
Chapter 6

Unipotent Dynamics and Ratner’s

Theorems

In this chapter we discuss unipotent dynamics and prove several special cases
of Ratner’s measure classification. We will not discuss the history in detail, and
refer to the survey papers of Kleinbock, Shah and Starkov [86], Ratner [138],
Margulis [109], and Dani [24] for that. In particular, the order in which the ma-
terial is developed is not historical but instead emphasizes a logical development
with the benefit of hindsight.

6.1 Unipotent Invariance

Unipotent dynamics and Ratner’s theorem (as discussed in greater detail in the
next section) are of great importance for various applications. To see this we
explain how unipotent invariance may arise naturally in applications of various
types.

6.1.1 Factor Rigidity

For simplicity we let G = SL2(R) or G = SL3(R). Let Γ1, Γ2 < G be lattices
and write Xj = G/Γj for j = 1, 2. Moreover, let H = {ut | t ∈ R} be a
one-parameter subgroup.

Definition 6.1. A factor map from the action of H on X1 to the action of H
on X2 is a measurable almost everywhere defined map φ : X1 → X2 such that

φ(ut.x) = ut.φ(x) (6.1)

for every t ∈ R and almost every x ∈ X1 and φ∗mx1
= mX2

. Moreover, φ is

called an isomorphism if there exists a measurable set X ′
1 ⊆ X1 of full measure

such that φ|X′

1
is injective.
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230 6 Unipotent Dynamics and Ratner’s Theorems

In general factor maps or isomorphisms are potentially indeed only measur-
able, of fractal nature, and may not respect (for example) topological dimension.
However, if H = U is a unipotent subgroup then factor maps are essentially al-
gebraic, and in particular are smooth maps. That is, the equivariance condition
in (6.1) along one direction of G forces good behaviour along all directions of G.
This is quite surprising and is an instance of a ‘rigidity’ phenomenon. The case
of G = SL2(R) is due to earlier work of Ratner [131] and more general cases
have been obtained by Morris [119] as a corollary of the results of Ratner to be
discussed in the next section.

Theorem 6.2 (Factor rigidity). Let X1, X2 be as above, let U be a one-
parameter unipotent subgroup, and let φ : X1 → X2 be a factor map for U .
Then there exists an automorphism ϕ : G → G whose restriction to U is the
identity map and some element p ∈ G so that

φ(gΓ1) = ϕ(g)pΓ2

for all g ∈ G. In particular, the lattices are related by ϕ(Γ1) ⊆ pΓ2p
−1 and

the factor map φ is an isomorphism if and only if Γ1 and Γ2 have the same
covolume.

The proof of Theorem 6.2 starts by encoding the map φ in terms of the
probability measure

µ = µφ = (id, φ)∗mX1

on X1 ×X2. We note that µ is concentrated† on Graph(φ), meaning that

µ
(
Graph(φ)

)
= 1.

Moreover, the equivariance of φ in (6.1) shows that µ is invariant under the
action of (ut, ut) on X1 × X2 for ut ∈ U . Ergodicity of this action follows as it
is measurably isomorphic to the action of U on X1 with respect to mX1

. The
projection of µ to X2 is φ∗(mX1

) = mX2
.

Theorem 6.3 (Ratner’s joining classification). Let µ be a probability mea-
sure on X1 ×X2 that projects to mX1

and mX2
under the coordinate projections

and that is invariant and ergodic under the action of (ut, ut) for ut ∈ U . Then µ
is the L-invariant probability measure on a closed L-orbit for a closed connected
subgroup L < G × G. Moreover, either L = G × G or L is the graph of an
automorphism ϕ : G → G.

We will prove Theorems 6.2 and 6.3 in this chapter and use the latter to
further understand all possible ‘abstract’ factors of U acting on X1.

Exercise 6.4. Try to prove Theorem 6.3 using Theorem 6.2 as a black box.

†
We avoid saying ‘supported’ as we do not know whether Graph(φ) is closed.
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6.1 Unipotent Invariance 231

6.1.2 Oppenheim’s Conjecture

We note that for a linear form L in d > 2 variables it is easy to determine
whether L(Zd) ⊆ R is dense or not. In fact L(Zd) is dense in R if and only
if L is not a multiple of a form with rational coefficients. As a generalization
Oppenheim [125] conjectured in 1929 that a non-degenerate indefinite quadratic
formQ in d > 5 variables that is not a multiple of a form with integer coefficients
has Q(Zd) dense in R.

Raghunathan [129] noticed(31) in the mid 1970s the connection to homo-
geneous dynamics and, motivated by this, formulated far-reaching conjectures
concerning orbit closures for subgroups generated by unipotent subgroups. Mar-
gulis developed these ideas to prove the Oppenheim conjecture in the following
stronger form in 1986 [110].

Theorem 6.5 (Margulis’ proof of Oppenheim conjecture). Let Q be a
non-degenerate indefinite quadratic form in d > 3 variables that is not a multiple
of a form with integer coefficients. Then Q(Zd

prim) is dense in R, where

Z
d
prim = {v = (v1, . . . , vd)t ∈ Z

d | gcd(v1, . . . , vd) = 1}.

We will prove Oppenheim’s conjecture later, but for now let us point out that
it also follows quickly from the following dynamical result.

Theorem 6.6 (Orbit closure by Dani–Margulis). Let

Q0(x1, x2, x3) = x2
2 − 2x1x3

and H = SOQ0
(R)o. For any x0 ∈ X3 either H.x0 is closed or H.x0 is dense

in X3.

We note that an orthogonal group in 3-dimensions is 3-dimensional. More-
over, SO2,1(R) is locally isomorphic to SL2(R). To see this† consider the adjoint

representation of g ∈ SL2(R) on the Lie algebra sl2(R) by v 7→ gvg−1 and

the indefinite quadratic form det v = −a2 − bc for v =

(
a b
c −a

)

. This shows

that H ∼= PSL2(R) is simple and generated by unipotent one-parameter sub-
groups.

We have chosen the above quadratic formQ0 so that its orthogonal group SOQ0

is easy to work with. For instance, SOQ0
(R) contains the diagonal matrices of

the form diag(a, 1, a−1) for a ∈ R
×. Moreover, it contains the unipotent one-

parameter subgroup











1 t t
2

2
1 t

1





∣
∣
∣
∣
∣
∣

t ∈ R






6 SOQ0

(R).

†
This is an instance of a low-dimensional accident: In essence there is only one real non-

compact simple Lie algebra of dimension 3 up to isomorphism.
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232 6 Unipotent Dynamics and Ratner’s Theorems

To see this we calculate

Q0









1 t t
2

2
1 t

1









x1

x2

x3







 = Q0









x1 + tx2 + t
2

2 x3

x2 + tx3

x3









= (x2 + tx3)2 − 2
(
x1 + tx2 + 1

2 t
2x3

)
x3

= x2
2 + 2tx2x3 + t2x2

3 − 2x1x3 − 2tx2x3 − t2x2
3

= x2
2 − 2x1x3. (6.2)

Similarly, we also have




1
t 1
t

2

2 t 1



 ∈ SOQ0
(R)

for t ∈ R. Finally we note that the Lie algebra elements corresponding to the
diagonal group and these two one-parameter unipotent subgroups can be chosen
to match the sl2-triple (2.5) on page 65.

Proof that Theorem 6.6 implies Theorem 6.5 for d = 3. Suppose first
that Q is a non-degenerate indefinite quadratic form in d = 3 variables and
is not a multiple of a form with integer coefficients. By our discussion of sig-
natures of quadratic forms in Theorem 3.5 it follows that there exist λ ∈ R

×

and g0 ∈ SL3(R) so that Q = λQ0 ◦ g0. In particular, Q(Z3
prim) = λQ0(g0Z

3
prim).

We define x0 = g0Z
3 ∈ X3, H = SOQ0

(R)o, and consider the two cases in
Theorem 6.6.
Density implies Density. Suppose that the orbit H.x0 is dense in Xd. Fix

some a ∈ R and set g =





1 0 0
0 1 0

−a 0 1



 so that a ∈ Q0(gZ3
prim). If now h ∈ H is such

that h.x0 is very close to x then the values in λQ0(g0Z
3
prim) = λQ0(hg0Z

3
prim) can

be used to approximate λa = λQ0(ge1) arbitrarily well. In other words Q(Z3
prim)

is dense in R.
Closed implies Rationality. Suppose now that the orbit H.x0 is closed.
As SO3,1(R)o ∼= PSL2(R) is non-compact and simple, Theorem 4.18 applies and
shows that H.x actually has finite volume. By Borel density (Theorem 3.50)
it follows that g−1

0 Hg0 ∩ SLd(Z) is Zariski dense in g−1
0 SOQ0

g0 = SOQ. We
now show that this implies that a multiple of Q has integer coefficients, giving
a contradiction to our assumptions.

We start by showing that the linear hull 〈Q0〉 ofQ0((x1, x2, x3)t) = x2
2−2x1x3

is the subspace of all quadratic forms q satisfying q ◦ h = q for all h ∈ H .
Indeed for a = diag(e, 1, e−1) ∈ H every quadratic monomial is an eigen-
vector but only x1x3 and x2

2 have eigenvalue 1. Hence q ◦ a = q implies
that q((x1, x2, x3)t) = αx2

2 + βx1x3 for two scalars α and β. Going through
the calculation in (6.2) that H contains the unipotent elements ut again, we
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6.1 Unipotent Invariance 233

see that the required cancellation of term in the expression q ◦ ut only happens
if β = −2α.

By conjugation with g0 we also see that the linear hull 〈Q〉 ofQ is the subspace
of all quadratic forms q satisfying q ◦ h = q for all h ∈ SOQ(R)o, or equivalently
for all h ∈ SOQ(R)o ∩ SL3(Z). As the latter are rational equations that have a
nontrivial solution, we obtain that a multiple of Q has integer coefficients. �

One may wonder why it might be advantageous to study three-dimensional
orbits inside the eight-dimensional space X3 in Theorem 6.6 to prove a mere
density statement in R as in Theorem 6.5. As a partial answer to this we note
that the set Q(Z3) ⊆ R has very little structure and, in particular, has no invari-
ance properties. However, in the eight-dimensional X3 applying the orthogonal
group to a lattice does not change the values of the quadratic form. Moreover,
as the quadratic form is indefinite we obtain in this way the powerful tool of
unipotent invariance.

Exercise 6.7. Show that Oppenheim’s conjecture cannot hold for binary quadratic forms

(that is, forms in two dimensions). For this let α ∈ R be badly approximable with α
2

/∈ Q

and consider the form x
2

− α
2
y

2
= (x − αy)(x + αy).

6.1.3 Distorted Orbits

In Sections 5.4–5.7 we have seen the importance of studying ‘distorted orbits’ of
the form gH.Γ while varying gH ∈ G/H . We wish to explain—under suitable
assumptions—why weak* limits of the Haar measures on such distorted orbits
often have unipotent invariance.

Lemma 6.8 (Unipotent invariance for limits of distorted orbits). Let G
be a closed subgroup of SLd(R), Γ < G a lattice, and H < G a closed subgroup
with Lie algebra h = LieH so that Γ ∩ H < H is also a lattice. We assume
moreover that (an) is a sequence in G with

lim
n→∞

∥
∥Adan

|h
∥
∥ = ∞. (6.3)

Then any weak* limit of the Haar measures on anH.Γ inside X = G/Γ is
invariant under a one-parameter unipotent subgroup.

Proof. We assume without loss of generality that the Haar measures manH.Γ

on anH.Γ converge in the weak* topology to a measure µ. By the assump-
tion (6.3) there exists a sequence (vn) in h so that vn → 0 but ‖ Adan

vn‖ = 1
for all n > 1. By choosing a subsequence once more we may assume that Adan

vn

converges to an element w in the Lie algebra g of G. Let f ∈ Cc(X) and t ∈ R.
Then ∫

f
(
exp(tw).x

)
dµ(x) = lim

n→∞

∫

f
(
exp(tw).x

)
dmanH.Γ (x)
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234 6 Unipotent Dynamics and Ratner’s Theorems

by definition. Moreover, d
(
exp(tw), an exp(tvn)a−1

n

)
→ 0 as n → ∞. Hence

uniform continuity of f allows us to replace exp(tw) by an exp(tvn)a−1
n , giving

∫

f
(
exp(tw).x

)
dµ(x) = lim

n→∞

∫

f
(
an exp(tvn)a−1

n
︸ ︷︷ ︸

∈anHa
−1
n

.x
)

dmanH.Γ (x)

= lim
n→∞

∫

f dmanH.Γ =

∫

f dµ,

where we have used the fact that manH.Γ is invariant under anHa
−1
n . As the

function f ∈ Cc(X) and t ∈ R were arbitrary we deduce that µ is invariant under
the one-parameter subgroup determined by w. Finally note that the eigenvalues
of w = limn→∞ Adan

vn vanish as limn→∞ vn = 0 and the conjugation Adan

does not change eigenvalues. �

We note that Lemma 6.8 and the powerful theorems due to Ratner from the
next section can be used for proving equidistribution (and counting) results in
situations where the banana mixing argument from Chapter 5 does not apply.

6.1.4 Orbits Arising From Expanding Curves

We wish to explain another way in which unipotent invariance may arise. For
this we suppose that I ⊆ R is a compact interval and that γ : I → R

d has
continuous second derivative. We also assume that γ′(s) 6= 1 for s ∈ I and
that I ∋ s 7→ gs ∈ GLd(R) is continuous so that gsγ

′(s) = e1 for all s ∈ I. We
identify g ∈ GLd(R) with

(

(det g)−1

g

)

∈ SLd+1(R)

to simplify the notation. For v ∈ R
d and t ∈ R we also define uv =

(
1
v Id

)

and at =

(

t−d

tId

)

.

Lemma 6.9 (Twisting trick, first step). Let x0 ∈ Xd+1. Using the above
assumptions and notation, any weak* limit of

1

|I|

∫

I

δatgsuγ(s)x0
ds (6.4)

for t → ∞ is invariant under the one-parameter subgroup U = {ure1
| r ∈ R}.

Proof. Let f ∈ Cc(Xd+1), r ∈ R, and t > 0. We define κ = 1 + 1
d and note

that atuva
−1
t = u

e
−κt

v
for v ∈ R

d. Then we have
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6.1 Unipotent Invariance 235

∫

I

f(ure1
atgsuγ(s)x0) ds =

∫

I

f(atue
−κt

re1
gsuγ(s)x0) ds

=

∫

I

f(atgsue
−κt

rγ
′

(s)+γ(s)
x0) ds

by the way at and gs interact with u
e1

. Fixing r and thinking of a large t > 0,
we have

γ(s) + e−κtrγ′(s) = γ
(

s+ e−κtr
)

+ ε(s)

for an error term ε(s) = εr,t(s) = O
(
e−2κt) as γ is assumed to be twice contin-

uously differentiable. Let

I ′ = I ∩
(

I + e−2κtr
)

which (for fixed r ∈ R and large t > 0) is basically equal to I. We let

s′ = s+ e−κtr

for s ∈ I, and obtain

∫

I

f(ure1
atgsuγ(s)x0) ds =

∫

I
′

f(atgsuγ(s
′

)+ε(s)x0) ds′ + O
(
re−κt).

We now take the error term ε(s) and again move it across gs (which will rotate
and mildly stretch or contract it) and at (which will expand it) to the left.
Defining εnew(s) = gsε(s), we obtain

∫

I

f(ure1
atgsuγ(s)x0) ds =

∫

I
′

f(ue
κt

εnew(s)atgsuγ(s
′

)) ds′ + O
(
re−κt).

As ε(s) = O
(
e−2κt), we know that

eκtεnew(s) = O
(
e−κt)

is tiny. Using continuity of f , we see that the term ue
κt

εnew(s) does not change

the value of f much. For a weak* limit µ of (6.4) as t → ∞ this shows that

∫

f(ure1
x) dµ(x) =

∫

f dµ.

As f ∈ Cc(Xd+1) was arbitrary, it follows that µ is invariant under U , as desired.
�

Suppose now we can use unipotent magic (meaning Ratner’s theorem and re-
lated results) to show that the measures in (6.4) equidistribute. We next explain
what this has to do with the expanded curves atuγ(s)x0 for s ∈ I.

Lemma 6.10 (Twisting trick, second step). Suppose now in addition that
for any interval I and any x0 ∈ Xd+1 we have
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236 6 Unipotent Dynamics and Ratner’s Theorems

1

|I|

∫

I

δatgsuγ(s)x0
ds −→ mXd+1

.

Then for any interval I and x0 ∈ Xd+1 we also have that

1

|I|

∫

I

δatuγ(s)x0
ds −→ mXd+1

.

In other words, the additional matrix gs that was so helpful above to obtain
unipotent invariance can simply be forgotten.

Proof of Lemma 6.10. Let ε > 0 and f ∈ Cc(Xd+1). By the assumed continuity

of the map I ∋ s 7→ gs, the function I × Xd+1 ∋ (s, x) 7→ f(g−1
s x) is uniformly

continuous. Hence there exists some δ > 0 so that
∣
∣
∣f(g−1

s1
x) − f(g−1

s2
x)
∣
∣
∣ < ε (6.5)

whenever x ∈ Xd+1 and s1, s2 ∈ I satisfy |s1 − s2| < δ.
We split I into finitely many sub-intervals Iℓ for ℓ = 1, . . . , L of equal length

and length less than δ. Using the assumed equidistribution for each of these inter-
vals, the above continuity property of f , and the fact that gs commutes with at,
we can now obtain the desired conclusion up to 2ε. Indeed, fix some sℓ ∈ Iℓ

for ℓ = 1, . . . , L and apply our assumption to the interval Iℓ and the func-
tion Xd+1 ∋ x 7→ f(g−1

sℓ
x). As mXd+1

is invariant under gsℓ
, we therefore have

∣
∣
∣
∣
∣

1

|Iℓ|

∫

Iℓ

f
(

g−1
sℓ
gsatuγ(s).x0

)

ds−

∫

Xd+1

f dmXd+1

∣
∣
∣
∣
∣
< ε

for ℓ = 1, . . . , L and all sufficiently large t. Now we may use the estimate (6.5)
for x = gsatuγ(x).x0, s, sℓ ∈ Iℓ, and ℓ = 1, . . . , L to obtain

∣
∣
∣

1

|I|

∫

I

f(atuγ(s)x0) ds−

∫

Xd+1

f dmXd+1

∣
∣
∣

=

∣
∣
∣
∣
∣

1

L

L∑

ℓ=1

1

|Iℓ|

∫

Iℓ

f(g−1
s gsatuγ(s).x0) ds−

∫

Xd+1

f dmXd+1

∣
∣
∣
∣
∣

6

∣
∣
∣
∣
∣

1

L

L∑

ℓ=1

(

1

|Iℓ|

∫

Iℓ

f(g−1
sℓ
gsatuγ(s).x0) ds−

∫

Xd+1

f dmXd+1

)∣
∣
∣
∣
∣
+ ε

6 2ε

for all sufficiently large t > 0. As f ∈ Cc(Xd+1) and ε > 0 were arbitrary, we
obtain the lemma. �
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6.2 The Main Theorems 237

6.1.5 Totally Geodesic Submanifolds in Hyperbolic Quotients

(to come)

6.1.6 Integer Points on Spheres and their Orthogonal Complement

(to come)

6.2 The Main Theorems

We let X = G/Γ , where G is a connected Lie group and Γ < G a lattice. Let

U = {us | s ∈ R} < G

be a one-parameter unipotent subgroup of G. Then the U -invariant probabil-
ity measures on X can be completely classified. This was conjectured by Dani
(in [19, Conjecture I], as an analogue of Raghunathan’s conjecture, which will
be described below) and proved by Ratner [133], [134], [135]. As it turned out,
this was a powerful starting point for the other results that follow.

The classification results will generally take the form of asserting that an
initially unknown measure has ‘algebraic structure’.

A probability measure µ on G/Γ is called algebraic, homogeneous, or periodic
if there exists a closed connected unimodular subgroup L with U 6 L 6 G
such that µ is the L-invariant normalized probability measure on a closed finite
volume orbit L.x0 (for any x0 ∈ suppµ).

Theorem 6.11 (Dani’s conjecture and Ratner’s measure classifica-
tion). If X = G/Γ and U = {us | s ∈ R} < G is a one-parameter unipo-
tent subgroup, then every U -invariant ergodic probability measure µ on X is
algebraic.

In this result (unlike the following ones), it is sufficient to assume that Γ is
discrete or even just closed. Theorem 6.11, the theorem of Dani and Smillie [26],
its generalization from Section 5.3.2, and the general non-divergence property
of unipotent orbits in Chaper 4, suggest other results. Ratner [136] generalized
all of these results in the following theorem.

Theorem 6.12 (Ratner’s equidistribution theorem). Let X = G/Γ where Γ
is a lattice, and let U = {us | s ∈ R} < G be a one-parameter unipotent sub-
group. Then for any x0 ∈ X there exists some closed connected unimodular
subgroup L 6 G such that U 6 L,

• L.x0 is closed with finite L-invariant volume, and
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238 6 Unipotent Dynamics and Ratner’s Theorems

•
1

T

∫ T

0

f(us.x0) ds −→
1

vol(L.x0)

∫

L.x0

f dmL.x0
as T → ∞.

It is interesting to note that Theorem 6.12 in particular implies that any
point x ∈ X returns close to itself under a unipotent flow. That is, for any
one-parameter unipotent subgroup {us | s ∈ R} and any x ∈ X there is a se-
quence (tk)k>1 for which tk → ∞ and d(x, utk

.x) → 0 as k → ∞. This close re-
turn statement is of course incomparably weaker than Ratner’s equidistribution
theorem, but even this weak statement does not seem to have an independent
proof to our knowledge.

Theorem 6.12 also suggests that the closures of orbits under the action of
a unipotent one-parameter subgroup should have some algebraic structure. A
more general version of that statement is the famous conjecture of Raghu-

nathan(32) that motivated all of the theorems above, and was proved by Rat-
ner [135] using the above results as stepping stones. The orbit closure H.x0

of a point x0 in G/Γ under the action of a closed subgroup H is similarly
called algebraic, homogeneous, or periodic if there exists some closed connected
unimodular subgroup L with H 6 L 6 G such that H.x0 = L.x0, and L.x0

supports a finite L-invariant measure.

Theorem 6.13 (Raghunathan’s conjecture; Ratner’s orbit closure the-
orem). Suppose that X = G/Γ , with G a connected Lie group and Γ a lattice.
Let H < G be a closed subgroup generated by one-parameter unipotent subgroups.
Then the orbit closure of any x0 ∈ X is algebraic.

It is also interesting to ask what the structure of the set of all probability
measures that are invariant and ergodic under some unipotent flow really is. This
generalizes the theorem of Sarnak (Theorem 5.8) concerning periodic horocycle
orbits. At first sight, one might only ask this out of curiosity or to satisfy the
urge to complete our understanding of this aspect of these dynamical systems.
However, this line of enquiry turns out to be useful for applications to number-
theoretic problems. A satisfying answer to this question is given by Mozes and
Shah [122].

Theorem 6.14 (Mozes–Shah equidistribution theorem). † Let X be the
homogeneous space G/Γ with G a connected Lie group and Γ a lattice, and
let (Hn) be a sequence of subgroups of G generated by unipotent one-parameter
subgroups. Let µn be an invariant ergodic probability measure for the action
of Hn for all n > 1. Assume that‡ µn → µ in the weak*-topology as n → ∞.
Then either µ = 0 or µ is an algebraic measure, where in each case more can
be said.

If µ = 0 then suppµn → ∞ as n → ∞ in the sense that for every compact
set K ⊆ X there is an N with suppµn ∩K = ∅ for n > N .

†
This version differs from the theorem in the paper, but should follow from it. Awaiting a

decision: Will it be proven here from scratch or using their theorem?
‡

By Tychonoff-Alaoglu there always exists a subsequence that converges.
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6.2 The Main Theorems 239

Otherwise µ = mL.y is the L-invariant probability measure on a closed fi-
nite volume orbit L.y for the closed connected group L = StabG(µ)o

6 G.
Moreover, µ is invariant and ergodic for the action of a one-parameter unipo-
tent subgroup. Furthermore, suppose that xn = εn.x ∈ suppµn for n > 1 and
some x ∈ X with εn → I as n → ∞, and suppose the connected subgroups (Ln)
satisfy µn = mLn

.xn
for n > 1. Then Lx = Ly = suppµ and there exists some N

with ε−1
n Lnεn ⊆ L for n > N .

The additional information in each case is useful in applying this theorem.
According to (1), once we know that for every measure µn there exists some
point xn ∈ suppµn within a fixed compact set, the limit measure is a probability
measure.

In (2), if we know that Hn = H for all n > 1, then L has to contain H and
the conjugates ε−1

n Hεn as in (2). Together this often puts severe limitations
on the possibilities that L 6 G can take, and sometimes forces L to be G.
This situtation arises, for example, if we study long periodic horocycle orbits,
or orbits of a maximal subgroup H < G. In any case, the final claim of (2)
says that the convergence to the limit measure mL.x is almost from within the
orbit L.x. In fact, after modifying the measures in the sequence only slightly by
the elements εn we get

supp
(

(εn)−1
∗ µn

)

= ε−1
n Ln.xn = ε−1

n Lnεn.x ⊆ L.x = L.y = suppµ

for n > N .
We will prove special cases of the theorems above.

6.2.1 Rationality Questions

A natural question is to ask which subgroups L < G appear for a certain
choice of one-parameter unipotent subgroup U < G and x ∈ X = G/Γ . In this
section we explain how this kind of question is intimately related to questions
of rationality.

This relationship is elementary in the abelian setting of G = R
d, Γ = Z

d,
and U = Rv for some v ∈ R

d. In this case L is independent of

x ∈ X = T
d = R

d/Zd

(and one should only expect this independence for abelian Lie groups). More-

over, L is the smallest subspace of R
d that can be defined by rational linear

equations and contains U = Rv. This claim follows quickly from the special
case where no such L 6= R

d exists. Under this assumption, {tv | t ∈ R} is
equidistributed, as may be shown for example by integrating the characters
of Td.

To start to see the possibilities in the general case, consider the special case

Page: 239 job: AAHomogeneousDynamics macro: svmono.cls date/time: 21-Jan-2026/14:22



240 6 Unipotent Dynamics and Ratner’s Theorems

U =

{(
1 s

1

) ∣
∣
∣
∣
s ∈ R

}

< SL2(R)

and X2 = SL2(R)/ SL2(Z), which we already understand in some detail (see
Section 1.2, Chapter 5, and [45, Sec. 11.7]). If x = gΓ for some

g =

(
a b
0 d

)

,

then L = U , and otherwise L = SL2(R). In order to be able to phrase this in
terms of a rationality question, notice that x ∈ X determines a geodesic in the
upper half-plane (where we choose for example the base point in our fundamental
domain, as illustrated in Figure 6.1). Then L = U if the forward end point of
the geodesic α ∈ R ∪ {∞} is rational, meaning α ∈ Q ∪ {∞}, and L = SL2(R)
otherwise. This dichotomy is independent of the chosen representative within
the orbit SL2(Z).(z, v).

x

v

z

α

Fig. 6.1: The geodesic determined by x.

In general the answer is given by the following result found by Borel and
Prasad [10]. A more general version of this result was obtained more recently
by Tomanov [160].

Theorem 6.15. Let Xd = SLd(R)/ SLd(Z), x = gΓ ∈ X, and U < G a one-
parameter unipotent subgroup (or H < G a closed subgroup generated by one-
parameter unipotent subgroups). Then the group L appearing in Theorems 6.11
and 6.12 (respectively Theorem 6.13) is the connected component of gF(R)g−1,
where F(R) is the group of R-points of the smallest algebraic group F 6 SLd

defined over Q for which gF(R)g−1 contains U (respectively H).
Similarly, the group L in Theorem 6.14 is the connected component of gF(R)g−1

where x = gΓ and F is the smallest algebraic group F 6 SLd defined over Q for
which gF(R)g−1 contains εnLnε

−1
n for n > N , where N is as in Theorem 6.14.

For this result, one needs some understanding of the mechanisms that make
orbits F(R) SLd(Z) of Q-groups closed or not closed, and the Borel density the-
orem. In the setting of Γ = SLd(Z) < G = SLd(R), which contains all other
arithmetic quotients even over number fields if we allow d to vary, the connec-
tion to algebraic group theory described above puts additional constraints on
the possible structure of the subgroup L.
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For instance, the algebraic group F over Q must have the property that
the radical of F is equal to the unipotent radical of F. In the language of Lie
groups this implies that the radical of L, which by definition is only solvable,
is nilpotent. Another restriction is, for example, that L cannot be isomorphic
to PSL2(R) × SO5(R). This is because the unipotent group has to be contained
in PSL2(R) and the induced lattice L ∩ g−1 SLd(Z)g cannot give an irreducible
lattice in PSL2(R) × SO5(R) as the direct factors are simple groups of different
types in the classification of complex Lie algebras and they cannot be exchanged
by a Galois action. On the other hand

L = PSL2(R) × SO3(R)

is a possibility since PSL2(R) ∼= SO2,1(R)o, and a simple switch in the sign of
the quadratic forms (via a Galois automorphism) can interchange these groups.
We will discuss this and the required language further in Section 9.7.

6.3 First Ideas in Unipotent Dynamics

The structure of proof of Theorem 6.11 is to study

StabG(µ) = {g ∈ G | g∗µ = µ}

and to show that the measure µ on X = Γ\G is supported on a single orbit
of this subgroup. This is achieved indirectly; if µ is not supported on a single
orbit of a particular subgroup H < G that leaves the measure invariant then
one shows that the subgroup can be enlarged to some H ′ > H so that the new
subgroup H ′ also preserves µ.

We also note that, in the setting of Theorem 6.11, once we have shown that µ
gives a single orbit of StabG(µ) positive measure, we actually obtain that µ is
supported on a single closed orbit of StabG(µ)o.

Lemma 6.16. Let X = G/Γ be a quotient of a Lie group by a discrete sub-
group Γ . Let H be a connected subgroup of G and let µ be an H-invariant and
ergodic probability measure. If µ gives positive measure to a single orbit of its
stabilizer subgroup StabG(µ), then µ is the Haar measure on a closed orbit of
the subgroup StabG(µ)o.

Proof. If µ
(
StabG(µ).x0

)
> 0 for some x0 ∈ X , then µ

(
StabG(µ).x0

)
= 1

by ergodicity. As the index of StabG(µ)o in StabG(µ) is at most countable,
there exists a point x1 so that µ

(
StabG(µ)o

.x1

)
> 0. This implies once more

that µ
(
StabG(µ)o

.x1

)
= 1 as H is assumed to be connected. It follows that µ is

the Haar measure on StabG(µ)o
.x1, which is also closed by Corollary 1.36. �
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6.3.1 Generic Points

We present in this section the basic idea for using generic points to show an
‘additional invariance’, which in a more specialized context goes back to work
of Furstenberg on the unique ergodicity of skew product extensions, leading
to the equidistribution of the fractional parts of the sequence (n2α)n>1 for α

irrational.(33)

Recall that x ∈ X is said to be generic with respect to µ and a one-parameter
flow {us | s ∈ R} if

1

T

∫ T

0

f(us.x) ds −→

∫

X

f dµ

as T → ∞ for all f ∈ Cc(X). Using the pointwise ergodic theorem [45, Cor. 8.15]
and separability of C0(X) one can easily show that µ-almost every point is
generic if only µ is invariant and ergodic under the one-parameter flow

U = {us | s ∈ R}

(see Lemma 6.20).

Lemma 6.17 (Centralizer Lemma). If x, y = h.x ∈ X are generic for µ
and h ∈ CG(U) = {g ∈ G | gu = ug for all u ∈ U}, then h preserves µ.

x

y
X = Γ\Gh {

} h

Fig. 6.2: If y = xh
−1

with h ∈ CG(V ), then the two orbits are parallel. If in
addition both x and y are generic, then the orbits equidistribute (that is, approxi-
mate µ), which gives Lemma 6.17.

Proof of Lemma 6.17. We refer to Figure 6.2 for a depiction of the proof. We
know that

1

T

∫ T

0

f(us.y) ds −→

∫

X

f dµ

for any f ∈ Cc(X). On the other hand
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1

T

∫ T

0

f(us.y) ds =
1

T

∫ T

0

f(us.(h.x)) ds

=
1

T

∫ T

0

f(h.(us.x))
︸ ︷︷ ︸

f
h

(us
.x)

ds (since h ∈ CG({us}))

−→

∫

X

fh dµ =

∫

X

f(h.z) dµ

so µ is h-invariant. �

Lemma 6.17 seems (and is) useful, but it can only be applied in very special
circumstances as the centralizer is usually very small, and we would need to be
extremely fortunate to find two generic points bearing such a special relation to
each other.

6.3.2 Polynomial divergence leading to invariance

A much more useful observation, due to Ratner, that leads to additional in-
variance in more circumstances, is the following observation† which is based on
the polynomial divergence property of unipotent flows. In fact, as we have seen
before, the action of an element u ∈ G on Γ\G is locally described by conjuga-
tion and hence can also be described by the adjoint representation of u on the
Lie algebra g of G. More precisely, if y = ε.x is close to x, and ε ∈ G is the
local displacement between x and y, then u.y = u.ε.x = uεu−1

.(u.x) and so a
displacement between u.x and u.y is given by the conjugated element uεu−1. If
the displacement ε was not small enough, then uεu−1 may not be the smallest
displacement between u.x and u.y. However, if ε is very small, then the calcu-
lation leading to the conjugated element as the displacement may be iterated
several times. Thus, in order to compare the orbit of points close to x to the
orbit of x we will need to study conjugation by u (or equivalently its adjoint
representation on the Lie algebra).

If {u(t) | t ∈ R} is a unipotent one-parameter subgroup of G, then Adu(t)

is unipotent for all t ∈ R also, and is a (matrix-valued) polynomial in t. This
polynomial structure (as opposed to exponential) of unipotent subgroups has the
following consequence. Given a nearby pair of points x and y = ε.x, let v = log ε
and consider the g-valued polynomial Adu(t)(v). For very small values of ε, this
polynomial is close to zero in the space of all polynomials. However, if we choose
a large ‘speeding up’ parameter T then we may consider the polynomial

p(r) = Adu(rT )(v)

†
This is often called the H-principle. Our presentation of the idea will be closer to the work

of Margulis and Tomanov [111].
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in the rescaled variable r ∈ R. Assuming the original polynomial is non-constant
(equivalently, ε does not lie in CG({u(s)})), we can choose T precisely so that the
polynomial p above in the variable r belongs to a compact set of polynomials
not containing the zero polynomial. In fact, if T > 0 is the smallest number
with† ‖ Adu(T )(v)‖ = 1, then

sup
r∈[0,1]

‖p(r)‖ = 1.

Moreover, p is a polynomial of bounded degree. Notice that this feature—that
this acceleration or renormalization of a polynomial is again a polynomial from
the same finite-dimensional space—is specific‡ to polynomials and hence to
unipotent flows.

In order to state the principle that gives additional invariance, we will need
the following refinement of the notion of genericity.

Definition 6.18. A set K ⊆ X is called a set of uniformly generic points if for
any f ∈ Cc(X) and ε > 0 there is some T0 = T0(f, ε) with

∣
∣
∣
∣
∣

1

T

∫ T

0

f(us.x) ds−

∫

X

f dµ

∣
∣
∣
∣
∣
< ε

for all T > T0 and all x ∈ K.

Proposition 6.19 (Polynomial divergence leads to invariance). Suppose
that (xn), (yn) are sequences of uniformly generic points with yn = εn.xn for
all n > 1 where εn → I as n → ∞ and εn /∈ CG(U) for n > 1. Define vn = log εn

and polynomials
pn(r) = Adu(Tnr)(vn),

where the speeding up parameter Tn → ∞ is chosen so that

sup
r∈[0,1]

‖pn(r)‖ = 1

for each n > 1. Suppose that pn(r) → p(r) as n → ∞ for all r ∈ [0, 1], where

p : R −→ g

is a polynomial with entries in the Lie algebra g. Then µ is invariant un-
der exp(p(r)) for all r ∈ R>0.

Notice that the assumption that the sequence of polynomials converges is
a mild one. The polynomials all lie in a compact subset of a finite-dimensional

†
It does not matter which norm on g is used; for concreteness we use the norm derived

from the Riemannian metric.
‡

In contrast, diagonalizable flows leading in the same way to exponential maps do not
have this property, as the acceleration would change the base of the exponential functions
involved.
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space, so there is a subsequence that converges with respect to any norm on that
space. Also the assumption εn /∈ CG(U) is somewhat unproblematic as in the
case εn ∈ CG(U) one may be able to apply Lemma 6.17. Part of the argument
for Proposition 6.19 is illustrated in Figure 6.3.

x

y
X = Γ\Gh

{

}

h

Fig. 6.3: If y = xε
−1

with ε /∈ CG(V ) close to the identity, then the orbits of x
and y move away from each other at polynomial speed. If x and y are generic then
the last 1% of these pieces of orbits are almost parallel and equidistribute.

Proof of Proposition 6.19. Fix r0 ∈ R>0, f ∈ Cc(X), and ε > 0. By uniform
continuity of f there exists some δ = δ(f, ε) > 0 with

d(h1, h2) < δ =⇒ |f(h1.x) − f(h2.x)| < ε

for all x ∈ X . Furthermore, choose κ > 0 so that

d(exp p(r), exp p(r0)) < δ/2

for r ∈ [r0 − κ, r0]. Then there is an N such that we also have†

d(exp pn(r), exp p(r0)) < δ (6.6)

for n > N and r ∈ [r0 − κ, r0]. We know by the uniform genericity of xn that

1

r0Tn

∫ r0Tn

0

f(us.xn) ds −→

∫

X

f dµ

as n → ∞, and

1

(r0 − κ)Tn

∫ (r0−κ)Tn

0

f(us.xn) ds −→

∫

X

f dµ

†
This is the formal version of the statement in Figure 6.3 that the last 1% are parallel.
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as n → ∞. Taking the correct linear combination (κ > 0 is fixed) and replacing f

by f exp(p(r0)), we get†

1

κTn

∫ r0Tn

(r0−κ)Tn

f exp p(r0)(us.xn) ds −→

∫

X

f exp p(r0) dµ

as n → ∞ and, by the same argument, we also have

1

κTn

∫ r0Tn

(r0−κ)Tn

f(us.yn) ds −→

∫

X

f dµ

as n → ∞. However, using the definition of vn and pn we have

us.yn = us exp(vn).xn = exp
(
Adus

(vn)
)
us.xn = exp (pn(s/Tn))us.xn

for all s ∈ R.
We now restrict ourself to the range of s ∈ R with s

Tn
∈ [r0 −κ, r0]. Together

with (6.6), we deduce that

d(us.yn, exp p(r0)us.xn) < δ,

and so
|f(us.yn) − f(exp p(r0)us.xn)| < ε

for every s ∈ [(r0 − κ)Tn, r0Tn]. Using this estimate in the integrals above gives

∣
∣
∣
∣
∣

1

κTn

∫ r0Tn

(r0−κ)Tn

f exp p(r0)(us.xn) ds−
1

κTn

∫ r0Tn

(r0−κ)Tn

f(us.yn) ds

∣
∣
∣
∣
∣
< ε,

and so ∣
∣
∣
∣

∫

X

f exp p(r0) dµ−

∫

X

f dµ

∣
∣
∣
∣
6 ε.

Since this holds for any ε > 0 and f ∈ Cc(X) we deduce that µ is invariant
under exp p(r0). As r0 > 0 was arbitrary, the proposition follows. �

Because of the results above, we are interested in finding large sets of uni-
formly generic points. It is too much to expect that almost every point with
respect to an invariant measure will have this property (due to the requested
uniformity), but we can get close to this statement as follows.

Lemma 6.20 (Almost full measure sets consisting of uniformly generic
points). Let µ be an invariant and ergodic probability measure on X for the
action of a one-parameter flow {us | s ∈ R}. For any ρ > 0 there is a compact
set K ⊆ X with µ(K) > 1 − ρ consisting of uniformly generic points.

Proof. Let D = {f1, f2, . . . } ⊆ Cc(X) be countable and dense. Then by the
pointwise ergodic theorem [45, Cor. 8.15] for every fℓ ∈ D we have

†
In Figure 6.3 we referred to this as the equidistribution of the last 1% of the orbit.
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1

T

∫ T

0

fℓ(us.x) ds −→

∫

X

fℓ dµ

almost everywhere with respect to µ as T → ∞, equivalently for every ε > 0

µ

({

x ∈ X

∣
∣
∣
∣
∣

sup
T >T0

∣
∣
∣
∣
∣

1

T

∫ T

0

fℓ(us.x) ds−

∫

X

fℓ dµ

∣
∣
∣
∣
∣
> ε

})

−→ 0

as T0 → ∞. Now choose, for every fℓ ∈ D and for every ε = 1
n , a time Tℓ,n so

that

µ

({

x ∈ X

∣
∣
∣
∣
∣

sup
T >Tℓ,n

∣
∣
∣
∣
∣

1

T

∫ T

0

fℓ(us.x) ds−

∫

X

fℓ dµ

∣
∣
∣
∣
∣
>

1

n

})

<
ρ

2ℓ+n
.

Let K ′ ⊆ X be the complement of the union of these sets, so that

µ(K ′) > 1 − ρ

by construction. It is clear that the points in K ′ are uniformly generic for all
function f ∈ D. Moreover, since D ⊆ Cc(X) is dense in the uniform norm, this
extends to all functions by a simple approximation argument. Finally we may
choose a compact K ⊆ K ′ with µ(K) > 1 − ρ by regularity of µ. �

The principle outlined above is sufficient to prove the measure classification
theorem for 2-step nilpotent groups (see Exercise 6.22; as we will see in the next
section with more effort the same holds for more general nilpotent groups).
However, in general this use is limited—for example, in the above form it does
not even allow us to give a new proof of measure classification for the horocycle
flow. This will be discussed again in Section 6.6, where we discuss the second,
more powerful, refinement of the use of generic points to show additional invari-
ance. This will lead to a strengthening of Dani’s theorem (Theorem 5.7), due to
Ratner, and is the key to the general case.

Exercise 6.21. Show that the limit polynomial in Proposition 6.19 takes only values in
the centralizer Cg(U) = {v ∈ g | Adu(v) = v for all u ∈ U} of U in the Lie algebra g of G.

Exercise 6.22. Use the results from Section 6.3.2 to prove the measure classification the-
orem (Theorem 6.11) under the assumption that G is a 2-step nilpotent group.

6.4 Unipotent Dynamics on Nilmanifolds

In this section we will assume that G is a nilpotent Lie group and Γ < G a
discrete subgroup. In this case X = G/Γ is called a nilmanifold.
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6.4.1 Measure Classification for Nilmanifolds

Theorem 6.23. Let Γ < G be a discrete subgroup of a connected nilpotent Lie
group G and let X = G/Γ . Let U 6 G be a one-parameter subgroup. Then
any U -invariant and ergodic probability measure µ on G is algebraic.

Proof. As we will see, the result follows from a (double) induction argument
and Proposition 6.19. First, notice that the theorem is trivial if dimG = 1.

A second special case is obtained by assuming in addition that U belongs to
the centre CG of G. In this case, if X ′ = {x ∈ X | x is generic for µ}, x0 ∈ X ′,
and y = g.x0 ∈ X ′, then g ∈ CG(U) = G, so g ∈ StabG(µ) by Lemma 6.17
and y ∈ StabG(µ).x0 also. It follows that X ′ ⊆ StabG(µ).x0 has full measure,
and we deduce that µ must be the Haar measure on StabG(µ).x0 as required.

We assume now that G is a nilpotent connected Lie group of nilpotency
degree k, meaning that

G0 = G > G1 = [G,G0] > · · · > Gk−1 = [G,Gk−2] > Gk = [G,Gk−1] = {I}.

We also assume that U 6 Gj for some j ∈ {0, . . . , k − 1}. We may also assume
that U 6⊆ CG. The inductive hypothesis is then the following statement: The
theorem holds for any X ′ = Γ ′\G′, U ′

6 G′ and any U ′-invariant and ergodic
probability measure µ′ if either

• dimG′ < dimG, or
• G′ = G, Γ ′ = Γ , and U ′

6 Gj+1.

Now let K ⊆ X be a set of uniformly generic points of measure µ(K) > 0.9
as in Lemma 6.20. Choose some

x0 ∈ K ∩ supp(µ|K). (6.7)

We distinguish between two possible scenarios.
It could be that there is some δ > 0 such that y = h.x0 ∈ K with d(h, I) < δ

implies that h ∈ CG(U) and so also h ∈ StabG(µ) by Lemma 6.17. In this
case (6.7) implies that StabG(µ).x0 has positive measure, and so we may apply
Lemma 6.16 to conclude.

In the second case we find a sequence (yn = εn.x0) in K with εn → I as n →
∞ but εn /∈ CG(U) for all n > 1. Choosing a subsequence, we may assume
that the sequence of polynomials (pn(r)) from Proposition 6.19 converges to a
non-constant polynomial p : R → g. By Proposition 6.19 we deduce that µ is
invariant under exp(p(r)) for all r > 0.

We claim that exp(p(r)) takes values in Gj+1. Indeed, since U ⊆ Gj we have
(in the notation of Proposition 6.19)

pn(r) = Adu(Tnr)(log εn) ∈ log εn + gj+1

for all r, where
gj+1 = Lie(Gj+1) = [g, gj ].
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Since εn → I as n → ∞ this gives p(r) ∈ gj+1 for all r > 0 as claimed.
The argument above shows that

(
StabG(µ) ∩Gj+1

)o

is a nontrivial subgroup. Clearly U normalizes this subgroup and its Lie algebra,
and since Adu(t) is unipotent for all t ∈ R, it follows that there exists a one-
parameter unipotent subgroup

U ′ = {u′
t | t ∈ R} 6 StabG(µ) ∩Gj+1 ∩CG(U).

We are going to apply the inductive hypothesis to G′ = G, Γ ′ = Γ , and U ′.
However, as µ may not be† ergodic with respect to U ′ we first have to decom-
pose µ into U ′-ergodic components. Recall from [45, Th. 6.2, 8.20] that the
ergodic decomposition allows us to write

µ =

∫

X

µE
′

x dµ, (6.8)

where µE
′

x is the conditional measure for the σ-algebra

E ′ = {B ∈ BX | µ(u′
t.B△B) = 0 for all t}

and that for µ-almost every x the conditional measure µE
′

x is a U ′-invariant and

ergodic probability measure on X with x ∈ suppµE
′

x .

By applying the inductive hypothesis to µ-almost every µE
′

x we obtain a

function x 7→ Lx that assigns to x the connected subgroup Lx for which µE
′

x is
the Lx-invariant probability measure on the closed orbit Lx.x. We claim that
there is a connected subgroup L such that Lx = L for µ-almost every x. Indeed,
since U = {u(t) | t ∈ R} preserves µ and leaves the σ-algebra E ′ invariant
(since U ′ and U commute) we get

(ut)∗µ
E

′

x = µE
′

ut
.x (6.9)

for every t ∈ R and µ-almost every x by [45, Cor. 5.24]. Since µE
′

x is Lx-invariant,

it follows from (6.9) that (u1)∗µ
E

′

x is u1Lxu
−1
1 -invariant, which implies that

u1Lxu
−1
1 ⊆ Lu(1).x

and, by a similar argument for the reverse inclusion,

u1Lxu
−1
1 = Lu1

.x.

Iterating this relationship shows that

†
In fact U

′
never acts ergodically with respect to µ.
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un
1Lxu

−n
1 = Lu(n).x (6.10)

for µ-almost every x. Now either L is normalized by u1, or the sequence of
subgroups in (6.10) converges to a subgroup that is normalized by u1 (to
see this, apply the argument from the proof of Lemma 3.51 to any element
of
∧dim Lx(Lie(Lx)). Hence Poincaré recurrence shows that we must have

u1Lxu
−1
1 = Lx

for µ-almost every x. Notice that for any such x we also get

u(t)Lxu(t)−1 = Lx

for all t ∈ R. By ergodicity it follows that Lx = L is constant µ-almost ev-
erywhere. The cautious reader will have noticed that the argument above has
assumed implicitly that the function x 7→ Lx is measurable, which we will show
in Lemma 6.24 below. Equation (6.8) now shows that µ is a convex combination
of L-invariant measures and hence is itself L-invariant.

To summarize, we have shown that there exists a nontrivial connected sub-
group L 6 StabG(µ) containing U ′ such that the orbit L.x is for µ-almost ev-
ery x closed, with finite L-invariant measure and with the property that U ′

6 L
acts ergodically on L.x. Since L 6 G is nilpotent, simply connected and con-
nected, M = CL(L) is a nontrivial connected subgroup. We claim that the or-
bit M.x is compact for µ-almost every x and postpone the proof to Lemma 6.26.

Next we claim that N1
G(M).x is a closed orbit for µ-almost every x, see

Lemma 6.27. This implies that µ is supported on a single orbit N1
G(M).x0 of

the unimodular normalizer. In fact we note first that

U 6 NG(L) 6 NG(M),

and since U is unipotent we also have U 6 N1
G(M). If now x0 is generic for µ

and U , then
suppµ = U.x0 ⊆ N1

G(M).x0.

Therefore, without loss of generality we may assume x0 = Γ , G = N1
G(M)o

and hence M ⊳G and that the orbit M.Γ is compact.
Let πM : G → G/M denote the canonical projection πM (g) = gM . We claim

that πM (Γ ) 6 G/M is again discrete. Suppose that

πM (γn) −→ I

in G/M as n → ∞ with γn ∈ Γ , or equivalently γnmn → I as n → ∞ in G
for γn ∈ Γ and mn ∈ M for all n > 1. Since M ∩ Γ is co-compact in M ,
we may simultaneously modify γn and mn by elements of M ∩ Γ and assume
that mn lies in a pre-compact fundamental domain for Γ for all n > 1. Choosing
a subsequence, we may also now assume that mn → m ∈ M as n → ∞. This
implies that γn → γ ∈ Γ as n → ∞ for some γ, and so γn = γ for all large n > 1.
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This shows that πM (γn) = πM (γ) = I for large enough n, and hence that πM (Γ )
is discrete.

There is also an associated factor map

πX : G/Γ −→ πM (G)/πM (Γ )

defined by
πX : g.Γ 7−→ πM (g).πM (Γ ).

The fibers of this map are precisely the M -orbits in the sense that

π−1
X (πX(g.Γ )) = {h.Γ | hM.πM (Γ ) = gM.πM (Γ )} = gM.Γ

for all g ∈ G.
We set G′ = πM (G), Γ ′ = πM (Γ ), U ′ = πM (U), µ′ = (πX)∗µ and deduce

from the inductive hypothesis that µ′ is an algebraic measure. Let H ′
6 G′

be a connected subgroup, so that µ′ is the H ′-invariant probability measure
on a finite volume orbit πM (g)H ′

.πM (Γ ) for some πM (g) ∈ G′. Finally, we
claim that µ is the H-invariant probability measure on the closed orbit gH.Γ
where H = π−1

M (H ′).
Since πM (Γ )πM (g)H ′ is closed we also obtain that

ΓgH = π−1
X

(
H ′πM (g)πM (Γ )

)

is closed. Now let f ∈ C(X). Then

∫

X

f(x) dµ(x) =

∫

X

f(m.x) dµ(x) (6.11)

for all m ∈ M . Now take a Følner sequence (Fn) in M and notice that

1

mM (Fn)

∫

Fn

f(m.x) dmM (m) −→

∫

M.x

f(z) dmM.x(z) = f(πX(x))

for all x ∈ X , where the expression on the right defines a function f inC(πX(X)).
Applying this convergence to the average of (6.11) over the Følner sequence gives

∫

X

f(x) dµ(x) =

∫

πX(X)

∫

M.x

f(z) dmM.x(z)

︸ ︷︷ ︸

f(πX(x))

dµ′

Now fix h ∈ H and define fh by fh(x) = f(h.x) so that

fh(πX(x)) =

∫

M.x

f(h.z) dmM.x(z) =

∫

M.(h.x)

f(z) dmH(z) = f(h.πX(x)),

and

Page: 251 job: AAHomogeneousDynamics macro: svmono.cls date/time: 21-Jan-2026/14:22



252 6 Unipotent Dynamics and Ratner’s Theorems

∫

X

fh dµ =

∫

πX (X)

fh dµ′ =

∫

πX(X)

(
f
)h

dµ′ =

∫

πX(X)

f dµ′ =

∫

X

f dµ.

Therefore µ is supported on H.x and is H-invariant. This concludes the induc-
tion, and the theorem follows. �

In the course of the proof we made use of several lemmas which we now prove.

Lemma 6.24 (Measurability of stabilizer). Let G be a Lie group, Γ 6 G a
discrete subgroup, and let X = Γ\G. Then the map

M(X) ∋ µ 7−→ StabG(µ)o

from the space M(X) of Borel probability measures on X is measurable.

Implicit in the statement of the lemma is a measurable structure on the
space of connected subgroups, and this is achieved as follows. We identify a
connected subgroup L 6 G with its Lie algebra Lie(L), and if L 6= {I} with the
corresponding point of the Grassmannian of G. In other words, we consider the
map in the lemma as a map from M(X) to

{e} ⊔

dim G⊔

ℓ=1

Grassℓ(Lie(G)),

which is a compact metric space and hence has a measurable structure via the
Borel σ-algebra.

Proof of Lemma 6.24. Let d = dimG, so that

Md = {µ ∈ M(X) | dim StabG(µ) = d} = {mX}

and Md ∋ µ 7→ StabG(µ)o is trivially measurable.
Fix k with 0 6 k 6 d and suppose that we have already shown that the sets

Mℓ = {µ | dim StabG(µ) = ℓ}

for ℓ > k and the map Mk+1 ∋ µ 7→ StabG(µ)o are measurable.
Let µn ∈ M>k = Mk ∪ · · · ∪ Md for n > 1 and suppose that µn → ν in the

weak*-topology as n → ∞. Let hn be the Lie algebra of StabG(µ)o. As

{I} ∪
⋃

16ℓ6d

Grassℓ(Lie(G))

is compact, we may choose a subsequence and assume also that hn → h 6 g

as n → ∞ with dim h > k. We will prove below that µ is invariant under exp(h)
and so µ ∈ M>k. It follows that M>k is closed and hence measurable, which
implies that Mk = M>krM>k+1 is also measurable.

The argument above also shows that the assumption µn ∈ Mk for all n > 1
and µn → µ ∈ Mk as n → ∞ implies that hn → h as n → ∞, with dim h = k.
Therefore
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Mk ∋ µ 7−→ StabG(µ)o

is actually continuous on the measurable set Mk.
Iterating the argument until we reach k = 0 proves the lemma.
It remains to prove the invariance of µ = limn→∞ µn under h = limn→∞ hn.

For v ∈ h there exists a sequence (vn) with vn ∈ hn for n > 1 with vn → v
as n → ∞. Then, by uniform continuity,

∥
∥
∥f

exp(vn) − f exp(v)
∥
∥
∥

∞
−→ 0

as n → ∞ for f ∈ Cc(X). As µn is a probability measure for n > 1 this also
shows that

∣
∣
∣
∣
∣

∫

f exp(vn) dµn

︸ ︷︷ ︸

=
∫

f dµn

−

∫

f exp(v) dµn

∣
∣
∣
∣
∣
6

∥
∥
∥f

exp(vn) − f exp(v)
∥
∥
∥

∞
−→ 0

as n → ∞. Taking limits gives

∫

f dµ =

∫

f exp(v) dµ,

so exp(v) preserves µ. As v ∈ h was arbitrary, the lemma follows. �

Lemma 6.25. Let G be a σ-compact, locally compact group equipped with a left-
invariant metric. Let Γ < G be a discrete subgroup and η1, . . . , ηk ∈ Γ arbitrary
elements. Then CG(η1, . . . , ηk)Γ is closed in X = G/Γ .

Proof. The proof is similar to the proof of Proposition 3.1 or Proposition 3.11.
So suppose that gn.Γ → g.Γ as n → ∞ with gn ∈ CG(η1, . . . , ηk) for n > 1
and some g ∈ G. Choose γn ∈ Γ for n > 1 with gnγn → g as n → ∞. Fix
some i ∈ {1, . . . , k} and notice that

Γ ∋ γnηiγ
−1
n = γngnηi(γngn)−1 −→ gηig

−1

as n → ∞ has to become eventually stable. So assume that

γNηiγ
−1
N = γnηiγ

−1
n = gηig

−1

for all n > N and all i. However, this shows that γ−1
N g ∈ CG(η1, . . . , ηk) and

Γg = Γγ−1
N g ∈ ΓCG(η1, . . . , ηk)

as required. �

Lemma 6.26. Let G 6 SLd(R) be a closed linear group and let Γ < G be a
discrete subgroup. Suppose that L < G is a unipotent subgroup such that xL has
finite volume. Then xCL(L) is compact.
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Proof. Clearly xL ∼= Λ\L for a lattice Λ < L, so it suffices to consider the
case G = L and x = Λ ∈ Λ\L. By Borel density (Theorem 3.50; also see the
argument on p. 143) there exist elements λ1, . . . , λk ∈ Λ with

CL(L) = CL(λ1, . . . , λk).

Thus Lemma 6.25 shows that ΛCL(L) is closed.
Finally, notice that if Λgn → ∞ for some gn ∈ CL(L) as n → ∞, then the

injectivity radius at Λgn has to approach zero. In fact, by Proposition 1.35 there
exist λn ∈ Λr{I} for which g−1

n λngn → I as n → ∞. However, for gn ∈ CL(L)
we have g−1

n λngn = λn ∈ Λr{I} which contradicts the stated convergence.
Therefore ΛCL(L) is a bounded closed set in ΛL, and so is compact. �

Lemma 6.27. Suppose that G 6 SLd(R) is a closed linear group, Γ < G is a
discrete subgroup, and M < G is a unipotent abelian subgroup. If xM is compact
for some x ∈ X = Γ\G, then xN1

G(M) is closed, where

N1
G(M) = {g ∈ G | gMg−1 = M and gmMg−1 = mM }

is the unimodular normalizer of M in G.

Proof. Let x = Γg. By conjugating M with g we may assume without loss of
generality that x = I. As in the proof of Lemma 6.25, we assume that γngn → g
as n → ∞ for gn ∈ N1

G(M), γn ∈ Γ and g ∈ G. We wish to show that γg ∈
N1

G(M) for some γ ∈ Γ .
Notice that

ΓgnM ∼=
(

(g−1
n Γgn) ∩M

)

\M,

which is isomorphic to (Γ ∩M)\M via conjugation by gn ∈ N1
G(M). This im-

plies that ΓgnM has the same volume as ΓM since conjugation by gn in N1
G(M)

preserves the Haar measure on M by definition. Moreover, since

Γgn −→ Γg

as n → ∞, we see that the injectivity radius of Γgn stays bounded away from
zero. By Minkowski’s theorem on successive minima (Theorem 1.45, equivalently
via the argument in the proof of Mahler’s compactness criteria in Theorem 1.51)
there exist elements

ηn,1, . . . , ηn,dim M ∈ Γ

such that
(γngn)−1 ηn,i (γngn) ∈ M (6.12)

is of bounded size (independent of n) and gives a basis of (g−1
n Γgn) ∩M for i =

1, . . . ,dim(M). Therefore, we may choose a subsequence such that for every i =
1, . . . ,dim(M) we have (after renaming the indexing variable in the sequence)
that

(γngn)
−1
ηn,i (γngn) −→ mi ∈ M. (6.13)
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Since we also have γngn → g we may conjugate by γngn in (6.13) to obtain

ηn,i −→ gmig
−1

as n → ∞. However, since ηn,i ∈ Γ this shows that we must have

ηN,i = ηn,i = gmig
−1

for i = 1, . . . ,dim(M) and all n > N for some large enough N . Conjugating
by γn we obtain from (6.12) that

γ−1
n ηn,iγn
︸ ︷︷ ︸

∈M

= γ−1
n g mi

︸︷︷︸

∈M

g−1γn,

by the definition of ηn,i for i = 1, . . . ,dim(M) and all n > N . Since

(γngn)−1 ηn,iγngn

gives a basis of the lattice
(

g−1
n Γgn

)

∩M

by definition of ηn,i, and a lattice in M is Zariski dense, it follows that

〈m1, . . . ,mdim M 〉

is also Zariski dense in M and

γ−1
n g ∈ NG(M)

for all n > N .
In particular,

γ−1
N g

(

γ−1
n g

)−1

= γ−1
N γn ∈ NG(M)

for all n > N . We claim that γ−1
N γn ∈ N1

G(M). For if η = γ−1
N γn (or its inverse)

were to contract the Haar measure on M then ηℓ(Γ ∩ M)η−ℓ would have to
contain shorter and shorter vectors as ℓ → ∞ by Minkowski’s first theorem
(Theorem 1.44). As ηℓ(Γ ∩M)η−ℓ ⊆ Γ this is impossible, proving the claim.

It follows that
γ−1

N g = lim
n→∞

γ−1
N γngn ∈ N1

G(M)

as required. �
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256 6 Unipotent Dynamics and Ratner’s Theorems

6.4.2 Equidistribution and Orbit Closures on Nilmanifolds

Using Theorem 6.23 we can establish the equidistribution theorem (Theo-
rem 6.12) and the orbit closure theorem (Theorem 6.13) on nilmanifolds. In
the case of unipotent flows on nilmanifolds this step of the proof is significantly
easier due to the following special feature of unipotent flows on nilmanifolds
(which we know is false for the horocycle flow on a non-compact quotient, for
example).

Corollary 6.28. Let G be a connected nilpotent Lie group, let Γ < G be a
lattice in G, and let X = Γ\G. Let U 6 G be a one-parameter subgroup and x0 ∈
X. Then the orbit closure U.x = L.x is algebraic, and the U -action on L.x0 is
uniquely ergodic.

Proof. (to come) �

6.5 Invariant Measures for Semisimple Groups

Using Section 6.3.2 we are also ready to prove the special case of Ratner’s mea-
sure classification theorem where the acting group is semisimple†. We are going
to use the Mautner phenomenon to find an ergodic one-parameter unipotent
flow. This is possible due to the results of Chapter 2, but requires that the
group H has no compact factors. While almost all of the ideas of the proof
certainly go back to the work of Ratner, and in particular to the paper [135],
the observation that this particular case has a short and relatively easy proof
was made in [39].

Theorem 6.29 (Ratner measure classification; the semisimple case).
Let G be a connected Lie group, Γ < G a discrete subgroup, and assume that H <
G is a semisimple subgroup without compact factors. Suppose that µ is an H-
invariant and ergodic probability measure on X. Then µ is algebraic.

Proof. Define the closed subgroup Stab(µ) = {g ∈ G | g∗µ = µ}, the con-
nected component L = Stab(µ)o, and its Lie algebra l. We need to prove that µ
is supported on a single L-orbit. So let us assume (for the purposes of a con-
tradiction) that this is not the case. Then by ergodicity of µ, each L-orbit must
have zero µ-measure since H 6 L.

†
This case is interesting as the proof is relatively straightforward, even though there may

be a large gap in the dimensions of the acting group and the group that gives rise to the
ambient space. Furthermore, due to this gap there may be a large collection of possible
intermediate subgroups H 6 L 6 G. However, the use of this special case is limited as the
acting group is not amenable and hence it is a priori not even clear why we should have
any H-invariant probability measure on a given orbit closure H.x ⊆ X .
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There exists a subgroup of H that is locally isomorphic to SL2(R), which acts
ergodically on X with respect to µ. This follows from the Mautner phenomenon.
Indeed, H is by assumption an almost direct product of non-compact simple
Lie groups, and each of these contains a subgroup that is locally isomorphic
to SL2(R). Now consider a diagonally embedded subgroup M that is locally
isomorphic to SL2(R) and that projects nontrivially to each simple almost direct
factor. Furthermore, we let U 6M be the subgroup corresponding to the upper
unipotent subgroup in SL2(R). By Proposition 2.25 the subgroup U , and hence
also M , satisfies the Mautner phenomenon for H . Since H acts ergodically, so
does the subgroup. So we may assume that H is locally isomorphic to SL2(R).

By the structure theory of finite-dimensional representations of SL2(R)
(see [48, Th. 4.11], Fulton and Harris [55], or Knapp [89, Th. 1.64], for ex-
ample), we see that the H-invariant subspace l 6 g (with respect to the adjoint
action) has an H-invariant complement V < g. We note that we have no reason
to expect that V is a Lie algebra, and that this step uses crucially the fact
that H is semisimple.

Now let K ⊆ X be a set of µ-measure exceeding 0.99 comprising uniformly
generic points for U < H . We would like to find points xn, yn ∈ K with

yn = gn.xn,

for some gn 6= I with gn ∈ exp(V ) belonging to the ‘transverse’ direction for
all n > 1, and with gn → I as n → ∞. We then may consider the polynomials

pn(r) = Adu(Tnr)(log gn), (6.14)

assume that these converge as n → ∞, and apply Proposition 6.19. By the H-
invariance of V all the polynomials pn would have values in V and so we would
then be able to find a polynomial p : R → g taking values in V and with µ invari-
ant under exp p(r) for all r > 0. The existence of such a polynomial contradicts
the definition of L = Stab(µ)o.

To find xn, yn as above, we can apply a relatively simple Fubini argument as
follows (crucially, using the fact that µ is invariant under L).

So let BL
δ = BL

δ (I) be a small open metric ball in L around the identity, and
define

Y =

{

x ∈ X

∣
∣
∣
∣

∫

B
L
δ

1K(ℓ.x) dmL(ℓ) > 0.9mL(BL
δ )

}

.

We claim first that µ(Y ) > 0.9, which may be seen by looking at the complement
as follows:
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µ(XrY ) = µ

({

x ∈ X

∣
∣
∣
∣

∫

B
L
δ

1XrK(ℓ.x) dmL(ℓ) > 0.1mL(BL
δ )

})

6
1

0.1mL(BL
δ )

∫

X

∫

B
L
δ

1XrK(ℓ.x) dmL(ℓ) dµ

=
1

0.1mL(BL
δ )

∫

B
L
δ

∫

X

1XrK(ℓ.x) dµ

︸ ︷︷ ︸

=µ(XrK)

dmL (by Fubini)

=
µ(X rK)

0.1
<

0.01

0.1
= 0.1,

since L preserves µ and µ(K) > 0.99.

We now claim that for any nearby points x, y ∈ Y we can find ℓx, ℓy ∈ BL
δ

such that
x′ = ℓx.x ∈ K, (6.15)

y′ = ℓy.y ∈ K, (6.16)

and
y′ = exp(v).x′ (6.17)

with v ∈ V . To see this, notice that if δ is sufficiently small, then (by the inverse
mapping theorem) the map

ψ : BL
2δ ×BV

2δ(0) −→ G

(ℓ, v) 7−→ ℓ exp(v)

is a diffeomorphism from BL
2δ × BV

2δ(0) onto an open neighbourhood O of the

identity in G. Let now g ∈ BG
κ (I) be chosen so that y = g.x. Then we would

like to find ℓx, ℓy ∈ BL
δ with gℓ−1

x = ℓ−1
y exp(v), which will give (6.17). This

can be done using the local diffeomorphism above: If κ is sufficiently small,
then gℓ−1

x ∈ O and may define ℓy and v by

ψ−1(gℓ−1
x ) = (ℓ−1

y , v). (6.18)

However, we still have to worry about the conditions (6.15) and (6.16).

For this, we are going to see that most points ℓx ∈ BL
δ (and the correspond-

ing ℓy) will satisfy this. Indeed, by definition of Y , at least 90% of all ℓx ∈ BL
δ

satisfy x′ = ℓx.x ∈ K, and at least 90% of all ℓy ∈ BL
δ satisfy y′ = ℓy.y ∈ K.

However, we need to do this while ensuring that (6.18) (or equivalently, (6.17))
holds. So define the map

φ : BL
δ −→ BL

2δ

ℓx 7−→ ℓy
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with ℓy as in (6.18). This smooth map depends on the parameter g ∈ BG
κ and

is close to the identity in the C1-topology if κ is sufficiently small (all maps we
deal with are analytic and for g = e we have φ = I

B
L
δ

). Therefore φ does not

distort the chosen Haar measure of L much, and sends BL
δ into a ball around

the identity that is not much bigger than BL
δ (both with respect to the metric

structure and with respect to the measure). In other words, if κ is sufficiently
small, then

mL

(

φ
({
ℓx ∈ BL

δ

∣
∣
∣ ℓx.x ∈ K

})

∩BL
δ

)

> 0.9mL

(

φ
({
ℓx ∈ BL

δ

∣
∣
∣ ℓx.x ∈ K

}))

> 0.8mL

({
ℓx ∈ BL

δ

∣
∣
∣ ℓx.x ∈ K

})

> (0.8)(0.9)mL

(
BL

δ

)
> 0.7mL

(
BL

δ

)
.

Together with

mL

({
ℓy ∈ BL

δ

∣
∣ ℓy.y ∈ K

})

> 0.9mL

(
BL

δ

)
,

we see that there are many points ℓx ∈ BL
δ with ℓx.x ∈ K for which ℓy defined

by (6.18) also satisfies ℓy.y ∈ K.
The theorem now follows relatively quickly as outlined earlier. Recall that we

may assume that every L = Stab(µ)o-orbit has µ-measure zero. Let

z ∈ supp (µ|Y ) .

Then for every κ = 1
n there exist xn = z, yn = gn.xn ∈ Y with

gn ∈ BG
1/n(I)rL.

Applying the procedure above to xn, yn (which we certainly may if n is large)
then we get

x′
n, y

′
n = exp(vn).x′

n ∈ K, vn ∈ V, vn 6= 0, vn −→ 0

as n → ∞. There are now two cases to consider.
If vn is in the eigenspace of Adus

for infinitely many n (and so let us assume for
all n by passing to that subsequence), then we may apply Lemma 6.17 to each vn

and deduce that exp(vn) preserves µ. However, since vn → 0 as n → ∞ and the
unit sphere in V is compact, we may assume that vn

‖vn‖ → w as n → ∞ by passing

to a subsequence again. We conclude that since Stab(µ) is closed, exp(tw) ∈
Stab(µ) for all t. Since V is a linear complement to the Lie algebra of L =
Stab(µ)o, this is a contradiction.

So assume that vn is not in the eigenspace for any n > 1 (by deleting finitely
many terms). In this case we may define Tn such that the polynomials in (6.14)
have norm one. Use compactness of the set of polynomials with bounded degree
and norm one to choose a subsequence (again denoted (pn)) that converges to a
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polynomial p, and then apply Proposition 6.19 to see that µ is invariant under
by exp p(t) for all t > 0. Since p is the limit of AdTnr(vn) ∈ V , p also takes
values in V which again contradicts the definition of V . �

Notes to Chapter 6

(31)
(Page 231) Arguably this was a rediscovery of a connection between Diophantine

problems of this sort and homogeneous dynamics used earlier by Cassels and Swinnerton-
Dyer [13]. We refer to a survey by Margulis [110] for a motivated history.
(32)

(Page 238) This appeared in print in the work of Dani [19, Conjecture II].
(33)

(Page 242) This is an instance of a more general result due to Weyl [167] giving equidis-
tribution modulo one for the values on the natural numbers of any polynomial with an
irrational coefficient. Furstenberg [56] showed that this followed from a general result ex-
tending unique ergodicity from irrational circle rotations to certain maps on tori. We refer
to [45, Sec. 4.4.3] for a detailed discussion.
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