f on G, so that

N, (F)(E) = f(t —to)

for all t,t, € G.

Theorem 2.15 (Plancherel formula). Given the abelian group G and a
normalization of its Haar measure m = mg there exists a normalization of
the Haar measure mg on G and a unitary isomorphism

U: L*(G) — L*(G)

which extends the map f — [ for f € LY(G)NL3(G) to all of L*(G) and has

the equivariance properties

Uoly=M,oU,

UOMt:A_tOU

for all g € G and t € G. Moreover, the inverse U~*: L2(G) — L2(G) is the
unique isometric extension of the map

LYG)NL*(G) > F — F € Cy(G) N L2(G),

where

for any g € G.
We split the proof of the theorem into several steps.

Lemma 2.16 (Convolution on L?(G)). For the reqular representation \ of
the abelian group G on the space L*(G) and functions f € LY(G), v € L*(Q),
we have that

N (flv=frve L*G)

can be calculated almost everywhere by the integral formula defining convolu-
tion.

PROOF. Let f € LY(G) and v € L*(G). Fixing another w € L*(G) we may
use Fubini’s theorem to see

(v, w) = / F(h) (o, w) dim(h)
- / / F(hyo(g — hyw(g) dm(g) dmi(h)
- /f*v(g)@dm(g) = (f *v,w).
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2.3 Plancherel Formula 79

This shows that the integral defining f * v exists almost everywhere, defines
a function in L?(G), and equals A, (f)v. (We also refer to Exercise [L55 and
the hint on p. for a different argument.) O

Lemma 2.17 (Generators of L?(G)). The regular representation X\ of the
abelian group G on L*(G) is cyclic. In fact, there exists some

Y eV =LY G)NL*G)

with 1\/; > 0 on all of G and every such v is a generator for the regular
representation.

PROOF. We first claim that there exists some function ¢ € V = LY(G)NL?(G)
such that 17) > 0 on all of G. For this we let ¥, € V be an approximate

identity as in Proposition [[.43] so that ;/;;(t) — 1 asn — oo for every t € G
(by continuity of x,). Now choose ¢,, > 0 decaying sufficiently rapidly so that

= ek,

n=1

converges both in L'(G) and in L?(G). Since wmn = W;‘Z this implies

together that J > 0 as claimed.

For the claim in the lemma that any such ¢ € V is a generator, we apply the
spectral theorem in the form of Corollary 2.12]to the unitary representation A
(which we do not know to be cyclic yet). Hence we obtain a finite measure p
on X =G xNand a unitary isomorphism

U: L*(G) — L (X)

such that U o A\, (f) = My o U for all f € LY(G) (by the last claim in
Corollary 212)). To see that 1 is a generator suppose that v € L*(G) satis-

files v € (1/J>i and let f € V. Together with the identity A, (f)¥ = f x ¢ from
Lemma and commutativity of convolution we obtain

0= (A (£, = (f 1,0) = (1 f,0) = (L) f0) = (BUF),U@)).

Now vary f in the dense subspace ¥V C L?(G) and use continuity of the
multiplication operator M : w € L2(X) = Yw € L2(X) to obtain that U(v)
is orthogonal to ¢/L?(X). However, since ¢ > 0 the image ¢¥L2(X) of the
multiplication operator M- is dense, which in turn implies that U(v) = 0
and hence also v = 0. This implies the remaining claim of the lemma, namely
that L2(G) is cyclic and is generated by any v € V with ¢ > 0 on all of G.O
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80 2 Abelian Groups

Lemma 2.18 (Flattening the measure). If we apply the spectral theo-
rem in the form of Corollary .11l to the regular representation A of the
abelian group G, it is possible to replace the original measure v on G by
a o-finite measure | defining the same measure class as v, such that the
map U: L*(G) — L2(G) also satisfies

ulf) =1 (2.7)
for all f €V =LY(G) N L*G).

We note that the measure arising in Corollary 2.1T]is not at all canonical,
since it depends on the chosen generator. Lemma [2.1§] ‘corrects’ this issue.

ProoF oF LEMMA 218 By Lemma [2.17 we can apply Corollary 211 and
assume that the unitary isomorphism between the regular representation A
and the multiplication representation M has the form Uy : L?(G) — L2(G) for

a finite measure v on G. Using Lemma[2. 16 and the last part of Corollary[2.12]
we obtain

PUY(f) = Up(v * f) = Up(f x ) = FU,(¥) (2.8)

almost everywhere (with respect to v) and for any f € V = LY(G) N L%(G).
In particular,

Uo(f) =% Upw)F.

As Uy(V) C L,Qj(é) is dense, it follows that Uy(y) # 0 almost everywhere.
With this we define the complex-valued measurable and non-vanishing func-
tion

F=9Uy(y)~"

on é, the o-finite measure p on G by

and the map U = MpoUy: L?(G) — Li(@) (with inverse Uy ' o Mp-1). The
latter satisfies

d
0Ny = [ IFPIGOR = [ Wl PP v
= 1Us(N728) = I£1l2
for all f € L*(G), and by ZX) also U(f) = f as in Z7) for f € V. Since

any two multiplication operators commute, the new unitary isomorphism still
satisfies the conclusion of the spectral thereom. (I
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2.3 Plancherel Formula 81

Lemma 2.19 (Translation invariance). Let y be a o-finite measure on G
satisfying Hf”Lﬁ(é) = |fllr2(q) for all f € V = LY(G)NL?*(G). Then = mg

is a Haar measure on G.

PRrROOF. By Lemma we have L(G) x L?(G) C L*(G), which implies
that V *V C V. Together with Corollary we then see that ¥ = U(V) is
contained in Cy(G) N Lﬁ(é) and is a sub-algebra of Cy(G). Also recall from
Lemma 217 that there exists some ¢ € V with 9 > 0.

Next we claim that g is locally finite. Using 9 € Cy(G) we see that

O={teG|d>(t)> 502t}

is a neighbourhood of ¢, € G. Together with 12 € L}L(é), which follows from

the fact that ¢ = U(¢) € L2 (@), it follows that 1(O) < oc. Since t, € G was
arbitrary, it follows that u is locally finite as claimed.
For f € V and t,ty € G we have

—_— ~

o)) = /G Otey F)xe dim = Flto + 1) = S_y, F(0). (2.9)

Notice that
LQ(G) > fr—x,f € L2(G)

is unitary, which implies that

~

Vofraa,f (2.10)

preserves the norm and inner products for all ¢, € G. This is already a

translation invariance claim for u, but restricted to the class of functions (lv/) %,
To prove that p is translation-invariant, we show that

| PO = [ Fito + 1) dutt
G G

for any I € CC(CA?) and ¢y € CAv', which in turn we show by approximating F’
. 5\ 2

with elements of (V) .
Indeed, by density of V in L (G) and by Corollary 2.5 we see that V is dense

~

in Cy(G) with respect to the supremum norm. Clearly this approximation

may be of little use since p(G) might be infinite. To overcome this we recall

that 2 € L}L(é) Given some F € C,(G) and £ > 0, we can apply the
density claim and find a function f € V such that

IF =9 2Fllo <&
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82 2 Abelian Groups

We multiply this by @71 2 and obtain

[0°F - F| <eip? (2.11)

on all of G. Integrating this inequality we obtain

‘/Tbrfdu—/qu‘ <5/@\//12du.

As noted in (2I0), the integrals of the functions 17)27,17)2 € (]7)2 remain
unchanged when these are shifted by ¢,. Shifting the estimate in (211]) by ¢,
and integrating again, this gives

’/F(to—i—t) dpu(t) —/F(t) du(t)’ < 25/?&%1”.

As € > 0 was arbitrary, we deduce that

/Fto—i-tdu /F )dpu(t)

for any F € Cc(é). Since p # 0 we see that p is a Haar measure on G. O

We now show that the combination of the above lemmas gives the
Plancherel formula for G.
PrROOF OF THEOREM [2.T5 By Lemma [ZT7 and Lemma [Z18 we may ap-
ply the spectral theorem in the form of Corollary ZT1] and assume that the
unitary isomorphism ~

U: L*(G) = L2(G)

satisfies U(f) = f for all f € V = L'(G) N L*(G). Applying Lemma 219, we
also see that the measure is a Haar measure u = mg. The formula

Uolyg=M,oU
holds by Corollary 211l Finally,

UM, f) = Ay, (U(f))

holds initially only for f € V (see ([Z3)), but knowing that p is the Haar
measure on G (so that P +, is unitary) this extends to all of L*(G).

It remains to prove the description of the inverse of U on Ll(G) NL? (CA?)
So let ' € LY(G) N L*(G) and let (1) with ¢, = b—~Tp for n € N be
again an approximate identity (as in Proposition[[L43]) for a basis (B,,) of the
neighbourhood of 0 € G with B,, = —B,, for all n € N. For g € G we have
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2.4 Pontryagin Duality 83
(U™ FAgn) = (F AT, )
_ <F Mngn>

- [Folsni®a — [Folgaa-F)

as n — oo by using the isomorphism U and by dominated convergence (since

we have |4, ()] < [|[tbnlls = 1 and §,(t) — 1 as n — oo for every t € G).
To obtain the desired conclusion, we interpret (U 1F, Ag¥p) as a convo-
lution. Indeed, we have

(U ) = [UTH )0 gl ~ g) dm(i)
=v,(g—h)

— [ wn®U (B ~ ) dm
=, x U (F)(9) = \(¥,) (UTH(F))(9)

for almost every g € G by using the substitution £ = g—h and by Lemma[2.T6]
Using Proposition [[49] (for the regular representation), we see that

G>3gr— (U'F M\ ,)

converges as the function A, (,,)(U*F) in L?(G) to U~'F as n — oo.
Even though the two notions of convergence above are different, we now
obtain U7'F = F almost everywhere. Indeed, L?-convergence implies the
existence of a subsequence along which there is pointwise convergence, which
gives the desired inequality. O

2.4 Pontryagin Duality

We note that the Plancherel formula in Theorem 2Tl already expresses some
symmetry between G and G (apart from a choice of sign). Using this, we will
now establish a complete symmetry between G and its dual group G. For
this we let G denote the Pontryagin bi-dual (that is, the Pontryagin dual of
the Pontryagin dual @) of the abelian group G. Moreover, for any g € G we
define a map on G by 1(g)(t) = {(g,t) = x.(g) for t € G. The properties of the
Pontryagin bi-dual, the maps i(g) for ¢ € G, and the map ¢ are given in the
following result.

Theorem 2.20 (Pontryagin duality). For the abelian group G the canon-

ical map v: G — G is an isomorphism of topological groups.

Page: 83 job: AAUnitaryRepresentations macro: svmono.cls date/time: 25-Mar-2022/16:18



84 2 Abelian Groups
Let us start with some observations about the dual pairing (-, -).

Lemma 2.21. (1) The map (-,-) : G x G — S is continuous.
(2) 1(g) €G for any g € G.

(3) The canonical map v: G —Gis injective and continuous.

PROOF. For the proof of (1) suppose (g,,) in G converges to g € G and (t,,)
in G converges to t € G as n — oo. Then K = {g,, | n € N} U {g} is a
compact subset of G. By Corollary the convergence t,, — t implies in
particular that (x; ) converges uniformly to x;, on K as n — oo. This implies

that <gn7 tn> = th (gn) - Xt(g) = <gu t> as nm — 00.
Property (2) now follows quickly from (1) since 2(g)(¢t) = {(g,t) € S* de-

pends continuously on ¢ € é, and (by the definition of the group structure
on () defines a homomorphism from G to St.
It remains to prove (3). For ¢;,9, € G and t € G, we have

1(g1 — 92)(t) = Xt (91 — 92) = X+ (91)x4(92) = (2(91)2(92)_1)@)7

which shows that :: G — G is a homomorphism. Let g be in GN{0}.

By the Gelfond-Raikov theorem (Corollary [[.79) there exists some t € G
with (g,t) # 1. (Alternatively, we could also note that A\, # I and apply the
equivariance formulas in Theorem to obtain the same conclusion.) In
other words, 1(g) € G>{0} and we see that 2: G — G is injective.

To prove continuity of ¢, suppose that (g,,) converges to g € G as n — o0
and let K C G be a compact subset. Then

L=({g,|neN}U{g)) x KCGxQ

is compact, and (-, ) restricted to L is uniformly continuous. This in particular
implies that for every € > 0 there exists some N > 1 such that

|<gn7t>_ <gvt>|<5

for all n > N and t € K. In other words, the functions u(g,): G — S!
and 1(g): G — S! are uniformly e-close on K. Since the compact set K C G
and € > 0 were arbitrary, Corollary implies that 2(g,,) — 1(g) as n — oo,
and it follows that ¢ is continuous. (]

Exercise 2.22. Show (without using Theorem [220)) that :: G — G is proper. Indeed,
show first that if (g,,) is a sequence in G with g,, — co as n — oo then A (v) — 0 in the

weak™* topology as n — oo for any v € L2(G). Now try to push this statement to a claim
about the regular representation Xl(gn) on G and the elements 1(g,,) €G.

For the proof of Pontryagin duality, we will use the following general result
concerning homomorphisms of topological groups in the special case of the

canonical homomorphism 2: G — G.
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2.4 Pontryagin Duality 85

Lemma 2.23. Let G and G’ be locally compact o-compact metric abelian
groups, and let 0: G — G’ be a continuous injective group homomorphism
with 0, (mg) = mg:. Then 0 is an isomorphism of topological groups.

PrROOF. Let U be an open neighbourhood of 0 € G, and let V. = —V be
a compact neighbourhood of 0 with V' + V C U. Using 0,mg = mg:, we
see that the characteristic function f = Ly belongs to L'(G") N L*(G").
Moreover,

£716) = [ oy (1) Loy ' = ) dmes (1)
G’ N——
=Lgvy(h—g’)
= Ay Loy Loevy) 22(cr) = ma ((O(V) + ) NO(V))

for all ¢’ € G'. This realises the function fx* f as the diagonal matrix coefficient
for gy € L*(G'), and gives f * f € C,(G') and f * f(0) > 0. Therefore

(f 1) 7H((0,00)) SOV) = 0(V) =0(V = V) CO(U)

is a neighbourhood of 0 € G’. As U was an arbitrary neighbourhood of 0 € G
and 6 is a homomorphism, this shows that § maps open sets in G to open
sets in G’ (that is, 8 is an open map).

In particular, (G) C G’ is an open subgroup. However, this implies
that 8(G) is also closed, since the continuity of the group operation implies
that its complement

@G = |J  (d+00@)
g’ €G'N0(Q)

is open. Finally, using 8, mg = m¢ in the form
mea (GN0(G)) = mg (071 (G™N(G))) =mg(0) =0

shows, by the properties of Haar measure, that the open set G'~\0(G) must be
empty. In other words, the continuous injective homomorphism 6: G — G’
is open and surjective, so is a homeomorphism between G and G’. O

We will now use the Plancherel formula and its equivariance properties to
prove Pontryagin duality.

PROOF OF THEOREM Let 2: G — G be the canonical homomorphism
studied in Lemma [Z2T] We define the measure p = 1,(mg) on +(G) C G.
Because of Lemma [2.23] our main goal is to show that p is the Haar measure
on G.

For this, we let U: L%(G) — L2(G) be the unitary isomorphism from
the Plancherel formula (Theorem applied to G). In particular, we have
that U~1(F) = F is given by the Fourier transform for
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86 2 Abelian Groups
FeVg=LYG)NL*G).

With this and the substitution A = —g on G, we obtain
v ¥ 2
171256, = [1F6o)] dma(o)
2
= [|] P oty dma (0] dmeto
(g:t)
=(g,

= | Pty ama (o) ama(n
_ /|ﬁ|2dmg = IF12. 5,

In other words, the measure p on G satisfies the assumptions of Lemma [2.19

when applied to G. Therefore p=mg is a Haar measure on G.

Recalling that 4 = 1,(mg) and the fact that «: G — G is an injective
continuous group homomorphism, Lemma [Z23 shows that : G — G is in
fact an isomorphism of topological groups. (I

The automatic reflexivity of the abelian group G in the Pontryagin du-
ality theorem (Theorem 220) allows us to prove many duality statements
that are reminiscent of finite dimensional linear algebra. In fact these duality
statements go much further, as we will see in the following subsections.

Exercise 2.24. Lemma[2.23] was phrased for abelian groups to avoid changing notation in
the middle of the chapter. Show that the assumption that the groups G and G’ are abelian
can be dropped.

Exercise 2.25. Use the discussion of this section to upgrade the statement of Exercise[l.78]
as follows. Show that for G = R the wea/lf* topology and the compact-open topology have
different neighbourhoods on ESH(R) = RU {0} C PSI(R).

2.4.1 First Duality Results, Sums and Products

Proposition 2.26 (Compactness and discreteness). Let G be an abelian
locally compact_metric group. If G is compact, then G s discrete. If G is
discrete, then G is compact.

PROOF. Recall from Corollary[2.5that the topology on G is the compact-open
topology. Suppose that G is compact and t; € G belongs to the neighbour-
hood N

{teG||g,t)—1 <1lforallgeG}

of 0 € G. Then {(g,t,) | g € G} is a subgroup of S! contained in
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2.4 Pontryagin Duality 87
{zeS'||z—1] <1}

As the only such subgroup is the trivial subgroup {1} C S, we see that t;, = 0
and hence that G is discrete. R

Suppose now that G is discrete. Then the compact-open topology on G is
equal to the product topology inherited from (S')¢ and

G={xe Y| x(g1 +92) = x(g1)x(g) for all gy, g, € G}

is a closed subset of the compact space (S')¢ and hence is compact. O

It will be convenient to use the notation
Ng(K,e)={teG||{g,t)—1] <cforallge K}

for the neighbourhood of 0 € G defined by a compact subset K C G and € > 0
in the compact-open topology of G. In the following, G, G, ... will always
denote abelian groups that are as usual locally compact, o-compact, and
metric, and we will refer to them simply as abelian groups.

For discrete abelian groups Gy, G, ... we define the direct sum by

Z G, = {(gn) € H G,, | g, = 0 for all sufficiently large n € N},
n=1 neN

which we again endow with the discrete topology.

Proposition 2.27 (Products and sums). The Pontryagin dual G, x Gy
of the direct product Gy X Gy of the abelian groups G| and G5 is canonically
isomorphic to C/?\l X é\z If the abelian groups G,, for n € N are compact, then
the Pontryagin dual of the direct product ] -, G,, is canonically isomorphic
to the direct sum | é; Finally, if the abelian groups G,, for n € N are
discrete, then the Pontryagin dual of the direct sum Y .~ | G, is canonically

isomorphic to [, G

n=1%n-

We note that the isomorphisms are indeed quite natural. For instance,
in the first statement we can use (t,t;) € G; X Gy to induce a character
on G; X Gy by the formula

X(t.t2) (91, 92) = (91, 92), (t1, t2)) = (91, t2) (92, t2) (2.12)

for all (g1, g2) € Gy X G4. The isomorphism in the second and third are of the
same nature. Hence we may and will interpret the above claims as equalities
written L

G x Gy =Gy X Gy,

o0

[[¢.=Y 6.
n=1 n=1
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if all the G,, are compact, and

> =116

n=1 n=1

if all the G,, are discrete.

PROOF OF PROPOSITION . It is easy to see that the natural group op-
erations make G; X G, agaln 1nt0 a locally compact, o-compact, metric
abelian group. If (t,ty) € G1 X G2 then ([2I2) defines an element X, ¢,
of G| x G5. If, on the other hand, x € G; x G5 we may compose x with

the embedding of G; into G; X G,, which defines a continuous homomor-
phlsm Gl — Gl X G2 — Sl by

g1 — (91,0) — x(91,0).

Hence there exists a uniquely determined t; € é\l with x(g1,0) = (g1,t1)
for all g; € G;. Similarly there exists a uniquely determined t, € é\g
with x(0,g5) = (go,t5) for all g, € (/?; Since x is a homomorphism, this
gives
X(91,92) = x(91,0)x(0, 92) = X(¢,.1,) (91, 92)

for all (g1,92) € G x Gy. It follows that ([2I2) defines an isomorphism
between é\l X é\z and m, which is easily seen to be an isomorphism of
groups.

To see continuity of this isomorphism in both directions, it is sufficient
to consider neighbourhoods of the identity. So suppose first that K; C G,
and K, C G, are compact and € > 0. If now x(, 4,) € NGTQE2 (K; x Ky,¢)
then by restriction to G; x {0} and {0} x G, we obtain ¢; € Ng: (Ky,¢)
and t, € Ng; (Ky,¢). For the converse, we note that if K C G; x G, is
compact, then K C K; x K, for the compact projections K; and K, of K
to Gy and G,. If now t; € N@l(Kl, 5)and ty € N@(K2, 5) then

‘X(tl,tg)(glag2) - 1| = |<917t1>(<927t2> — 1)+ (g1, 1) — 1| <e

for all (g1, 9) € K, and hence x, +,) € NG <G, (K,e).

Suppose now that G, G,,... are all compact and G = Hzo:l G, is
equipped with the product topology. Any x € G restricts as before to any
factor G,, for m € N, and we obtain that there exists a uniquely deter-

mined ¢, € 5; with

X(Oﬂ"'707gm707"') = <gm7tm>

for all g,, € G,,, where (0,...,0,9,,,0,...) denotes the element of [[*, G
that has g,, as its mth entry, and otherwise only zeroes. By continuity of x
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2.4 Pontryagin Duality 89

there exists a neighbourhood U of 0 € G such that |x(g)—1| < 1 forallg € U.
By definition of the product topology there exists some N € N such that

{0} x ﬁ G, CU.

n=N+1

Therefore,

x({O}NX ]O_o[ Gn)

n=N+1

is a subgroup of S contained in {z € S! | |z — 1| < 1}, which must therefore
be trivial. Hence t,, = 0 for all m > N and x is given by

N
H o) (2.13)

for all (g,,), € G. Using the projections from G to its factors G,, for n € N it
follows that (m) defines an element of G for any (t,), € Hn 1 G, and N

in N. Since G and DO Gn are both discrete by Proposition[2.26] this proves
the second claim. -

The third claim follows from the second by applying it to G,, and using
Pontryagin duality (Theorem 220]). O

Exercise 2.28. Prove the last claim in Proposition [2.27] directly, without relying on Pon-
tryagin duality.

2.4.2 Dual Homomorphisms

Let now G; and G4 be locally compact, o-compact, metric, abelian groups
and let : G; — G5 be a continuous group homomorphism. Then there exists
a dual map 0: G5 — G, defined by

(9.0(t)) = (0(g), 1) (2.14)
for g € G, andteé;.

Lemma 2.29 (Dual homomorphisms). With the assumptmns above, equa-
tion (2I4) defines a continuous group homomorphism 9: G2 — Gl, called the
dual homomorphism of 6. Under the canonical isomorphism between the bi-
duals and the original groups in Theorem the dual homomorphism of 0 is
given by 0. Moreover, if 0': Gy — G3 is another continuous group homomor-
phism with values in a locally compact, o-compact, metric abelian group Gs,

thenm25067’:é;—>(/¥\1.
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PRrOOF. Clearly the right hand side of ([ZI4) belongs to S! for every g € Gy

and t € (G,. Fixing t and varying g we can use the fact that 0 is a continuous
group homomorphism to see that the map G; 3 g — (6(g),t) indeed defines

an element a(t) €G,.
For g € G| and t,,t5 € Gy we have

(9,0t +12)) = (0(g), t1 + L)
= (0(9),t1)(0(g),

~

)
= (g,0(t1))(g,6( 0(t,) + 01

ta
t2)> = <g, 0(ty) + 9(t2)>a

which shows that 9: é\z — é\l is a homomorphism.

As 0 is a homomorphism, it suffices to prove continuity at the identity
of G5 to obtain continuity on all of G5. So let K C (G, be some compact
subset and ¢ > 0 and use these to define the neighbourhood Ng- (K,e).

Then 8(K) C G, is compact (since 6 is continuous), so it defines a neighbour-
hood N@(G(K),a). It is now easy to see that t € N@(G(K),E) and g € K
implies that N
(9. 0()) = 1] =1{0(g).t) — 1| <&
and hence a(t) € Ng; (K, e), which gives continuity of fat0e é\g, as required.
For g€ Gy and t € é\g we havd

P -~

0(g).t) = (g.0(t)) = (0(9). ),

which proves that 0=0. .
Finally for #” and t € G5 as in the last part of the lemma we have

(9,07 0(1)) = {0'(6(9)).1) = (0(9),0'(1)) = (9. 00 0'(1))
for all g € G4, and the lemma follows. O

Recall from Exercise that Rd =~ R by the formula (g,t) = e27i9t
for g,t € R%, where g -t = Z?:l g;t; is the standard inner product on R?

for d > 1. Suppose now d,e > 1 and that A: R? — R€ is a linear map. Then
the dual homomorphism A is equal to the dual map A® in the sense of linear
algebra, and so is defined by the transpose of the matrix defining A if we use
the standard basis on R¢ and Re¢. In fact,

(9.4t) = (Ag,t) = 2o — 27ileA'D) _ (g pty)

for all g € R? and ¢t € R®, which proves the claim.

T This is to be interpreted as <t,€2(7,(g))) = <§(t)7 1(9)) = (g, g(t))
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2.4 Pontryagin Duality 91

We finish the subsection by stating another duality claim for homomor-
phisms, which we will prove at the end of the next subsection as a corollary
of our discussion regarding quotients.

Corollary 2.30 (Injectivity and dense image). Let 0: G; — G5 be a
continuous group homomorphism from the abelian group G, to the abelian
group Gy. Then

(1) 6 is injective if and only if 0 has dense image; and
(2) 6 has dense image if and only if 0 is injective.

2.4.3 Subgroups and Quotients*

For a closed subgroup H of the abelian group G, we define
G/H={g+H|geG}

as the quotient group, and equip G/H with the quotient topology. Recall
that G/H is abelian, and by the more general Proposition [C.3] it also follows
that G/H in the quotient topology is a locally compact o-compact metric
abelian group.

The annihilator H+ of a closed subgroup (or even a subset) H of the
abelian group G is defined by

HY={teG|(ht)=1forallhe H}.

Proposition 2.31 (Duality of subgroups and quotients). Let H C G
be a closed subgroup of the abelian group G. Then H+ C G is a closed sub-
group which, together with the quotient group, satisfies the following duality
statements.

(1) 6/7{ =~ H' wia the pairing defined by (g + H,t) = (g,t) for t € H*
and g+ H € G/H.

(2) H = G/H* via the pairing defined by (h,t + H-) = (h,t) for h € H
andt+ H+ € G/H*.

(3) (HJ-)J' >~ H, where we identify G with G using Theorem 2201

PrOOF. By definition,

H* = () ker(G >t — (h,1)),
heH

and so by Lemma 221 we see that H is a closed subgroup of G.
We note that any ¢t € H+ induces a well-defined homomorphism
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92 2 Abelian Groups
x:G/H > g+ H v+ {(g,t) € S*,

which by definition of the quotient topology is also continuous. On the other
hand, a character x on G/H induces by composition a character

xop: G— St

on G which must correspond to some ¢ € H*. This gives the identifica-

tion between (?/?I and H*, which is clearly also compatible with the group
structures. It remains to show that this identification is a homeomorphism.
By Proposition compact subsets K’ C G/H are precisely of the
form K’ = p(K) for some compact set K C G. This shows that the neigh-
bourhood Néﬁ{(K', ) of 0 € G/H corresponds to the neighbourhood
Ht N Ng(K,e)

of 0 € H+ for any K’ = p(K) and ¢ > 0, which completes the proof of (1).
Next we prove (3). Clearly we have H C (HL)L. Suppose that g € GNH.

_—Z

Recall from Lemma Z21(3) that 2: G/H — G/H is injective which, by defi-
nition, means that for g+ H # 0+ H in G/ H there exists a character on G/H
that maps g + H to z # 1 in S'. By (1), this implies the existence of t € H+
with (g,t) = z # 1. However, this implies that g ¢ (HL)L, proving (3).

The isomorphism in (2) now follows from Pontryagin duality (Theo-
rem 2.20)) by applying (1) to the subgroup H- in G. O

Ezample 2.32 (Duality between projection and embedding). Let H C G be
a closed subgroup of the abelian group G. Using the first isomorphism in
Proposition 23T the dual of the canonical map p: G — G/H is the canonical

embedding map from C?/-T{ = H* to @ since

(9,0(t)) = (p(9),t) = (g + H,t) = (g,1).

for g € G and t € H*. Similarly we may use the second isomorphism to
conclude that the dual of the embedding ¢: H — G is given by the canonical
projection from G to H = G/H* as

(h,at)) = (h,t) = (h,t + H*)
forall h € H and t € G.

Using Proposition 2.31] we can now prove the duality claim regarding in-
jectivity and dense image for homomorphisms.

PROOF OF COROLLARY 230l Suppose that 6 has dense image and ¢ € é\z

-~

satisfies 6(t) = 0. Then we have 1 = (g,8(t)) = (8(g),t) for all g € G4, or
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2.4 Pontryagin Duality 93

equivalently y,(Im#) = 1. Since Im @ = G5 and Y, is continuous, this implies
that ¢ = 0 and hence that @ is injective.

Suppose now that Im@ # G,. Then by Proposition 2311 there exists a
non-trivial ¢ € (Im @)+ C 6’\2 For this ¢ and all g € G; we then have

~

(9,0(2)) = (0(9), 1) =1,

which implies that é(t) = 0 and hence that 8 is not injective.
This proves (2), which together with Pontryagin duality and the iden-

tity = 0 in Lemma also implies (1). O

Exercise 2.33 (Kernel and closure of image). Let : G; — G5 be a homomorphism
as in Corollary 2301

(a) Show that (Im8)™ = ker 0.

(b) Show that (ker G)L =1Im@.

Exercise 2.34 (Connectedness and torsion). Let G be a compact metric abelian

group. Show that G is connected if and only if G has no torsion elements (that is, if
and only if t € G with nt = 0 and n > 1 implies that ¢ = 0).

Exercise 2.35. Let A C G be an arbitrary subset of a topological group. Prove that (A1)+
is the closure of the group generated by A.

2.4.4 Projective and Direct Limits*

We wish to discuss two more constructions that are once again dual to each
other under Pontryagin duality. We start with the projective limit, which
in a sense generalizes the direct product, and is defined as follows. Suppose
that (G,,) is a sequence of abelian groups, and 6,,: G,,,; — G,, is a continuous
surjective homomorphism with compact kernel for every n € N. Then the
projective limit of the system (G,,,6,,) is defined to be the closed subgroup

G = @(Gn,ﬁn) = {(gn) € H Gp | 0,(gny1) = gy for every n € N}
n=1

of the product [[,7 ; G,, equipped with the product topology.

The second construction is the direct limit, which in a sense general-
izes the direct sum. For this, suppose that (H,) is a sequence of abelian
groups and 1, : H,, — H, ,, is a homomorphism such that ¢, : H,, =, (H,)
is an isomorphism of topological groups between H, and the open sub-
group +(H,) C H, ., for every n € N. We use 1,, to identify H, with the
subgroup 1, (H,,) and define the direct limit of the system (H,,,1,) as

H = lim(H,,1,) = | H,. (2.15)
n=1
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94 2 Abelian Groups

This is a small cheat, as we use the identification to suppress the set-theoretic
construction of the direct limit in the category of sets/[!] that is of a set H,
and maps ¢,: H, — H,, with H, = Ur—, ¢,(H,) and ¢, 1 01, = ¢,
for all n € N. As we want to focus here on the algebraic and topological
properties of 11_n>q(1‘In7 1y, ), this will simplify our discussion a little. In concrete
examples this step may need to be treated more carefully (see Exercise 2.30]).

Exercise 2.36. Let ¢ > 1 be an integer, define H,, = Z and xq = 2,,: H, — H,
by 2, (k) = gk for all k € H,, = Z and n € N. Describe the direct limit li_n)’l(Z7 Xxq).

Using the fact that (2I5) is an increasing union, the group operation
on H are defined in an obvious way: for h,, h, € H there exists some n € N
with h,,h, € H, and hence hihy, hy' are defined in H by the using the
group operations in H,,.

The topology on lim(H,,1,) is defined by the property that each H, is
(homeomorphically eﬁ)edded as) an open subset of lim(H,,,1,). More pre-
cisely, let the abelian groups H,, and embeddings +,,: H,, — H,,,, be asin the
definition of the direct limit lim(H,,, 2, ). Due to the assumed properties of 4,,
we have that H,, can be considered to be an open subgroup of H, ;. This
allows us to define the topology on H as in (ZI5]) as the inductive topology,
in which a subset O C H is open if and only if O N H,, is open for all n € N.
In particular, H,, C H is open for every n € N.

Proposition 2.37 (Projective and direct limits). Under the assump-
tions above, the projective limit ]'&n(Gn,Gn) and the direct limit lig(Hn,zn)
are again locally compact o-compact metric abelian groups.

PRrROOF. We first discuss the topological group @(Gn, 6,,). From continuity
of §,: G,.1 = G, for n € N and the definition of the product topology, it
follows that G = @(Gn, 0,,) is a closed subset of []>" | G,,. As the maps are
also homomorphisms, G is in fact a closed subgroup, and hence is a metric
abelian topological group. For the local and the o-compactness, we claim that
the surjective map 0,,: G,,,; — G,, with compact kernel is a proper map.
Given (g,) € G = m(G, 6,,) we then can find a compact neighbourhood K
of g; € G and obtain the neighbourhood

(Kxian>maz (ﬁK>mG

for K, = K and K, ., = 0,(K,) for all n € N. By Tychonoff’s theo-
rem, [[77, K,, is compact and so G is locally compact. Writing G, as a

T For example, one can use the set

Hoo = {1} x Hi U | |{n} x H, 1 (H,_) CNx | H,.
n>=2 neN

We leave the definition of the maps ¢,, and the proof of the identity ¢, 012, = ¢,
for n € N to the reader.
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2.4 Pontryagin Duality 95

countable union of compact sets and applying the argument above once more,
we also see that G is o-compact.

To prove the claim we simplify notation and suppose that 6: G — G’
is a surjective continuous homomorphism with compact kernel between the
abelian groups G and G’. Let K’ C G’ be compact. By Proposition [C.3] there
exists a compact subset K C G with K’ = §(K) and hence

0~ (K) =K +kerf

is compact as claimed.

Suppose now that the abelian groups H,, and embeddings 2,,: H,, — H,, 4
are as in the definition of the direct limit lim(H,,1,). Due to the assumed
properties of 2,, we have that H,, can be considered to be an open subgroup
of H,,,. This allows us to define H as in (210 equipped with the obvi-
ous operations and the inductive topology. Recall that H,, C H is open for
every n € N. Since each H,, is locally compact, o-compact, and has second
countable topology, the same is true for H, and in particular H is metric. If
a sequence in H converges to some h € H,,, then by openness of H,, in H, all
but finitely many terms of the sequence must lie in H,,. From this it is easy
to conclude that H is also a topological group. O

For the discussion of the Pontryagin dual of projective and direct limits
the following two notions and their relation will be useful. We say that a
continuous homomorphism 6: G — G’ is a proper projection if it is onto
and has compact kernel (which as we have shown in the above proof indeed
implies properness of the map). Furthermore we say that +: H — H' is an

open embedding if it is an isomorphism between H and an open subgroup «(H)
of H'.

Lemma 2.38 (Proper projections and open embeddings). Let G,G’

and H, H' be locally compact o-compact metric abelian groups.

(1) If 0: G — G’ is a proper projection, then 9:G' — G is an open embed-
ding. . N

(2) If v: H — H' is an open embedding, then?: H' — H is a proper projec-
tion.

PRrROOF. We suppose that 6 is a proper projection. Then surjectivity of 6
implies injectivity of # by Corollary Moreover, the last claim in Propo-
sition shows that § = 6 o p, where p: G — G/ker@ is the canonical
projection map and 0: G/kerf — G’ is an isomorphism. Dually, we then

have 6 = po @, where 6 is an isomorphism and
p: G/kerf = (ker6)* — G

is the canonical embedding by Example [2.321 Furthermore we have
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96 2 Abelian Groups
G/ (ker ) = ker 0

by Proposition2.31l By assumption ker # is compact, which implies that @
is discrete by Proposition 226 Therefore, (ker §)* is an open subgroup of G
and it follows that § embeds G’ onto the open subgroup é\(é\’) = (ker )+ C G
as claimed.

We suppose now that 2: H — H’ is a continuous embedding such
that «(H) C H’ is an open subgroup and 2: H — (H) is a group iso-
morphism. Identifying H with «+(H), the dual homomorphism to the em-
bedding +: H — H’ is the canonical projection 7: o - H\’/HL with ker-
nel H+ = I?/\H by Example Since H'/H is discrete, Proposition
shows that ker? = H*' is compact. ([

With these preparations, we can now prove the duality between the two
limit constructions.

Proposition 2.39 (Duality of limits). Let the projective limit yLn(Gn, 6,)
and the direct limit h_n>1(Hn,zn) be as in Proposition [Z31. Then

—~

(G, 0,) = lim(G,,.0,,),

—~

where we use the open embedding 1, = é;: G, — 5”: for all n € N to
define the direct limit. Dually,

where we use the proper projection 0,, = 1,,: ﬁn: — I/{; for n € N to define
the projective limit.

PRrROOF. Lemma [238 shows that if (H,,,,) satisfies the assumptions for the
construction of

H =lim(Hy,1,)
then (I/{\n, 1,,) satisfies the assumptions for the construction of
G = n(IT, 7).

Suppose now h € H and (t,,) is a sequence in G. Then there exists some m € N
with h € H,,, and we define

<ha (tn)>lim = <ha tm>'

We wish to prove that this is the dual pairing between H and H =~ G. Note
that

<hatm+1> = <Zm(h)7tm+l> = <ha/l\m(tm+1)> = <hatm>
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2.4 Pontryagin Duality 97

since 7, (t,,1) = t,, for all (¢,) in G and n € N by construction of the projec-

tive limit G = @(E, 1,,). Thus the expression (h, (¢,,))im is independent of
the choice of m, which easily implies that

H > hv— (h,(t,))im € S* (2.16)

defines a multiplicative homomorphism. Using the fact that H,, is an open
subgroup of H and ¢,, € ﬁ; we also obtain continuity of the character defined
by 2I6) for each n > 1. In other words, we have a well-defined homomor-
phism ®: G — H, which sends (t,,) to the character in (ZI6). Moreover, if
we have &((t,,)) = 0 for some (¢,) € G, then (H,,t,) =1 for all n € N, and
so @ is injective.

Now let x be a character on H. Restricting x to any of the open sub-
groups H,, for n € N, we obtain the character x|y on H,. Hence there

exists a uniquely determined ¢, € I/{; with

X(h) = (h,ty,)

for all h € H,,. For h € H,, we also have h =1,(h) € H, |, and so

<h7tn> = X(h) = <Zn(h>atn+l> = <h7{7\1(tn+1)>

for all h € H,,. This implies that t,, =7%,(t,41) for all n € N. Therefore (t,,)
lies in GG, and we have shown that ¢: G — H is onto and so gives the desired
identification.

To see that H and G are also isomorphic as topological groups, we note
that H = (J,—, H,, is an open cover and hence any compact set K C H
belongs to some H,,. It follows that N (K, €) corresponds under the isomor-

phism from HtoG = 1&1(1/{;, 1,,) to the set
{(tn) €G | by € Nf[\(Kag)}

As the latter is an open subset of G (with respect to the restriction of the
product topology), we conclude that the map from G to H is continuous.
Proposition [C.3] now implies that the above isomorphism from G to H as
abstract groups is in fact an isomorphism for topological groups.

The dual statement concerning the Pontryagin dual of lim(G,,, 6,,) follows
from Lemma 238 the above, and Pontryagin duality (Theorem [Z20). O
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98 2 Abelian Groups

2.4.5 Local Fields*

By definition a local field K is a locally compact o-compact non-discrete
metric field, where all field operations are assumed to be continuous. Our
main goal here is to prove the following self duality statement.

Proposition 2.40 (Self-duality). A local field K is isomorphic as an addi-

twe group to its own Pontryagin dual K. In fact, for any mon-trivial charac-
ter x € K we can define an isomorphism of topological groups

Kat'—m(te]K

by x+: K> a— xi(a) = x(at).

A wuseful tool, both for our discussion and for the further study and clas-
sification of local fields, is the induced absolute value defined by

lalx = mg (aM)
“ my (M)’

where a € K, my is a Haar measure for the group (K, +), and M C K is any
Borel subset with positive finite measure.

Lemma 2.41 (Properties of the absolute value). Let K be a local field.
The absolute value |- |x: K — [0, 00) is positive in the sense that |alg > 0 for
all a € KN{0}, well-defined, multiplicative in the sense that

laya|g = la;|glazlk

for all ay,a9 € K, continuous, and proper. Moreover, a, — 0 as n — oo if
and only if |a,|g = 0 as n — oo.

PROOF. For a = 0 we have aM = {0} for any M as in the definition of |a|k,
and the assumption that K is non-discrete implies that |0l = 0. That |a|k is
well-defined (that is, independent of the choice of Haar measure myg and the
set M) follows as in our discussion of the modular character in Section [L2.4
In fact, for any a € KN{0} defining u, (B) = mx(aB) for Borel subsets B C K
gives a Haar measure u, on (K, +) and hence, by uniqueness, p, must be a
positive multiple of my. In particular, |alg > 0 for all a € KN{0}.

To see multiplicativity, suppose without loss of generality that a;,a, are
elements of KN{0}. Then

layas|x = mg (aya, M) _ my(ayas M) mg(as M) = Jay |k |aslk
mg (M) mK(azM) m]K(M)

for any M C K as in the definition of | - |g. We will assume in the following
that M C K is a compact neighbourhood of 0 € K.
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2.4 Pontryagin Duality 99

For the proof of continuity of | - |: K — [0,00) at 0, we will need the fol-
lowing topological claim for the local field K. For any open neighbourhood U
of 0 € K there exists some neighbourhood V of 0 € K such that VM C U.
Indeed, for any a € M there exists (by continuity of multiplication) open
neighbourhoods V, of 0 and O, of a such that V,0, C U. By compactness
of M we can find a finite subcover

MCcO, U---U0,
and so it follows that VM C U for
V=V, NV, .

To see continuity of | - |[x at 0, we let ¢ > 0 and choose U to be an open
neighbourhood of 0 with measure mg(U) < mg(M)e. Let V be an open
neighbourhood of 0 with VM C U as above. For a € V' we then obtain

7 mg(aM) mg (U)
e = S O0) S (WD) < ©

As € > 0 was arbitrary it follows that | - | is continuous at 0 € K.

To see continuity of | - [ at 1 we first prove an analogue of the above
topological claim. By local compactness and local finiteness of my there exists
an open set O O M with finite Haar measure. We define

B,={a€O|d(a,M) <1}

for a € K. Since O D B; 2 By D --- is a decreasing sequence, O has finite
Haar measure, and

M= () B,,
n=1
we have mg (M) = lim,,_,.. mg(B,,). Let € > 0 and choose n > 1 such that

Just as in the proof of the above topological claim, we can use compact-
ness of M, openness of B,,, and the inclusion 1- M C B, to find an open
neighbourhood V of 1 € K with VM C B,,. For a € V we then obtain

my (aM) my(B,,)

lalx = < <l+e.
« i (M) my (M)
Therefore
(I+e)t<lalg <1l+e¢
for all @ € V with a=! € V, since |a~!|x = |alz' by the multiplicative

property. As ¢ > 0 was arbitrary and {a € V | a=! € V'} is a neighbourhood
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100 2 Abelian Groups

of 1, we obtain the continuity of |- |g at 1 € K. Continuity at a, € K~{0}
now follows from the identity

lalx = |aag "aglx = |aag [i|aglx

for a € K.

It remains to prove that | - |g is proper, and that a sequence (a,) in K
converges to 0 if (Ja,|x) converges to 0 as n — oo. Let M C K be a compact
neighbourhood of 0 € K as above, and suppose in addition that 1 € M.
Let Uy € M be an open neighbourhood of 0 with Haar measure satisfy-
ing my (Uy) < $mg(M). Let V; be an open neighbourhood of 0 € K satisfy-
ing VoM C U, as in the topological claim above. For the following we choose
and fix some ¢ € Vy>{0}. Then [t|x <  (by the argument proving continuity
at 0 above) and so

7] = [t — 0 (2.17)

as n — o0o. Moreover, t =t-1 € tM C Uy C M, and by induction t" € M
for all n > 1. By compactness of M the sequence (¢") has a convergent
subsequence. However, because of the established positivity and continuity
of the absolute value, we conclude from ([2I7)) that 0 is the only possible limit
point of a convergent subsequence. By compactness, we obtain " — 0 € K
as n — 00.

For ¢ € N we now define P, = t~¢(M~tM) and obtain

K:MUGPZ.
=1

Indeed, for any a € KNM we have t"a — 0 as n — 00, so there exists a
minimal ¢ > 1 with t‘a € M (satisfying t‘a ¢ tM), and hence a € P,.
We also define
¢ =min{lalg | a € MtM},

and note that ¢ > 0 since M~tM C M is compact and does not contain 0.
It now follows that any a = t~‘aq € P, with ay € M~tM and ¢ € N has
absolute value

lalk = [t aglx = |tlg laglk > 2°c.

As

L
MulJP=t"M
=1
is compact for every L > 1 and |a|g > 25 !c for all a € KN(t~F M), it follows
that the absolute value is a proper function.

Now suppose that (a,) is a sequence in K with |a,|x — 0 as n — oo.
Then a,, € M for all sufficiently large n since by the above, |a|x > 2cifa ¢ M,
and we may again use compactness of M, positivity, and continuity of the
absolute value to conclude that a,, — 0 as n — oo. O
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PROOF OF PROPOSITION Let x € K be any non-trivial character. We
define x;: K 2 a — x4(a) = x(at) for any t € K as in the proposition.
Since K 5 a + at € K is a continuous homomorphism of the additive group K
it follows that x; € K for any ¢t € K. For t,,%5,a € K we also have

Xt,+1,(@) = X ((t1 + t2)a) = x(t1a)x(t2a) = x¢, (a)xy, (a),

andsod: Ko>t— x; € Kis a homomorphism. By assumption, x is a non-
trivial character. So let ag € K be chosen with x(ag) # 1. If now ¢ € KN{0}
then

Xt(%ao) = X(t%ao) = x(ag) # 1,

which shows that x; is non-trivial and hence @ is injective.
To see continuity of @, let M C K be compact and fix € > 0. By continuity
of x,
U={aeK]||x(a)—1] <&}

is an open neighbourhood of 0 € K. By compactness of M there exists an open
neighbourhood V' of 0 such that VM C U (just as in the topological claim in
the proof of Lemma [24T]). Therefore t € V gives |x;(a) — 1| = |x(at) —1| < e
for all @ € M. Equivalently, ¢t € V implies that

Xt € N]K(Mv 8)7

which gives continuity of @.
Next we claim that & is proper. So let (¢,) be a sequence in K with the
property that t,, — oo as n — co. By Lemma 241l we have

a, =ty tag — 0

as n — o0. This shows that (x,, ) has no convergent subsequence with re-
spect to the compact-open topology. In fact, uniform convergence of (y; )
"k

on the compact set {0} U {a,, | n € N} to a character x’ would imply
that limy_, o Xt,, (an,) = X'(0) = 1, but we have x, (a,) = x(ay) for
all n > 1, and x(ag) # 1. This shows that X¢, — 00 as n — oo, and hence
that @ is proper. N N

It follows that ¢(K) C K is a closed subgroup of K. To identify the sub-
group @(K) we suppose that a € #(K)* C K, so that (a,®(t)) = x,(a) =1
for all t € K. If @ # 0 we can set t = a 'ay and obtain the contradic-
tion x,(a) = x(aa~tay) = x(ag) # 1. Hence ¢(K)* = {0} and Proposi-

~

tion [Z37] implies that #(K) = K. By the last claim in Proposition we

now obtain that @: K — K is an isomorphism of topological groups, which
concludes the proof. O

We note that the above applies to the local fields R and C. In particular,
Proposition 2.40] and Proposition 227 together give a complete (but much
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102 2 Abelian Groups

longer) proof of Exercise Let us briefly describe a second class of local
fields that are especially important in number theory.

Fix a prime p € N. The local field Q, is defined as the completion of Q
with respect to the so-called p-adic norm defined by

0 if a = 0;
|a|p =

pF ifazpk% € Q* for k € Z,m,n € Z~pZ.

The definition of | - |, implies that |ab|, = |al,|b], for all a,b € Q. Similarly,
ifa=pF™ and b :pfg with k,¢ € Z and m,n,r,s € Z~pZ, then

n

la+b|, = ’pmin(k,l) (pkfmin(k,f)% +p67min(k,e)§)

p
< max(p~*,p~*) = max(|al,, [b],) < lal, + [b],-

As in the study of norms on vector spaces, it now follows that |a — b, defines
a metric on QQ which extends to the completion Q,, of Q. Moreover, the p-adic
norm extends from Q to a continuous function on @Q, defined by setting

|a|p = dp(aa 0)

for all a € Q,. From these properties it follows that multiplication and addi-
tion extend continuously from Q to Q,,. In fact, by the above discussion we
have

la +bl, < max(jal,. bl,) < lal, + b, (2.18)

and
|ab|p = |a|p|b|p (2.19)

for all a, b € Q. This implies that sums and products of Cauchy sequences in
are again Cauchy sequences in Q. Hence we obtain the definition of addition
and multiplication on Q, so that (ZI8) and ([2I3J) also hold for a,b € Q,,.

To see that Q, is a topological field, we claim that any Cauchy se-
quence (a,,) in Q~{0} with limit a € Q,~{0} satisfies that (a,') is again
a Cauchy sequence. With § = f|a|, it follows that |a,|, > 6 for all n > N
and some N > 1. Therefore

nlp

71_

az !

a;1|p < |am [¢2% (an - am)lp < 572|am - an|p
for all m,n > N, which implies the claim since (a,,) is a Cauchy sequence.
Thus a — o~ is continuous on @,~{0}. Now the limit b = lim,,_,, a,* € Q,
of course satisfies
ab= lim a,a,’ = 1.
n—oo

The subgroup Z, of Q,, is defined as the closure of Z in Q,,, and so |a|, < 1
for all a € Z,. We recall that if n € Z~pZ, then there exists some ¢ such
that n¢ = 1 modulo p. In other words, there exists some a € Z with the
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2.4 Pontryagin Duality 103

property that n¢ = 1 — ap, which implies that

() = =3 (ap)’

_l—ap_j:O

is a series in Z that converges in Zp C Qp since

1 J
_ J
‘ i~ ;(ap)

for J > 1. This implies that for k > 0 and m,n € Z~pZ we have

L—(1—ap) 7o (ap)’ I

1—ap

(ap)

< p—(J-'rl)
1—ap

P p

pk% = pPml(nt) ™ € Z,.

Since |a|, € {0} Up” for all a € Q, we obtain that

Zp :EI(O) = {CL € Qp | |a|p < 1} = {CLG Qp | |a|p <p} = Bp(O)

is the closed unit ball in Q,, and is simultaneously an open ball. Using (2Z.19)
and multiplication by powers of p we deduce that open and closed balls with
centre 0 have the form

P2, =B, (0) = {a € Q, | |al, <p~ "}
=Bp-«(0)={a€Q,|lal, <p' ¥}

for some k € Z. By [2I8), these sets form additive subgroups of Q,. More-
over, ([ZI9) shows that Z,, is a subring and that the sets p*Z, C Z,, are ideals
for any k£ > 0.

For k > 1 division by p* with remainder in Z implies that

pF—1

z= || (m+p*z),

m=0

where the sets m +p*Z for m € {0,...,p" — 1} on the right-hand side are the

closed balls of radius p~* around m with respect to | - |, intersected with Z.

Taking the closure in Q,,, we obtain
pF—1
Z,= | | (m+p*z,). (2.20)
m=0

As these balls have distance at least p~**1, the union is disjoint. This shows
that Z,, is totally bounded as a metric space. In particular, as Z,, is complete
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104 2 Abelian Groups

by definition, we see that Z, is compact and so Q,, is locally compact and o-
compact.

Exercise 2.42. Show that any element a € Z, may be written as

o0
a= E akpk
k=0

with ay € {0,1,...,p— 1} for k > 0, and that any a € Q, may be written as

o0
k=¢
with a5, € {0,1,...,p — 1} for all k > ¢ and some ¢ € Z.

Exercise 2.43. Use 220) to show that Z,/p*Z, = Z/p*Z = Cpr for all k > 1 and
deduce that we may identify Z, with the projective limit @(Cpk , Gk) where

le Cpk+1 — Cpk
m+ pFtZ —s m + pFZ

is the canonical projection map for all &k > 1.

Exercise 2.44. Show that @, can be obtained as the inductive limit Q,, = h_r}n(p’ZZp, ),
where

1t perp — pil*lzp

a—a
is the inclusion map for all £ > 0.

Exercise 2.45. Find an explicit formula for a non-trivial character on Qp, and use this

to exhibit an explicit isomorphism between Q,, and Q,,.

Exercise 2.46. (a) Show that the absolute value | - \@p in Lemma [241] agrees with the p-
adic norm | - [, on Q,,.
(b) Describe the Haar measure on Q,,.

Exercise 2.47. (a) Show that for a finite set S of primes in N the ring Z[% | p € S] gives

rise by diagonal embedding to a discrete subgroup of R x Hpes Q,-
(b) Show that

m% (R xTTpes @p)/Z[% |pe s

Exercise 2.48. Show that for any non-empty set S of primes there is an injective homo-

morphism R — Z[% | p € S] with dense image.(%)

The case of the characteristic p local field defined by the field of formal
Laurent series

F (X)) = {Zaka |0 €Z,ay, € F,=7Z/pZ for all k > z}

k=t

p
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2.5 Spectral Measures 105

is quite similar to the above. The norm |- [: F, (X)) — Ry is defined by

o0
S0
k=4

0 if ap, =0 for all k € Z,
~\pt iffeZanda, #0.

The ring

F,[X] = {Zaka | €€ Z,ay, €F, for all k > 0}
k=0

is an open and compact neighbourhood of 0, and all other open and closed
balls about 0 can be obtained by multiplication by X* for £ € Z. We leave
the details as an exercise.

Exercise 2.49. Show that F,((X)) is a locally compact o-compact metric field if we de-
clare F,(X)) to be the inductive limit over £ of X’ZIFP [X] and use the inductive topology
on the latter group.

We conclude this topic by noting that any local field K is isomorphic to
exactly one of the following three types of field:

e (Archimedean) K =R or K = C;

e (Non-Archimedean of zero characteristic) K = Q, or K is a finite field
extension of QQ, for some prime p € N;

e (Non-Archimedean of positive characteristic) K = I, (X)) or K is a finite
field extension of F,((X)), for some prime p € N.

We refer to Weil [75, Sec. 1.3] for this classification of local fields.

2.5 Spectral Measures

We already encountered spectral measures implicitly in Bochner’s theorem
(Theorem [2.8), and explicitly in the description of cyclic representations
(Corollary 2.17)). In particular, Theorem 2.8 shows the existence and unique-
ness of diagonal spectral measures as defined below. Here we study them in
greater detail and also consider more general non-diagonal matrix coefficients,
whose existence and uniqueness will be shown in Proposition 2.52

Definition 2.50 (Spectral measures). Let 7 be a unitary representation
of the abelian group G. For any v € H, the (principal or diagonal) spectral
measure (i, is the finite measure on G with the property that

hw@—é@ﬁ@ﬂ)
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106 2 Abelian Groups

for all g € G. For v,w € H, the (non-diagonal) spectral measure 1, ,, is a
finite complex-valued measure on G such that

(myv,w) =/<g,t> gy, (t)

for all g € G.

In most of our discussion we will consider only one unitary representation 7
and will write y, and g, ,, for the spectral measures of v, w € H, as in the
above definition. If we want to emphasise the unitary representation used in
the definition of the spectral measure, we will write uy or ug ,,. The main
properties of spectral measures are summarized in the next result.

Proposition 2.51 (Geometry of diagonal spectral measures). Let «
be a unitary representation of the abelian group G. The (diagonal) spectral
measures [, for v € H, satisfy the following for all v,w, vy, vy, -+ € H,.

(1) We have ||, || = 11, (G) = [[v]*.

(2) If w € (v),, then p, < p,. Indeed, if w € (v),. corresponds under a
unitary isomorphism as in the cyclic spectral theorem (Corollary 211])
to F e L2, (G), then dp,, = |F|*du,.

(3) If <v1>7r 1 <v2>7r) then lu“ul-i—vz = ,U‘vl + lu“u2'

(4) If v = Y72 vy, is convergent with (vy), L (vy). for all k # £ € N,
then pl, = Y7 [y, -

(5) If /Jf'ul 1 /’L’Uzi then <v1>7'r 1 <v2>7r'

(6) If w € (v}, and iy < fony, then () = (v}

(7) If ttn, L tiy,, then we even have (v, + v3)y = {015 & (v3).

We note that we will be able to give a better motivated proof of (6) and (7)
using the measurable functional calculus in the next section.

PROOF OF PROPOSITION 251l The equality in (1) already appeared in Corol-

lary 21Tl Applying Corollary 211l we have that 7 restricted to (v), is uni-

tarily isomorphic to L?, (G), where v corresponds to 1. Let F € L7 (G)

correspond to w. Then

(g 0) = ML, PoF) oy = [0 0P din )

for all g € G, showing that dpu,, = |F|*>du,, and hence (2).
Suppose that (v1), L (vy), asin (3). Then

/<g7t> dﬂv1+v2 (t) = <7Tg(vl +v3),01 + vg) = <7Tgv17vl> + <7T9v2’ v2)
- / (g, t) dpy, (t) + / (g,t) dpy, ()
= /(g, t) d(:uvl + 'uv2)(t)
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2.5 Spectral Measures 107

for all ¢ € G, which proves (3) by uniqueness of spectral measures in
Bochner’s theorem (Theorem 2.8]).

Suppose now that v = Y 72, v, as in (4) and define uy = Zszl Vg,
respectively wy = Y .2y Uy, for some N > 1, so that v = uy + wy.
By (3), we have ju,, = pt,,,, + fy,, and by induction also 1, = ngvzl Ho, -
By (1) we have [|p,, || = [[wy]||* = 0 as N — oo, which implies that

o0

Ho = ]\}Lmoo(‘u“N +'uwN) = ];:uvk'

Now suppose that p,, L p,, asin (5). We write vy as a sum vy, = w + w

with w € (v;), and @ € (v;)%. Since (w), C (v{), and (W), L (vy),, we

obtain fi,, = p,, + pg from (3). By (2) we have p,, < p,,, which together
with the assumption i, L p,, implies y,, = 0 and so also

w])? = 1, (@) = 0

by (1). Therefore v, = w € (v;)%, and (5) follows.
For the proof of (6), we apply the cyclic spectral theorem (Corollary [ZTT])
to the subspace (v), and assume without loss of generality that 7 = M and

v=1¢ L*G,p)

for a finite measure u = u,. We also recall from Corollary 212 that we

have M. (f) = Mj for all f € L*(G). It follows that LT(G)w C (w),, and, by

density of L\EE) C Cp(@), also Cy(G)w C (w)y, for all w € Li(@) Suppose
now that w € L?(G) satisfies p < pu,,. By (2) we have du,, = |w|* dp, which
implies that w(t) # 0 for u-almost every t € G. Finally, recall that CO(CAv') is

~

dense inside LZ (G). Now pick some F € L2 (G) and note that
F=w'FelL} (G)

Applying the density claim to F, we find a sequence (F,) in Co(é) that

~

converges to F in L7, (G). Together, it follows that F,w € (w),; and

2 _ 7 2
”an_F”Lﬁ(@)_/|an_\Fw,| d,u
=F

:/|Fn_F|d:uw: ||Fn_F||iﬁw(é) —0
as n — oco. Hence F € (w),; also, and we obtain (w),, = Li(@) as claimed

in (6).
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108 2 Abelian Groups

It remains to prove (7). By (5) we have (v{); L (vy),. We let w = vy + vy
and conclude from (3) that s, = p,, + p,. Since p, L pu, we can
decompose Gas G = B, U B, for some measurable sets Bj, By C G
with 1, (G\B ) =0 for j = 1,2. Using the cyclic spectral theorem (Corol-

lary 2.11]), the function 15, € LQ(@, [ty ) corresponds to some uq € (v;+vs),,
which by (2) has spectral measure dyu,, = 1p du, = du,, . In particu-
lar, p1,, L p,,, which by (5) implies (uy). L (v5), and so uy € (vq),.
Since f,,, = fy, , property (6) implies (vy). = (uq1), C (v1 + vg),. This also
implies (vy),; C (v; + v9),, which concludes the proof. O

T =

We now discuss the main properties of the non-diagonal spectral measures.
These will be crucial in the next section.

Proposition 2.52 (Non-diagonal spectral measures). For any unitary
representation w of the abelian group G there exists a map
H, x H, — ME(G)
(1), w) — :uv,w

sending a pair (v, w) to the spectral measure pu,, ,, satisfying

(mgv,w) = / (9,t) dpy () (2.21)

for all g € G (as in Definition 250]) and the following additional properties.

(1) pty depends linearly on v € H, and semi-linearly on w € H,.
(2) phoy v = Tp, Jor all v, w € H.

(3) 2ol < lwlllw]] for all v, w € H,.

(

(

4) (m, (f)o,w) = [ Jdppy for all f € LMG).
5) If the unitary isomorphism in Corollary 2111 sends v,w € (u), to the
functions F,,F,, € L?, (G) respectively, then du, ,, = F,F, du,.

6) If v = D py Upy W =D py Wiy and v, Wy € (Up)r, (Up)r L (ug)y for
all k # £ € N and some sequence (uy,) in H,, then we have

oo
w — E Hoy, oy, -
k=1

Moreover, for a pair (v,w) € H, X H, the property 221 for all g € G
(alternatively, property (4) for all f € LY(G)) uniquely determines the mea-
SUTE [l 4y -

Let us highlight a particular case in the following exercise.

Essential Exercise 2.53. Let 7 be a unitary representation of the abelian
group G. Assume the existence and properties of the non-diagonal spectral
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2.5 Spectral Measures 109

measures as in Proposition 2.520 Show for v,w € #H, that u, , = 0 if and
only if (v), L (w),.

PrOOF OF PROPOSITION [252. Let v,w € H and assume that a finite
complex-valued measure p, ,, satisfies (221)) for all g € G. For any f € L*(G)
we then have

(), w) = /G £(g) (g, w) dim(g)
- /G f(9) /é<g,t> Aty (1) dim(g) = /éf(t) At ()

by definition of the convolution operator, property (2.21I)), Fubini’s the-
orem, and the definition of the Fourier transform. This shows (4) and
that [ \fdumw is uniquely determined by v, w for all f € L!(G). Since L\l(/G)

~

is dense in Cy(G) by Corollary 25 the identification of finite signed measures

~

on G with linear functionals on Cy(G) in the Riesz representation theorem
(see [24) Th. 7.54]) implies the uniqueness claim.

Let us next turn to the existence part of the argument. For this we first
prove (5). So suppose that v,w € (u), are sent to F,,F,, € L? (G) under
the unitary isomorphism in Corollary .11l Then

<7Tg’U,’LU> = <M0Fv7Fw> = /<gvt> Fv(t)Fw(t) d:uu(t)

for all g € G, which already implies (5). To obtain the existence we set u = v
and decompose w = w; + w, with w; € (v), and wy € (v)+, which implies

<7rgv,w> = <7Tgv,w1 + w2> = <7Tgv,w1>

for all g € G, and 50 1, ,, = fy,,, €Xists by the above discussion, proving (5).
This also implies (3) since

40,00l :/|]lF—wl| dppy < [[T2llFu, ll2 = olllfws |l < floflfjwl]

by the Cauchy—Schwarz inequality.
To prove linearity in v € H,. for a fixed w € H, notice that

(7, (ayv) + apvy), w) = oy (T,v1, W) + ag (Tyvy, w)

a / (9,1) Ay, (1) + g / (9,1) Aty (1)

- /<g, £) d(01 fho, w0 + Qofly ) (1)
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110 2 Abelian Groups

for any g € G, v;,v, € H, and a;,ay € C. By uniqueness of the spectral
measures, linearity in the first argument follows. Semi-linearity with respect
to the second argument follows in the same way, which gives (1).

To prove (2) we fix v,w € H,. Then

/ (9+8) At o (t) = (g0, v) = {0, myw) = (m_yo, )

~ [a.0dpuult) = [la.8)drmato

for all g € G, which implies (2) by the uniqueness claim.

It remains to prove (6). Suppose first that v = v; + vy, W = w; + wy
with vy, wy, € (uy) for k = 1,2 and some uy,uy € H, with (u;), L (us),.
Then we have

(myv,w) = (Tyvy, wy) + (Tyva, wo)

= / (9,t) dpty, 4, (1) + / (9,t) dpty, 4, (1)
- / (9,1 AGtar o, + 1o 0,)(8)

for all ¢ € G, which implies f, ,, = iy, w, T+ Huyw,- Lhis extends by in-
duction to finite sums, and by (3) to the general case (see also the proof of
Proposition 2251)(4)). O

A second way to obtain the existence of the non-diagonal spectral measures
is to use the polarization identity as outlined in the next exercise.

Exercise 2.54. Let m be a unitary representation of the abelian group G. For v € H
let p, be the diagonal spectral measure of v. Show that
_ 1 . .
Py w = 1 (:u'11+w — My—w + oy 4iw — 1/J'vfiw)

defines the non-diagonal spectral measure for every v,w € H.

The ease with which we were able to encode various properties of unitary
representations into properties of diagonal and non-diagonal spectral mea-
sures indicates how natural spectral measures are. In the following sections,
we will also see how powerful the use of spectral measures can be.

2.5.1 Containment

In this section we use spectral measures to give a complete characterisa-
tion of containment for cyclic unitary representations (thus for now avoiding
questions concerning multiplicity, which we postpone to Section 7). The
following generalizes Exercise 2.13]
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2.6 Functional Calculus 111

Proposition 2.55 (Containment). Let m be a cyclic representation with
generator v € H, and let p be a cyclic representation with generator w € H,
of the abelian group G. Then w < p if and only if u < pih.

PROOF. We assume first that 7 < p. Simplifying the notation we may suppose
that H, = (v), € H, = (w), with = = ply_. By Proposition 2.51(2) this
implies p, < pt,, as claimed.

So assume now that uT < ub and let

1
dul \ 2
F= 2] .
( dp )
Using Corollary .11 we assume that #, = LQ(G,uﬁj). Since pj is a finite

measure, we have F2 € LY(@, 1f) and so F € H, = L2(G, 8. Hence we
have

(4,8 F) = [ (0.0 F© dut(6) = [ t0.8) du(0) = (mpo.0)

for all g € G by CorollaryZTTl Applying Proposition[L.63we obtain H, < H,
as desired. (|

2.6 Functional Calculus

As we have used many times, we note that a unitary representation 7w of G
gives rise to a module structure on H,. for the Banach algebra L'(G). Also
notice that for the abelian group G we have already seen the Banach algebra
homomorphism

~ LNG) — Cy(G) € L=(@).

Using the non-diagonal spectral measures from the previous section, we ex-
tend here the scalars of the module #, to scalars in Z*°(G).

Proposition 2.56 (Functional calculus for .£°°(G)). For any unitary
representation m of the abelian group G we have a module structure on H
for the algebra £>(G) that extends the module structure for L*(G). More

~

formally, for any F € Z(G) there exists a bounded operator m,(F) on H,
that depends linearly on F' and satisfies

(D) [[7pc(F)llop < 1 F]loos and if a measurable subset B C G has the property
that MU(G\B) =0 for all v € H,, then we also have

170 (F)llop < 1Fll .00 = sup{[F(¢)| | t € B}.

(2) 7TFC(F)* = TrFC(F)7
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(3) mec(F) = m.(f) for all f € LY(G), and ~

(4) FFC(Fl)T‘—FC(FQ) = 7-‘—1«“C(*F1F‘2) for F17 F2 € XOO(G)

(5) If p is a unitary representation of G and B: H, — H, is a bounded
and equivariant operator, then we also have B o m.o(F) = ppo(F) o B
for F e £=(G).

6) If H, = Li(X) for a finite measure p on X = GxN as in the spectral the-
orem (Corollary [Z12)), then .o (F') corresponds under the isomorphism
to the multiplication operator My on L7 (X).

~

Moreover, for F € £°(G) the operator m,.(F) is uniquely characterized by
the formula

(rrcl(Pyou) = [ P (2.22)

for all v,w € H,.

PROOF. Let B C G be as in (1) (for example, B = CA}') By Proposi-
tion ZZ52(5)—(6) or Exercise 254] the assumption on B also implies that
fo,w(GNB) =0

~

for all v, w € H,. We are going to define 7. (F) for F € £>°(G) using (2.22)
and the Fréchet—Riesz representation theorem. In fact, by Proposition 2.52]
the map

He x Hye D (v,w) — /quv)w :/ Fdjy
B

depends linearly on v € H, semi-linearly on w, and satisfies the estimate

‘ / Fdpy 4
B

by Proposition [Z.52(3). This implies that

< EMB,ooll 0,0l < NE 5c0llvll1]w]l

’H,WBw»—>/quv7w

is a bounded linear functional, which therefore has the form w — (w, vy) for
some uniquely determined vy € H, with [[vg|| < ||F|| 5 o |v]|- Equivalently,
we have (vp,w) = [ Fdp,,. Using the linearity of x,,, in v, we also see
that vy depends linearly on v € H, and so uniquely defines a bounded
operator

Hedvr— mpo(F)v=vp € H,

with || 7Tec(F)llop < [|[F]|p,00 as claimed in (1). Note that a function F

in .#>°(B) can be extended trivially (or in any measurable way) to all of G,
and also gives rise to the operator 7,.(F) independent of the extension.
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Clearly [ F dpiy 4, depends, for a given v,w € H,, linearly on F', which
implies that .. (F") depends linearly on F € & = (@).
Given F' € Z*°(G), we have

<7TFC(F)*U7U}> = <U77TFC(F)w> = <7TFC(F)w7v>
— [Fams = [Fdpo = (e o)

by Proposition 2.52(2) for any v,w € H,, which implies the conjugation

formula 7. (F)* = mpo(F) as claimed in (2).
For F = f with f € L'(G) we have

(rec(Brovw) = [Fapo = m.(Povw)

for all v,w € H,, by definition of the spectral measure pu, ,, in Proposi-

tion Therefore m.(f) = 7, (f) as claimed in (3).

Next we prove (6), and assume first that H, = (u), = Lﬁ(é) as in the
cyclic spectral theorem (Corollary 211]). By Proposition 5) we have
for v,w € (u), corresponding to F,, F,, € Li(é) that dp, ., = F,F, dj,,
and so

<7-‘-I*‘C(F‘)varw>7-[7r = /FFUF_wd,uu = <MFFvaFw>La(é)

for all v,w € (u), and all F € £>(G). This proves the claim for cyclic rep-
resentations. However, by linearity and continuity of all operators involved,
this extends to the general case.

To prove (4), we now simply apply the spectral theorem in Corollary
and property (6) proven above. Under the unitary and equivariant isomor-
phism H, 2 L%(X) for X = G x N we have that oo (F}), Tpe (Fa), Teo (Fy F)
correspond to My, , Mp,, Mp, p, respectively, satistying My My, = Mg, p,.

It remains to prove (5). So suppose that p is a unitary representation, and
let v € H, and w € H,. Then

o)y (0= (o, B )= By, )= (g0, Bw) = [(9,8) A 0
for all g € G, which implies that p%, . = o, gy DY uniqueness of spectral

measures. We note that u%v)w is a spectral measure defined by p, and p 5.,

is a spectral measure defined by 7. For F € £>(G) we then have
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(B (F)v, w) = (e (F)v, B*w)

——

F dug,B*w

Fdu, .,
{(Prc(F)Bv,w) .

As this holds for all v € H, and w € H,, property (5), and hence the
proposition, follow. O

The following exercises should help the reader to become more familiar
with the concepts introduced here.

Essential Exercise 2.57 (Functional calculus and invariance). Let 7
be a unitary representation of the abelian group G. Show that a closed
subspace V C H_ is invariant under = if and only if it is invariant un-

o~

der m.o (L *(@Q)).

Essential Exercise 2.58 (Functional calculus and spectral measures).
Let 7 be a unitary representation of the abelian group G. Show that

d,LLﬂ'FC(F)U = |F‘|2d‘LLU7 dlLLTch(F)’U,w = Fd:u”U,w

for v,w € H, and F € .2(G).

Exercise 2.59. Let m be a unitary representation of the abelian group G. Show that
Terc(Lie)) = (9, )mpc(Le})

for all elements g in G and t in G.

As mentioned above, the functional calculus gives a different approach to
the proof of the last two parts of Proposition 2.511

PROOF OF PROPOSITION [Z51I(6) AND (7). Let 7 be a unitary representation
of the abelian group G, and let w € (v), such that p, < p, as in (6). We
apply the cyclic spectral theorem and suppose v =1 € L2(@, w) for p = p,.
Then w € L2(G, p) and dp,, = |w|? dp (by Proposition Z51(2)) imply with
our assumption that w(t) # 0 for p-almost every t € G. For n € N we now
define

Fo(t) = wt)™ i Jw(t)] > £,
"0 if not.

Using the measurable functional calculus in Proposition 256 (see also Exer-
cise 2257 and its hint on p. [B0G), we obtain 7. (F, )w € (w), and

Too(F)w =1 G wt)1/n)

Page: 114  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:18



2.6 Functional Calculus 115

which converges to v = 14,120y = 1 in L? (CA?, 1) as n — oo (by dominated
convergence). Therefore v € (w), as claimed.
Suppose now as in (7) that p, L u,,. By Proposition 2.51(5), we have

<vl>7r 1 <’02>7r

and 8o (v; + va)x C (V1) ® (vs),. By Proposition Z51[3) we also have
/1’1)14-112 = /’L’Ul + /J’vz

and we can find measurable sets B;, By with G = B; LB, with o, (é\Bj) =0
for j = 1,2. We define

wj = ee(Lp,)(v1 4+ v2) € (v + v2),
for j = 1,2. By Exercise 258 (see also its hint on p. B06]), we have

duwj = |]lBj|2 duvl—i-vz = ]lBj dy’vl + ]lBj duv2 = dll’vj
for j = 1,2. By Proposition Z.51(5) we obtain w, € (vy)~ and wy € {(vq)5.
Together with vy + vy = meo(Ip, + 1p,)(vy + v2) = wy + wy We obtain
that v; = wy € {(v; + vy, and vy = wy € (V] + vy),, which proves (7). O

2.6.1 Projection-Valued Measures

As a special case of the functional calculus above, we obtain for a unitary
representation 7 of the abelian group G a projection-valued measure defined
by R

B(G) 3 B — Il = mpc(13),

which gives for every Borel subset B C G an orthogonal projection Iz onto
the subspace of H, corresponding to ‘the generalized sum of eigenspaces for
all characters in B’ as we will explain now.

The projection-valued measure allows us to reconstruct the functional cal-
culus and, in particular, to reconstruct the unitary representation. In fact
if F e £°(G) and Fy = >_" ¢;jlp, is an approximation of F' by a simple
function, then

Jl]

‘TrFC Zc HB Hop |7TFC F— FO)”op ||F FOHoo

shows that m..(F) can be approximated by the finite sums
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Z CjHBj = T (F0)-

j=1

We make the definition
[FO Al = " ¢;1l .
G =

With this interpretation we can now define

FdIll = F) = li F
/@ Teo(F) FO:”FOir;‘lHoo‘)OTrFC( 0)s

where convergence holds in the uniform topology. R
Also notice that for g € G we may define a function F, € £°°(G) by
setting F(t) = (g,t). Since

(ro(Fy)o0) = [ (0:) din(t) = (my0.0)

for all v,w € H ., this has the property that
meolFy) =7y = [ g, anm (2.23)

As mentioned above, this suggests that for any measurable B C G we
may think of Im Iz = IIgH, as the generalized sum of the eigenspaces for
charactersl x: with t € B. The generalization concerns the integral and the
fact that, strictly speaking, there may not be a single eigenvector, but only
approximate eigenvectors. Similarly, m..(F) can now be interpreted as the
operator that multiplies (generalized) eigenvectors in H . for eigenvalue t € G
by F(t). Informally, we may also write (Z23)) in the form

wgv:‘/Jg,t)Htvdm(t)
a

and think of II;v as the projection of v € H, to the eigenspace in H, cor-
responding to the character x,. However, as the latter may be trivial for
all t € G this formally makes no sense, and this is the reason we prefer the
notation of (Z23)). This provides a useful viewpoint, but does not provide
additional formal properties. We refer to [24, Sec. 12.7] for a more thorough
discussion of spectral-valued measures.

T Whenever we have a collection of operators that commute with each other, an eigenvalue
is really a function on the collection of operators, and here—in the context of unitary
representations—a unitary character on the group.
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Exercise 2.60. If By and Bj are disjoint measurable sets, show that ITp, and IIp, are
orthogonal projections.

Essential Exercise 2.61. Let 7 be a unitary representation of the abelian
group G. Let By, By, ... be a sequence of pairwise disjoint measurable subsets
of G and define B = | |>~ | B,,. Show that

IIp =mpc(lp) = ZWFc(]an) = ZHan
n=1 n=1

where the convergence holds in the strong operator topology. Find an example
where the convergence of the series fails in the uniform topology.

2.7 Spectral Theory and Multiplicity

In this section we will revisit the spectral theorem for the abelian group G,
and derive with some more work a version that presents all the information
regarding multiplicity.

2.7.1 Maximal Spectral Type

Proposition 2.62 (Maximal spectral type). Let m be a unitary rep-
resentation of the abelian group G. Then there exists a vector vy, € H,
with spectral measure fiy,a = fi, with the property that p, < fiymax for
any v € H,. The measure equivalence class of piyax S uniquely characterized
by this property, and is called the maximal spectral type. Moreover, given
some vy € H,. the vector vy, can be chosen so that vy € (Vpax)x-

PRrROOF. We apply the spectral theorem in the form of Corollary 212, and

find orthonormal vectors vy, vy,... of H, such that
He = Poa)e =PI (G
nz1 nz1

with i, = p,, for all n > 1. We now define vy = 32,5 Ly, and obtain
from Proposition 2.51(4) that the spectral measure fi,qy = 1, is given by

1
Hmax = Z ﬁun
n>=1

For u € H, we then have u = _, -, u, with u,, € (v,), for n > 1, which
also implies that p1,, < p, < ppax for all n > 1. It follows from Proposi-
tion [Z51(4) and the definition of absolute continuity that
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P = >, K fhax-
n>1

As u € H, was arbitrary, it follows that p,,, is indeed a maximal spectral
measure for 7.

We now prove the claimed uniqueness of the measure class of i, Sup-
pose that v € H, is another vector with the property that p, < u, for
all uw € H,. Setting u = vy ay iVeS flyax = My, <K My Setting u = v in the
discussion above gives p, < fimax, and hence .. and p, lie in the same
measure class.

Now let vy € H, be arbitrary, and write V = (vy)%, so that we may
write H, = (vg)r ® V. We apply the above to find a vector w € V of max-
imal spectral type for the representation 7|,. Next apply the Lebesgue de-
composition theorem (see [24] Sec. 3.1.3]) to pu, and My, tO write p,, as a
SUIm [y, = Habs + /Lsinga V\j\here Habs < ,u’vo and /Lsing = :u‘w|B 4 lu“uo for some
measurable subset B C G. By the cyclic spectral theorem (Corollary 21T
there exists some wy;,, € (W), €V corresponding to 1 € Liw (@), which by
Proposition 2.51(2) has spectral measure dp,, = 1pdp, = dftging L f,-
(Equivalently, we may set wgn, = Trc(lp)w and apply Exercises
and 2.58) We define v, = vy + Wg;, and note that

My = Mvo + Hsing

max

by Proposition Z51(3) and (w), €V = (vy)+. Proposition Z51(7) also im-
plies that (Vyax)x = (Vo) r D (Weing)r, and in particular (vy,,.), contains vg.
For any u = ug + uy € H, = (vy), ®V with uy € (vg), and u; € V we again
have, by various parts of Proposition 2.51], that

Hu = Muo + /J'ul < Mvo + oy = Mvo + Haps + Hsing < Mvo + Hsing = Mo

max

This concludes the proof. ([l

Corollary 2.63 (Spectral theorem with descending measures). Let 7
be a unitary representation of the abelian group G. Then there exists a (pos-
sibly finite) sequence of vectors uy, Uy, ... in H, such that H, = G9n21<un>Tr
and Hmax = Hu, > Moy >

PRrROOF. Let vq,vy,... be a basis of H,. Applying Proposition gives a
vector u; = v,,,, Whose spectral measure represents the maximal spectral
type and whose cyclic representation contains v .

Now project the vector v, to (u;)+ and apply Proposition above
again to find a vector uy with the property that vy € (u;), ® (us), and such
that f1,, represents the maximal spectral type of 7|, y1.

Proceeding like this we can make sure that each of the basis vectors v,

in H, belongs to V,, = (u1), @ (us)r & -+ ® {u,), and that the maximal
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2.7 Spectral Theory and Multiplicity 119

spectral type on the orthogonal complement V;;- is realized by u,, | forn € N.
This gives the corollary. O

Weakening the notion of maximal spectral measure, we also obtain the
following topological object related to a unitary representation. For this, note
that the support of two measures in the same measure class agree, which
makes the following independent of the choice of the maximal measure.

Definition 2.64 (Support of 7). Let m be a unitary representation of the
abelian group G. Then the support supp(m) C G of 7 is defined as the support
of the maximal spectral measure from Proposition [2.62]

Exercise 2.65. Let ™ be a unitary representation of an abelian group. Show that any
two vectors in H, of maximal spectral type (that is, vectors whose spectral measures are
maximal spectral measures) have isomorphic cyclic representations.

2.7.2 Spectral Multiplicity*

Theorem 2.66 (Spectral theorem with multiplicities). Let 7 be a uni-
tary representation of the abelian group G. Then there exists a collection

(Mlv Has - 7Moo) = (Nn)nGNU{oo}

of finite measures on G that satisfy the following properties and so completely
describe the unitary representation .

(1) For m # n € NU {oc} the measures u,, L u, are singular. In fact,
if pmax be a mazimal spectral measure as in Proposition then there
exists a measurable partition {P, | n € NU{oo}} of G with the property
that pi, = fimax|p, for all n € NU {oo}.

(2) The representation 7 is unitarily isomorphic to the multiplication repre-
sentation on @, cn (L2 (P,))" @ (L2 _(Py))™, where (L2_(P.,))" de-
notes the Hilbert space direct sum of countably many copies of Liw (Py).

(3) Even though the isomorphism in (2) is not canonical, the subspace )
of Hn corresponding to (L2 (Pn))n for n € NU {oo} is independent of
the choice of the isomorphism.

(4) The measure class of w,, for n € NU {oo} is uniquely determined by (1)
and (2).

PROOF OF (1) AND (2). Let uy,ug, ... be as in Corollary [Z.631 We claim that

it is possible to replace uq,us3,... by another sequence wsy,ws,... without
d
changing their respective cyclic subspaces so that di“"" € {0,1} almost
d
everywhere with respect t0 fiyax = 1y, - To see this, fix n > 2, let F,, = d:""
and )

B, ={te G| F,(t) > 0}.
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Then the function

satisfies F, € Lz (G) since

)
i, = [, = [ EE e = i (B) < o
é n B/n/ n B

n

We see from Proposition 2Z5T)(2) that the vector w,, € (u,), corresponding
to F, € Liu (G) has spectral measure

Mwn = |Fn|2 d/"un = |Fn|2Fn dﬂmax = Mmax'Bna

since |F, |?F, = 15 . Moreover defines the same measure class as
n n B, ) :U‘wn :u‘un

(since F,, > 0 u,, -almost everywhere). Hence by Proposition 2.51(6) we see
that (w, ), = (u,),. This proves the claim.
So we suppose now that the vectors uy,us,... are as in Corollary 2.63

. . - dp,
with fimax = fy,, and in addition that ﬁ = 1p_ for some measurable

set B,, C G for all n > 2. Since Hmax = My, > [y, > - and
ftu, (GNB,) =0
for all n > 2, we have
0= p,, (G B,) = pionax (B B,)

by definition of absolute continuity for all m > n. We now replace B,
by B; N By, B3 by B; N By N B3 and so on, without changing their defin-
ing properties. Hence we may also assume that these subsets comprise a
descending chain G = B; O By O --- of measurable subsets with the
property that p, = fmax|p, for all n € N. We now define j1,, = pipaxlp,
where P,, = B,~B,,;; for all n € N, and po, = plp_ where P, =(1,5; B,,.
This gives the unitary and equivariant isomorphism

G-I = @ L3P,
ke{n,...,00}

where the projection map from the left to the factors on the right is simply
multiplication by the characteristic function of P, for n < k < oo. Together
with Corollary 2.63] this gives

He =P LE, (@) =P 2.m) = @ ()

n>1 n>1 ke{n,...,00} neNU{oo}
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2.7 Spectral Theory and Multiplicity 121

The first isomorphism is equivariant by Corollary [Z.63] the second is realized
by multiplication operators and so commutes with the multiplication repre-
sentation, and the final isomorphism is simply a permutation of the invariant
factors. This proves (1) and (2). O

2.7.3 The Multiplicity Subspaces*

Next we will prove that the multiplicity n subspace H™ in Theorem 2.66(3)
is canonical for every n € NU {oo}. The canonical description of ’ng") uses
spectral measures, and will be easy to prove using our knowledge of them
together with some measure-theoretic constructions.

For every n € N the subspace ’H,,(?n) is given by

™ = {v € H, | v has spectral multiplicity at least n},

where we say that v € H, has spectral multiplicity at least n if there exist n
vectors
V] = U, Vg9, ...,V € Hay

such that (vg), L (vy), for 1 <k <€ <nand pfj = pf for k < n. We also
define N
=y (1) (2.24)

as the relative orthogonal complement of 7{?"“) within 7{?"). Similarly,
for n = oo the infinite multiplicity subspace ’ngoo) is given by

HED) = | HE™. (2.25)
neN

We note that the above definition of H{" for n € NU {0} is canonical,
since spectral measures are uniquely determined by a given vector and the
unitary representation.

Before starting with the argument for part (3) of the theorem, we wish
to set up some helpful further notation. In fact, it will be convenient to
write Voo = £%(N), V,, = C" for n € N, and in either case ||-||,, for its standard
Hilbert space norm and (-,-)y, for its inner product. For any n € NU {oo}
we may and will think of an element v = (v;); € (L2, (Pn))n as a V,-valued
function

P, >t (vi(t)); €V,

satistying [[o]2 = 3, luyl12 = fp, 1(0;());1% dun(£) (by a simple form of
Fubini’s theorem). We denote the space of measurable, square-integrable, V,,-
valued functions by
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L2 (P, V,) = {v: P, =V,

ol = [ |v<t>||%dun<t><oo}.

n

Using this notation, parts (1) and (2) of the theorem, and the fact that the
definition of H{" in 224) and ([227)) is canonical, we may and will assume
that

.= @B L. (P.V) (2.26)

neNU{oco}

and that the representation is given by the multiplication representation.
Using the identity ji,, = fiyax|p, for the measurable partition

{P, |n e NU{oo}}

of @, we may even identify an element v € H, with a function on @, which
satisfies v|p € L? (P,,V,) for all n € NU{oo} and for which

Got—s vy

is square-integrable with respect to ... For n € NU{oco} and a measurable
subset B C P, we will also write L7 (B,V,) for the subspace of L2, (P,,V,)
consisting of functions that vanish on P,\B.

Using these identifications it remains to prove that H = L7 (P, V)
for n € NU {oo}. For this we need the following measurable construction.

Lemma 2.67 (Measurable selection of orthonormal basis). Let n € N
and n < m € NU {oo}. Then there exists a measurable map sending a
vector v1 € {v € V,, | |lv|l = 1} to a list (vy,vs,...,v,) consisting of n
orthonormal entries.

PROOF. Given v; we may apply the Gram—Schmidt orthonormalization pro-
cedure to the list of vectors vy, eq,es,.... As usual, we discard at each step
the vector if its projection onto the orthogonal complement of the span of
the previous vectors vanishes. This gives a definition of the required or-
thonormal basis in a measurable way. In fact, on each of the measurable
subsets {(e;)c, (e1,ea)c™Ner)c, ... of V,, with the same discarding steps, the
new vectors depend continuously on v;. For instance, for the second vector v,
we have vy = ey if v; € (e1)¢ and

1
Vo= 17— W — <1}1 €1>€1
vy = (v1, er)eq| ( 7 )
if vy & (e1)c- .
Exercise 2.68. Give a more careful general definition of v, for k € {2,...,n} in

Lemma 2.671
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PROOF OF THEOREM [2.66|(3) USING SPECTRAL MEASURES. As mentioned

above, the definition of H{" for n € NU {o0} given in (224)-(Z25) using
spectral measures is canonical (as spectral measures are uniquely determined
by a given vector and the unitary representation). This and parts (1) and (2)
allow us to assume that 7 is the multiplication representation on the Hilbert
space in (Z20). It remains to prove that

$r>n) = @ Lim (Pmavm)

m2>=n

for n € N, where m is allowed to be co. This will give H = L (P, V)

for n € N and H™ = L2 (Po, Vo).
For this, we note that the definition of spectral measures shows that

dps )= D @Ol dun () = 0O ditmax (2.27)
neNU{co}

and, more generally,

g = Y (0, w®)y dug(t) = (), wt)y dpmae (2:28)
neNU{oco}

for t € G and all v,w € H, (also see Proposition Z5J).

We suppose first that v € @,,5, Ly, (Pn; V). Using @27) we see
that the spectral measure is given by F?du,, where F(t) = |v(t)|y for
allt e Y P,.. We also define B = {t € |J P.|F(t) #0}. Fort € B
we apply Lemma 267 to 9, (t) = F~'v(t) to obtain the orthonormal vec-
tors U, (t), U(t), - . ., U, (t). We extend these functions trivially to all of G. By
measurability of the construction in Lemma .67 we now obtain the vectors

m>=n m2zn

UV = .F‘:l\}'}C € Lin(Pn,Vn)
for k € {2,...,n}. We also define v; = v. This ensures that
o @®)llv = F(t) = lv(®)]ly

forall k > 1and t € @, which implies that these n vectors have the same
spectral measures as v by (Z21). Moreover, we also have (v (¢),v,(t)),, = 0
by construction for k # ¢ and all t € P,. Hence (vy,),. L (v;), by ([228)) and
Exercise[253] (see also the hint on p.[B06), which proves the requirement for v
to have spectral multiplicity at least n.

Suppose now that v € H?n) C @mENU{oo} Lim (P,,, V,,) has the property
that there exist n vectors v; = v, vy, ..., v, with orthogonal cyclic represen-

tations and spectral measures equal to p,. As in the previous step, we can
define B = {t € G | ||[v(t)|ly, # 0}. We note that (v, (t),v,(t))y, = 0 for
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almost every t € G (with respect to pnax) for 1 < k < £ < n. Indeed,
Exercise [2.53] shows that we have uj_,, = 0, which, together with (2.28),

gives (vy,(t),v4(t))y, = 0 for almost every t € G. This shows that the n vec-
tors vy (t), v (t), ..., v, (t) are, for almost every ¢t € B, orthogonal. For ¢ € P,,
and m < n the vectors vy(t) take values in V,, = C™, which shows
that (B N P,,) = 0. Hence we have the opposite inclusion

HEW C @ L2, (P V).

m>2n
Together with the first part of the proof, this gives equality, and so that
for n € NU {o0}. O

PROOF OF (4) IN THEOREM [2.66. By the above, we know that HM CH s
a canonical invariant subspace that is isomorphic to the multiplication repre-
sentation on (Lin (Pn))n However, by the properties of spectral measures in
Proposition (see also Proposition 2.51)2) and (4)) this implies that pu,
is a maximal spectral measure of 7| 2> which in particular implies that its
measure class is uniquely and canonigally determined by 7. ([

We note that the phrase countable Lebesgue spectrum is used, for exam-
ple, in dynamical systems to refer to the case of a measure-preserving in-
vertible transformation (corresponding to the case G = Z in Proposition [[3))
where fiy.c = poo represents the measure class of the Lebesgue measure
on Z = T. Other possibilities are described using the terminology pure point
(or discrete) spectrum, continuous spectrum or mized spectrum, but these
do not reflect any multiplicity information. We refer to Cornfeld, Fomin and
Sinai [I4] for more on how spectral methods are used in the study of measure-
preserving dynamical systems.

2.8 The Centralizer of the Representation®

At times it is useful to understand the centralizer of a unitary representation.
Let 7 be a unitary representation of the abelian group G, and pi;,,, & maxi-
mal spectral measure associated to 7 as in Proposition .62l Applying Theo-
rem 2,66 we find a partition { P, | n € NU{oo}} and measures pi,, = fmax|p,
so that

M= P L (PuVo) (2.29)

neNU{co}
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where we again write V,, = C" for n € N, V, = (*(N), L}, (P,,V,) for the
space of square-integrable V,,-valued functions on P, for n € NU {co}, and
the representation on the right is the multiplication representation M.

Proposition 2.69 (The centralizer of 7). With the above assumptions the
centralizer of ,

C(m) ={B € B(H,) | B is equivariant}

corresponds under the isomorphism 2.29] to the set of all operators

T= P 7.

neNU{oco}
with the following properties:

(1) For n € N the operator T,, can be identified with an n-by-n matriz hav-
ing entries in the ring L7 (P,). More formally, T,, € Matn)n(Lfol (P,))
maps v € L. (P,,V,) to T,v € L7, (P,,V,,) defined by

(Thv)(t) = T (t)o(t) € V, = C*

forteP,.
(2) The operator Toy can be defined by a measurable map To.: Poy — B(Vy)
such that
(Toov)(t) = Too (t)u(t)
Jorte Py and v e L}, (P, Vo).
(3) We have ||[T|| = sup esssup||T,,(-)[lop < 00
neNU{c0} P,

We note that measurability of the map T..: P, — B(V,) is defined by
measurability of the inner products

P>t (T (t)v,w)y
for all pairs v, w € V., (also see Exercise [270).

Exercise 2.70. Show that the Borel o-algebra B, generated by open sets on B(V,) with
respect to the strong operator topology 7 and the Borel o-algebra B.,w generated by open
sets on B(V,,) with respect to the weak operator topology 7, coincide. Also show that
the above notion of measurability agrees with measurability of the map t — T, (t) with
respect to the o-algebra B, = B, .

ProOOF OF PRrROPOSITION [2.69. To simplify notation, we assume that the
isomorphism in (Z29) is an identity. Suppose that T is in the centralizer
of m.

LINEARITY OVER .2 (G). For F € #>(G) and
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126 2 Abelian Groups

vet,= @ L. (P,V,)

neNU{oco}

we have, by the properties of the measurable functional calculus in Proposi-
tion ZB6(5) and (6), that T also commutes with m..(F) = My, so that

T(Fv) = T(Mgpv) = MpT(v) = FT(v). (2.30)

Put in algebraic terms, we see that 7' is linear with respect to the .Z Oo(é)—
module structure of H .. Below we will upgrade this to the statement that T’
itself has a pointwise definition, as in the proposition.

Applying this for the characteristic functions of the elements of the parti-
tion {P, | n € NU{o0}} we obtain

T(Lin (Pna Vn)) = T(M]lanﬂ') = M]lpnT(Hﬂ'> - Lin (an Vn)

for n € NU {oco}. We will describe the restriction of T' to L2, (P,,V,) for
every n € NU {oo}.

MATRIX COEFFICIENTS LIE IN L¢P (P,). We fix n € NU {oco} and two vec-
tors v,w € V,, that will be considered as constant functions on P, belonging
to L2 (Py,,V,). We will now describe the inner product ((Tw)(t),w), as a
function of ¢ € P,. In fact, we claim that

(Po3t— Fuul®) = (@u)(®)w)y ) € L (P)

and, moreover,
1Eswlloo < T llopllvllvllwlly- (2.31)
For this, we define

B= {t € Pn | |Fv,w(t)| > ||T||op||v||V||w”V}7 (232)

set f = 1p and f, = arg(F,,)lp. Then fi,f, € L (P,) N Lin(Pn)
with ||fills = ||foll = u(B)2. Together with (Z30), we deduce that the
integral in

(T frv, faw) 2

(P,,V,) = flTU f2w> L2 (P, Vy)

/fl OIA0) Tv)() wyy dn(t)

= / |Fv,w| d,un
B

exists for v,w € V,, and is bounded by

u
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2.8 The Centralizer of the Representation 127

ITlopllfrollzll fowlle < T lop | fill2llvllv Il f2ll2llwlly
1T lopllvllvllwllyp(B)-

NN

Combining the last two facts and recalling the definition of B in (232]), this
implies that p(B) = 0, and hence (231)).

THE CASE OF n € N. We now fix some n € N and define
T,(t) = (Te))(t), (Tey)(t),...,(Te,)(t)) € Mat,_,(C)
for t € P, or, keeping t € P,, implicit,
T,=(Te,,Tey,...,Te,),

where we again write e;, for the kth basis vector of V), considered as a con-
stant function in L2 (P,,V,). Writing Te), as a column vector belonging
to L2 (P,,V,), we obtain from the above that T, € Mat,, , (L (P,)). In-
deed, for j, k € {1,...,n} the (j, k)th matrix entry is given by

Ty = (Teg,ej)y € L (P,).

It follows that we can use T,, to define a bounded operator on L? (P,,V,)
by

(] U1 Thiavi+ - +Th 100,
2 . .
L,un(Pnuvn) > . ’—>Tn : = .
n Tn,n,lvl +- 1+ Tn,n,nvn

(Y (Y

n

To see that the operator T restricted to L7 (P,,V),,) agrees with the operator
defined by T,,, we suppose that v = Y, vgey, € LZ (P,,V,). If we assume in
addition that v, € Li° (P,) for k = 1,...,n, then we can use ([230) to obtain

Tv = kaT(ek) = ka (T'(ey),ej)ve; =Tyv.

k 7,k T

n,j,k

Since L7 (P,) is a dense subspace of LZ (P,), we deduce that T restricted
to L3, (P,,V,) coincides with the operator defined above by the matrix T,,.

THE CASE n = 0o. Next we study the case n = oco. Just as in the finite-
dimensional case, we will use T to define operators T, (t) € B(V,,) for almost
every t € P, use these to define an operator 7, on Liw (Psos V), and show
that T restricted to Lﬁm (Psos Vo) is equal to T,. For this, we let

W = {wl,wg, . }
be a dense subset of V., that is also a subspace over the field Q[i]. Fixing

indices j, k € N, considering w;, wy, € L7, (Ps,,Vs) again as constant func-
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128 2 Abelian Groups

tions on P, and using (Z3I) we see that ((Tw;)(t),wy)y € Lj° (Ps) is
bounded by ||T||op||w; |y ]|wg|ly for almost every ¢t € P, . Moreover, we also
have that ((T'w;)(t), wy)y depends linearly on the vectors w;,wy, as elements
of the vector space W over QJi], almost surely. Collecting these countably
many null sets, applying density of W in V,, and applying the Riesz repre-
sentation theorem on V_, it follows that for almost every t € P, we have

(Tw;)(t), wi)y = (Too ()w;, wi)y

for some bounded operator T, (t) € B(Vy) satistying [T (t)]lop < |T']op-
Measurability of P, 3t — T,.(t) (that is, of the map t — (T (¢)v, w),, for
all v,w € V) follows once again from density of W.

We let e, eq, . .. be the standard orthonormal basis of V., and may assume
that e, € W for k € N. Similarly to the finite-dimensional case we can now
use T, (t) for t € P to define a bounded operator T, on L7, (Ps,,Vs) by
sending Y, vgey € L2 (Py, Vo) to

<TOO (Z vkek)> (t) = S (T (Den, 5)vv(t)e; (2.33)

k .k

for all t € P . Indeed, we first note that each summand on the right is
measurable by construction and that

S s f = [

k

Ste],

< Tllop

for almost every t € P,,. Moreover,

/prZk:”’f(t)ekHiduoo(t) < o0

by assumption on ), vjey. This shows that (233)) gives a well-defined oper-
ator with norm [|T [|op < |7 op-

It remains to see that the operator T, coincides with T" when it is restricted
to L? (P, Vo). The construction of T,,, implies that

((Ter)(t),e;),, = (Tos (e ),

for almost every t € P, and all j, k € N. This implies that

(Tep)(t) = Too (tex
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for all k € N. For N € N and fy,..., fx € L° (P) we now have by (2.30)
that

T(Z fkek) = Z fxTer, = Z fiTooer = Too(z fkek)-

k<N k<N k<N k<N

Varying N € N and the functions in Lj° (P), this gives a dense sub-
set of L7, (Ps,Vao). It follows that T, is indeed the restriction of T
t0 L2_(Po, Vao)-

THE OPERATOR NORMS. We note that we could also have used the above
argument for n € N, so that we also have ||T,,(t)|[o, < [|T|lop for almost
every t € P, and n € N. In particular, we have

sup esssup || 7 (t)llop < 17 lop-
neENU{oco} t€EP,

To see the opposite inequality, let S denote the supremum on the left and
let v,w € H,. Then

(Tv,w)] < ) /|<Tn(t)v(t)7w(t)>1}|d:umax(t)

neNU{oco}
< /@S||v(t)||v||w(t)||v Aptmax () < Sllvl|[w]]

by the description of H,, the pointwise definition of T obtained above, the
Cauchy—Schwarz inequality on V,, for n € NU {oc}, and finally the Cauchy—
Schwarz inequality on Limx(@). However, this implies that ||T'[|,, < S.

THE CONVERSE. The converse statement that any 7' = €D,,cnufoo
the proposition defines a bounded operator we leave as an exercise (see Exer-
cise [ZTT)). As the unitary representation corresponds under the isomorphism
to the multiplication representation, it follows that a so-defined operator T’
belongs to the centralizer of 7. This gives the proposition. (Il

}Tn as in

Exercise 2.71. Show that any operator T' = @neNU{oo
a bounded equivariant operator by the following steps.
(a) Let n € N, let (X, u) be a finite measure space and let T lie in Mat,, ,, (LZO(X))
Show that 7' induces a bounded operator on Li (X, Vn) satisfying (Tv)(t) = T(¢)v(t)
for v € Li (X, Vn) and almost every ¢ € X (where we use matrix multiplication on the
right), and that ||T||o, = esssupye x 1T(t)[lop -

(b) Let n = oo and let (X, ) be a finite measure space. Show that a measurable map

} T,, as in Proposition[2.69] defines

T: X3t— BVy)

with esssup;c x [|T(t)]lop < oo induces a bounded operator T on Li (X, VOO) satisfy-
ing (Tw)(t) = T(t)v(t) for v € Li (X, Voo) and almost every ¢ € G, and that T satis-
fies || T|op = esssup;e x [|T(8)llop-

(c) Let p be a finite measure on G, and let {P,, | n € NU{oo}} be a countable measurable
partition of G. Suppose T}, is defined as in (a) or (b), using p,, = p|p,_ for n € NU {oo}.
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130 2 Abelian Groups

Suppose, moreover, that

sup esssup ||T(t)]lop < oo
neNU{oo} tEP,

Show that this implies that T = @nENU{oo} T,, is a bounded operator on

@ Lin (P'mvn)

neNU{oco}

that is equivariant for the canonical multiplication representation of G.

2.9 Summary and Outlook

The rather complete understanding of unitary representations of abelian
groups in terms of:

e spectral measures, which completely encode matrix coeflicients;

e the measurable functional calculus, which allows us to isolate parts of the
spectrum at will;

e the spectral theorem with complete multiplicity data; and

e their centralizer

obtained in this chapter is rewarding and important in itself. However, it will
also be the key for understanding the unitary dual and unitary representa-
tions of other groups. Most notably, this applies to metabelian groups (that is,
semi-direct products of two abelian groups) as discussed in Chapter Bl More-
over, the abelian theory (together with Section B.I) will also be important
for understanding certain aspects of unitary representations of semi-simple
groups like SL3(R) as we will see in Chapter [Tl

Pontryagin duality and the Plancherel formula are useful tools for con-
structing and understanding concrete abelian groups. Moreover, local fields
as introduced in Section[2.4.5]are of fundamental importance to modern num-
ber theory.(®)

The reader may continue with Chapter Bl or Bl returning to Chapters B3]
and ] when needed.
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