
Chapter 6

Lifting Entropy

In this chapter we will extend the theory of topological entropy to uni-
formly continuous maps on metric spaces, and use this method (introduced
by Bowen [24]) to compute the topological entropy of automorphisms of
solenoids (including the torus) and other examples of homogeneous dynami-
cal systems. This will lead to many generalizations of Theorem 1.32.

Most of these generalizations could (individually) be proven much faster
than the almost axiomatic approach taken here, but the discussion here gives
a common framework from which the various instances of calculating entropy
for automorphisms on a torus, a solenoid or for flows on homogeneous spaces
(real or p-adic) all follow quite quickly.

6.1 Entropy for Uniformly Continuous Maps

In this section we suppose that (X, d) is a locally compact σ-compact metric
space, and that

T : X → X

is a uniformly continuous map (that is, for any ε > 0 there is a δ > 0 such
that d(x, y) < δ implies d(f(x), f(y)) < ε for all x, y ∈ X).

Definition 5.16 extends to this setting as follows. For a compact setK ⊆ X ,
we say that a subset Fspan ⊆ K (n, ε)-spans K if, for every x ∈ K there is a
point y ∈ Fspan with

dn(x, y) = max
06i6n−1

d(T ix, T iy) 6 ε.

A subset Fsep ⊆ K is (n, ε)-separated if for any two distinct points x, y ∈ Fsep,

dn(x, y) = max
06i6n−1

d(T ix, T iy) > ε.
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156 6 Lifting Entropy

We let sspan(n, ε,K, d) be the smallest cardinality of any set Fspan which (n, ε)-
spans K with respect to T , and let ssep(n, ε,K, d) denote the largest cardi-
nality of any (n, ε)-separated set with respect to T contained in K.

As before, the compactness of K ensures that the numbers ssep(n, ε,K, d)
and sspan(n, ε,K, d) are finite for any n > 1 and ε > 0. Notice that the
number ssep is a monotone functions of K in the sense that if K ⊆ K ′ then

ssep(n, ε,K, d) 6 ssep(n, ε,K
′, d). (6.1)

Just as in Lemma 5.17, we have that

sspan(n, ε,K, d) 6 ssep(n, ε,K, d) 6 sspan(n, ε/2, K, d) <∞;

it is also clear that if ε < ε′ then

lim sup
n→∞

1

n
log sspan(n, ε,K, d) > lim sup

n→∞

1

n
log sspan(n, ε

′, K, d)

and

lim sup
n→∞

1

n
log ssep(n, ε,K, d) > lim sup

n→∞

1

n
log ssep(n, ε

′, K, d).

An immediate consequence of the above equations is that the following defi-
nition makes sense.

Definition 6.1. The Bowen entropy of T with respect to K is

hd(T,K) = lim
εց0

lim sup
n→∞

1

n
log sspan(n, ε,K, d)

= lim
εց0

lim sup
n→∞

1

n
log ssep(n, ε,K, d),

and the Bowen entropy of T is

hd(T ) = sup
K⊆X compact

hd(T,K).

From Theorem 5.19 it is clear that hd(T ) = htop(T ) whenever T is a
continuous map on a compact metric space (X, d).

The notation reflects the fact that the quantities all depend(28) on the
choice of the metric d (see also Exercise 6.1.1).

Lemma 6.2 (Entropy of unions). Let T be a uniformly continuous map
on a locally compact σ-compact metric space (X, d). For compact sets K1, K2

in X and K ⊆ K1 ∪K2,

hd(T,K) 6 hd(T,K1 ∪K2) = max
(
hd(T,K1), hd(T,K2)

)
.

Proof. By (6.1) we have hd(T,K) 6 hd(T,K1 ∪K2) and in particular
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max
(
hd(T,K1), hd(T,K2)

)
6 hd(T,K1 ∪K2).

For the converse inequality we note that

sspan(n, ε,K1 ∪K2, d) 6 sspan(n, ε,K1, d) + sspan(n, ε,K2, d)

6 2max
(
sspan(n, ε,K1, d), sspan(n, ε,K2, d)

)

for any n and ε > 0. Therefore,

lim sup
n→∞

1

n
log ssep(n, ε,K1 ∪K2, d)

6 lim sup
n→∞

1

n
log
(
2max (ssep(n, ε,K1, d), ssep(n, ε,K2, d))

)

= max
(
lim sup
n→∞

1

n
log ssep(n, ε,K1, d), lim sup

n→∞

1

n
ssep(n, ε,K2, d)

)

= max (hd(T,K1), hd(T,K2)) .

�

Proposition 6.3 (Small compact sets). For any δ > 0, the supremum
of hd(T,K) over all compact sets K of diameter no more than δ coincides
with hd(T ).

Proof. Any compact set K ′ ⊆ X has a finite cover

K ′ ⊆ Bδ/2(x1) ∪ · · · ∪Bδ/2(xk)

by metric open balls of radius δ/2. By Lemma 6.2 and induction,

hd(T,K
′) 6 max

16j6k
{hd(T,K ′ ∩Bδ/2(xj))},

completing the proof. �

As discussed in Lemmas 5.20 and 5.22, topological entropy has functorial
properties.(29) This is also true for uniformly continuous maps discussed here
(see Exercise 6.1.2) but a small complication does arise in the non-compact
setting, which will be explained in Lemma 6.4. We note that Lemma 6.4 in
particular gives a proof of Lemma 5.21. Below we will find spanning and
separating sets for various maps, so we add a superscript to sspan and ssep to
denote this when needed.

Lemma 6.4 (Entropy of products). If Ti : Xi → Xi are uniformly con-
tinuous maps of metric spaces (Xi, di) for i = 1, 2, then

hd(T1 × T2) 6 hd1(T1) + hd2(T2),

where the metric on X1 ×X2 is
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d
(
(x1, x2), (y1, y2)

)
= max

(
d1(x1, y1), d2(x2, y2)

)
.

If we assume† that

hd1(T1, K1) = lim
εց0

lim inf
n→∞

1

n
log ssep(n, ε,K1, d1) (6.2)

for all K1 ⊆ X1, then

hd(T1 × T2) = hd1(T1) + hd2(T2).

Proof. Let Ki be compact in Xi, and let Fspan,i be an (n, ε)-spanning set
for Ki. Then Fspan,1 × Fspan,2 is (n, ε)-spanning for K1 × K2 with respect
to T1 × T2. It follows that

sT1×T2
span (n, ε,K1 ×K2, d) 6 sT1

span(n, ε,K1, d1)s
T2
span(n, ε,K2, d2),

so
hd(T1 × T2, K1 ×K2) 6 hd1(T1, K1) + hd2(T2, K2).

Write πi : X1×X2 → Xi for the projection map for i = 1, 2. If K ⊆ X1×X2

is compact, then K ⊆ π1(K)× π2(K) and

hd(T,K) 6 hd(T1 × T2, π1(K)× π2(K)) 6 hd1(T1) + hd2(T2)

This proves the first half of the lemma.
For the reverse inequality, we assume (6.2). If Fsep,i is (n, ε)-separated for

the compact set Ki ⊆ Xi under Ti and for i = 1, 2, then Fsep,1 × Fsep,2

is (n, ε)-separated for K1 ×K2 under T1 × T2, so

sT1×T2
sep (n, ε,K1 ×K2, d) > sT1

sep(n, ε,K1, d1)s
T2
sep(n, ε,K2, d2).

Therefore

lim supn→∞
1

n
log sT1×T2

sep (n, ε,K1 ×K2, d)

> lim sup
n→∞

1

n

(
log sT1

sep(n, ε,K1, d1) + log sT2
sep(n, ε,K2, d2)

)

> lim inf
n→∞

1

n
log sT1

sep(n, ε,K1, d1) + lim sup
n→∞

1

n
log sT2

sep(n, ε,K2, d2).

Thus hd(T1 × T2, K1 ×K2) > hd1(T1, K1) + hd2(T2, K2) by (6.2), completing
the proof. �

One of the ways in which topological entropy for maps on non-compact
spaces will be useful is to linearize certain entropy calculations, initially on
compact spaces. A simple example (see Proposition 6.10) involves lifting a

† Note that this holds for any compact X1 by Theorem 5.19.
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toral automorphism: The r-torus Tr is defined as the quotient Rr/Zr, and
the usual Euclidean metric d on Rr induces a metric d

′ on Tr by setting

d
′(x+ Zr, y + Zr) = min

n∈Zr
d(x, y + n).

Notice that this makes the quotient map π : Rr → Tr into a local isometry:
every point in Rr has a neighbourhood that is mapped isometrically onto an
open set in Tr. The next result gives general conditions under which entropy
is preserved in this kind of lift.

Also recall that the definition of (n, ε)-separated or (n, ε)-spanning points
for a uniformly continuous map T on a metric space (X, d) can conveniently
be phrased in terms of the n-th Bowen metric defined by

dn(x, y) = max
06j6n−1

d(T jx, T jy)

for all x, y ∈ X . Below we will have a second metric space (X ′, d′) and
uniformly continuous T ′ and will write d

′
n for its Bowen metric.

Theorem 6.5 (Lifting entropy). Let π : (X, d)→ (X ′, d′) be a continuous
surjective map with the property that for some δ > 0 the map π restricted
to Bδ,d(x) is an isometric surjection onto Bδ,d′(π(x)) for every x ∈ X. If

(X, d)
T−−−−→ (X, d)

π

y
yπ

(X ′, d′) −−−−→
T ′

(X ′, d′)

is a commutative diagram and both T and T ′ are uniformly continuous,
then hd(T ) = hd′(T

′).
Moreover, there exists some δT > 0 such that x, y ∈ X, d(x, y) < δ,

and n > 1 implies that dn(x, y) < δT if and only if d′n(π(x), π(y)) < δT ; and
if that holds we also have dn(x, y) = d

′
n(π(x), π(y)).

Proof. We start by proving the last part of the theorem and suppose first
that dn(x, y) < δ for some x, y ∈ X and n > 1. In particular we then
have d(T jx, T jy) < δ and so

d
′(T ′jπ(x), T ′jπ(y)) = d(T jx, T jy)

for j = 0, . . . , n− 1. This shows that dn(x, y) < δ implies that

d
′
n(π(x), π(y)) = dn(x, y).

For the converse we need to choose (by uniform continuity) some δT ∈ (0, δ)
so that d(x, y) 6 δT implies d(Tx, T y) < δ for all x, y ∈ X . Assume that x, y
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are points in X , d(x, y) < δ, and d
′
n(π(x), π(y)) < δT for some n > 1. Using

this assumption we will show by induction that dn(x, y) = d
′
n(π(x), π(y)).

First note that d(x, y) < δ implies d(x, y) = d
′(π(x), π(y)) or equiva-

lently d1(x, y) = d
′
1(π(x), π(y)). For the induction suppose we have already

shown dk(x, y) = d
′
k(π(x), π(y)) for some k < n. This gives

d(T k−1x, T k−1y) 6 dk(x, y) = d
′
k(π(x), π(y)) 6 d

′
n(π(x), π(y)) < δT ,

which implies d(T kx, T ky) < δ by choice of δT . The property of δ now again
implies

d(T kx, T ky) = d
′(T ′kπ(x), T ′kπ(y))

and also
dk+1(x, y) = d

′
k+1(π(x), π(y)).

The induction stops once we have reached k = n, in which case we have
shown the last part of the theorem.

If K ⊆ X is compact with diam(K) < δ then by the local isome-
try property the image π(K) is compact with diam(K) < δ; moreover
any compact set K ′ ⊆ X ′ with diam(K ′) < δ is an image of such a
set. Fix some such K ⊆ X . The above property of dn resp. d

′
n shows

that sTsep(n, ε,K, d) = sT
′

sep(n, ε, π(K), d′) for all n > 1 and ε ∈ (0, δT ). In
particular, hd(T,K) = hd′(T

′, π(K)). Using Proposition 6.3 the theorem fol-
lows. �

Exercises for Section 6.1

Exercise 6.1.1. Two metrics d and d
′ on a space X are called uniformly equivalent if for

any ε > 0 there is a constant δ > 0 for which

d(x, y) < δ =⇒ d
′(x, y) < ε,

and
d
′(x, y) < δ =⇒ d(x, y) < ε

for all x, y ∈ X. Show that if d is uniformly equivalent to d′, then

hd(T ) = hd′ (T ).

Exercise 6.1.2. Let T : X → X be a uniformly continuous map on a metric space. Show
that hd(T

k) = khd(T ) for any k > 1.

Exercise 6.1.3. Let T be a uniformly continuous map on a metric space (X, d). Con-
sider T × T on X × X (with the product metric d′ as defined in Lemma 6.4) and show
that hd′ (T × T ) = 2hd(T ).

Exercise 6.1.4. For the map x 7→ 2x (mod 1) compute htop(T ) directly from the defini-
tion using separating sets in T, and then compute it using Theorem 6.5.
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Exercise 6.1.5. Assume that the Theorem 6.5 is weakened slightly so that it says that
for each x ∈ X there is a δ = δ(x) > 0 with the property that the map π restricted
to Bδ,d(x) is an isometric surjection onto Bδ,d′ (π(x)). Show that in this case we can deduce
that hd(T ) > hd′ (T

′).

Exercise 6.1.6. Show that the canonical projection map

π : SL2(R) → X = SL2(Z)\SL2(R)

satisfies the weaker hypothesis in Exercise 6.1.5 but does not satisfy the hypothesis of
Theorem 6.5. In this and similar cases, equality of topological entropy does nonetheless
hold for certain algebraic maps.
(a) Show that the horocycle time-one map, defined on X by

SL2(Z)g 7−→ SL2(Z)g
(
1 1
0 1

)

has zero Bowen entropy.
(b) Compute the Bowen entropy of the time-one geodesic flow, defined on X by

SL2(Z)g 7−→ SL2(Z)g
(
e1/2 0

0 e−1/2

)
.

Exercise 6.1.7. Let T : X → X be a uniformly continuous homeomorphism of a locally
compact metric space (X, d), and let X∗ = X ∪ {∞} be the one-point compactification
of X. Define T ∗ : X∗ → X∗ by setting T ∗(x) = T (x) for x ∈ X ⊆ X∗ and T ∗(∞) = ∞.
Show that

hd(T ) > htop(T
∗).

Find an example with hd(T ) > 0 and htop(T ∗) = 0.

Exercise 6.1.8. Strengthen the inequality for entropy of topological factors from Exer-
cise 5.2.3 as follows. If Tk : (Xk , dk) → (Xk, dk) for k = 1, 2 are continuous maps of
compact metric spaces, and π : X1 → X2 is a continuous surjective factor map, then

hd1
(T1) 6 hd2

(T2) + sup
x∈X2

hd1
(T1, π

−1(x)).

6.2 Homogeneous Measures

As before we let T : (X, d) → (X, d) be a uniformly continuous map on a
locally compact metric space.

Definition 6.6. A Bowen ( or Bowen–Dinaburg) ball about x is a set of the
form

D(x, n, ε) = DT (x, n, ε) =

n−1⋂

k=0

T−k
(
Bε(T

kx)
)
=
{
y ∈ X | dn(y, x) < ε

}
,

where Bε(y) = {z ∈ X | d(y, z) < ε} denotes the metric open ball around y
of radius ε and dn denotes the Bowen metric.

A Borel measure µ on X is called T -homogeneous if
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(1) µ(K) <∞ for all compact sets K ⊆ X ,
(2) µ(K) > 0 for some compact set K ⊆ X ,
(3) for each ε > 0 there is a δ > 0 and a c > 0 with the property that†

c−1µ (D(x, n, ε)) 6µ (D(y, n, δ)) 6 cµ (D(x, n, ε))

for all n > 1 and x, y ∈ X .

We shall see later that T -homogeneous measures exist in many useful
situations; on the other hand they are so special that the rate of the decay
of the measure (with respect to any T -homogeneous measure) of the Bowen
balls computes the topological entropy. We define the volume decay entropy
for the homogeneous measure by

volµ(T ) = lim
εց0

lim sup
n→∞

− 1

n
logµ (D(x, n, ε)) ; (6.3)

notice that property (3) of Definition 6.6 implies that the definition in (6.3)
is independent of x ∈ X .

Theorem 6.7 (Bowen’s volume decay entropy). Let T : (X, d)→ (X, d)
be a uniformly continuous map on a locally compact metric space and let µ
be a T -homogeneous Borel measure on X. Then

hd(T ) = volµ(T ).

If X is compact, µ(X) = 1, and µ is T -invariant and T -homogeneous, then

hµ(T ) = volµ(T ).

Proof. Let K ⊆ X be compact. By property (2) of Definition 6.6 and
the local compactness of X , there is an open set U ⊇ K with µ(U) < ∞;
choose ε > 0 small enough to ensure that

Bε(K) =
⋃

x∈K

Bε(x) ⊆ U.

Let Fsep ⊆ K be an (n, ε)-separated set of maximal cardinality. For distinct
points x1, x2 ∈ Fsep the sets D(x1, n, ε/2) and D(x2, n, ε/2) are disjoint and

⊔

x∈Fsep

D(x, n, ε/2) ⊆ U

is a disjoint union. By property (3) of Definition 6.6 there are positive con-
stants δ, c with

µ (D(y, n, δ)) 6 cµ (D(x, n, ε/2))

† It is sufficient to require the inequality on the right and the one on the left then follows.
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for all x, y. Thus for a fixed y we have

µ (D(y, n, δ)) ssep(n, ε,K) 6
∑

x∈Fsep

cµ (D(x, n, ε/2))

= cµ

( ⊔

x∈Fsep

D(x, n, ε/2)

)
6 cµ(U),

so

lim sup
n→∞

1

n
log ssep(n, ε,K) 6 lim sup

n→∞
− 1

n
log µ (D(y, n, δ)) .

Taking ε→ 0 gives hd(T,K) 6 volµ(T ), so hd(T ) 6 volµ(T ).
The reverse inequality is similar: letK be a given compact set and let ε > 0

be given. We may assume that µ(K) > 0. Choose δ > 0 and c > 0 as in
property (3) of Definition 6.6 for the given ε > 0, and let Fspan be an (n, δ)-
spanning set for K. Then, by definition of a spanning set,

⋃

x∈Fspan

D(x, n, δ) ⊇ K,

which together with property (3) of Definition 6.6 implies that

cµ (D(y, n, ε)) sspan(n, δ,K) > µ(K) > 0.

Therefore

lim sup
n→∞

1

n
log sspan(n, δ,K) > lim sup− 1

n
logµ (D(y, n, ε))

Taking ε→ 0 gives hd(T,K) > volµ(T ), so hd(T ) = volµ(T ).
Now assume that X is compact and µ is a T -invariant, T -homogeneous

probability measure. By the variational principle (Theorem 5.24),

hµ(T ) 6 htop(T ) = hd(T ) = volµ(T ).

For the reverse inequality, fix ε > 0 and choose δ > 0, c > 0 with the property
that

µ (D(x, n, δ)) 6 cµ (D(y, n, ε))

for all x, y ∈ X and all n > 1, and let ξ = {A1, . . . , Ar} be a measurable par-
tition of X into sets of diameter no more than δ. Then for x in an element A
of ξn−1

0 , we have A ⊆ D(x, n, δ), and so µ(A) 6 cµ (D(y, n, ε)). It follows
that
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H
(
ξn−1
0

)
= −

∑

A∈ξn−1
0

µ(A) log µ(A)

> −
∑

A∈ξn−1
0

µ(A) log cµ (D(y, n, ε))

= − log c− logµ (D(y, n, ε)) .

Thus

hµ(T ) > hµ(T, ξ) > lim sup
n→∞

− 1

n
logµ (D(y, n, ε)) ;

taking ε→ 0 shows that hµ(T ) > volµ(T ). �

We have seen that topological entropy for continuous maps on compact
metric spaces adds over products in Lemma 5.22. In general the topological
entropy for uniformly continuous maps on a non-compact space does not add
over products without an additional assumption (Lemma 6.4 gives one such
assumption that ensures additivity). Here we record two such situations in
which we recover additivity, the first in the context of homogeneous measures.

Corollary 6.8 (Entropy of products). Let Ti : (Xi, di) → (Xi, di) be
uniformly continuous maps on metric spaces for i = 1, 2, and define a metric
on the product space by d = max{d1, d2}. Suppose that µi is a Ti-homogeneous
measure on Xi such that − 1

n logµi (DTi
(xi, n, ε)) converges for any xi ∈ Xi,

then
hd(T1 × T2) = hd1(T1) + hd2(T2).

Proof. If µi is Ti-homogeneous, then µ1 × µ2 is T1 × T2-homogeneous with
respect to the maximum metric d on X1×X2. Thus the lemma follows from
Theorem 6.7. �

Exercises for Section 6.2

Exercise 6.2.1. (a) For the time-one map T of the geodesic flow on SL2(Z)\ SL2(R)
defined as in Exercise 6.1.6 and lifted to SL2(R), compute volµ(T ) and hd(T ).
(b) Compute volµ(T ) for the time-one map of the horocycle flow, and deduce that the
horocycle flow has zero entropy.

6.3 Calculating Topological Entropy on the torus

For continuous maps that are highly homogeneous (that is, their action on
each part of the space looks the same) Theorem 6.5 and Corollary 6.8 together
make it easy to compute(30) the topological entropy locally.
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To demonstrate this we compute in this section the entropy of a toral
automorphism.

Theorem 6.9 (Entropy of toral automorphisms). The entropy of the
automorphism TA of the r-torus Tr associated to a matrix A ∈ GLr(Z) is
given by

htop(TA) = hm(TA) =
∑

λ

log+ |λ|

where m denotes Lebesgue measure, the sum is taken over all the eigenvalues
of A (with repetitions according to the algebraic multiplicity of each eigen-
value), and log+(x) = max{log x, 0}. If A is diagonalizable then there exists
a constant c > 1 (depending only on A and d) such that

c−1εre−htop(TA)n 6 m(DTA
(x, n, ε)) 6 cεre−htop(TA)n

for all n > 1 and ε ∈ (0, δTA
).

In particular this shows that for toral automorphism the Lebesgue measure
is a measure of maximal entropy. In fact, it is the unique measure of maximal
entropy in many cases, but the methods developed in this section do not show
that, see Chapter 8.

6.3.1 Entropy of linear maps

For the proof of the entropy formula in Theorem 6.9 we are going to use the
linear case.

Proposition 6.10 (Entropy of linear maps). Let A : Rr → Rr be the
linear automorphism defined by the matrix A ∈ GLr(R). Then, if d is the
usual Euclidean metric on Rr,

hd(A) =
∑

λ

log+ |λ| (6.4)

where the sum is taken over all the eigenvalues of A (repeated according to
the algebraic multiplicity of each eigenvalue), and log+(x) = max{log x, 0}.

Moreover, the Lebesgue measure m on Rr is A-homogeneous and for
any ε > 0 and any metric d induced from a norm on Rr we have

lim
n→∞

− logm(DA(0, n, ε)

n
= hd(A).

If A is diagonalizable then there exists a constant c > 1 (depending only on A
and d) such that

c−1εre−htop(A)n 6 m(DA(x, n, ε)) 6 cεre−htop(A)n
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for all n > 1 and ε > 0.

Proof of Theorem 6.9. By Theorem 5.19, htop(TA) = hd(TA) where d

is the metric induced on Tr by the usual metric on Rr. By Theorem 6.5,
it is enough to compute the topological entropy of the map lifted to Rr,
and Proposition 6.10 gives the formula. Finally Theorem 6.7 shows that the
measure-theoretic entropy with respect to Lebesgue measure has the same
value, since Lebesgue measure is TA-homogeneous (as both the Lebesgue
measure and the metric are translation invariant).

For the final claim of the theorem we apply the final claim of Theorem 6.5
to see that sufficiently small Bowen balls for TA on Tr are images of the
corresponding Bowen balls for A on Rr, and apply the final claim of Propo-
sition 6.10. �

Before proving Proposition 6.10, we note a particularly simple instance.
If A is a real diagonal matrix,

A =




λ1
λ2

. . .

λr


 ,

then we may replace d with the uniformly equivalent metric

d
′(x, y) = max

16i6r
{|xi − yi|},

where x = (x1, . . . , xr)
t, so that Bd′,ε(0) is an r-dimensional cube with side 2ε

centered at 0. Since A is diagonal, the map x 7→ A−1x dilates the ith axis by
the factor λ−1

i ; this is illustrated in Figure 6.1 for the situation

r = 3, 0 < λ1 < 1, λ2 > 1, λ3 > 1.

T

x1

x2

x3

×λ−1
1

×λ−1
2

×λ−1
3

Fig. 6.1: Action of A−1 with 0 < λ1 < 1, λ2 > 1, λ3 > 1.
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Thus the Bowen ball DA(0, n, ε) is an r-dimensional rectangular paral-
lelepiped (using the metric d

′ to simplify matters); the ith side has length 2ε
if |λi| 6 1 and length 2ε|λ−n+1

i | if |λi| > 1. It follows that

m (DA(0, n, ε)) = (2ε)r
∏

|λi|>1

λ−n+1
i ,

which shows that in this case

volm(A) =
∑

λ

log+ |λ|,

giving the claimed formula by Theorem 6.7 as the Lebesgue measure m is
an A-homogeneous measure. This also proves the final claim in Proposi-
tion 6.10 (strictly speaking, only in the case where A is diagonalizable over R
and the metric is carefully chosen, but the general case is similar and is
contained in the following discussion).

This simple case above should be kept in mind for the general case below.
There are two difficulties to overcome. First, the matrix A may have complex
eigenvalues. Second, these eigenvalues may give rise to non-trivial Jordan
blocks (that is, the matrix might not be diagonalizable). The first problem is
easily dealt with by using a complex vector space, identifying(31) for example

the action of

(
a b
−b a

)
(or any of its conjugates) on R2 with multiplication

by a+ ib on C. The second involves an important principle which will arise
several times: Jordan blocks distort the exponentially decaying parallelepiped
by an amount that is polynomially bounded. In the limit it is the exponential
rate that determines the volume decay, and that is the essence of the formula
in Proposition 6.10.

Proof of Proposition 6.10. First notice that x 7→ Ax is uniformly contin-
uous with respect to d, and Lebesgue measure m on Rr is A-homogeneous,
since both the metric and the measure are translation invariant. Thus by
Theorem 6.7

hd(A) = volm(A).

We also note that we can calculate the volume decay entropy with respect
to any metric derived from a norm, since the resulting metrics would be
uniformly equivalent (see Exercise 6.1.1).

By choosing a suitable basis in Rr we may assume that the matrix A has
the Jordan form†

† If the reader has not seen the Jordan normal form over R this can be avoided as fol-
lows. Extend A : Rr → Rr to a C-linear map AC : Cr → Cr and use Exercise 6.1.3 to
get hd(AC) = 2hd(A). Now calculate hd(AC) as done here but only relying on the complex
version of the Jordan decomposition.
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A =




J1
J2

. . .

Js




where each block Jk corresponds to an eigenvalue λk of A. In the case λk ∈ R,
the corresponding block has the form

J =




λk 1
λk 1

. . .
. . .

λk 1


 (6.5)

and in the case of a pair of eigenvalues λk, λk ∈ C, the corresponding block
has the form

J =




Λk I2
Λk I2

. . .
. . .

Λk I2


 , (6.6)

where λk = a+ ib, Λk =

(
a b
−b a

)
, and I2 =

(
1 0
0 1

)
.

Since the Lebesgue measure in Rr is the product of the Lebesgue measures
on the subspace corresponding to each block, it is sufficient to prove (6.4) on
each block separately, so long as we also establish that the limit

lim
n→∞

− 1

n
logm (DJk

(0, n, ε))

exists, so that the entropy adds over the product by Corollary 6.8.
Thus we are reduced to a single Jordan block J = Jk. If it corresponds

to a complex conjugate pair of eigenvalues as in (6.6), then by making the
identification (x, y) 7→ x+iy between R2 and C we may assume that the block
always has the form in (6.5), with λk ∈ R in the real case and λk ∈ C in the
complex case. Below we will write K for R or C depending on whether λk is
real or complex and set dimR = 1 and dimC = 2.

So assume that

J =




λ 1
λ 1
. . .

. . .

λ 1


 = λIℓ +N

is an ℓ × ℓ matrix corresponding to one Jordan block, acting on Kℓ. Recall
that
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Jn = (λI +N)n =

ℓ−1∑

k=0

(
n

k

)
λn−kNk,

for any n ∈ Z, where
(
n
k

)
= n(n−1)···(n−k+1)

k! for all n ∈ Z and k > 0, and note
that

(Nm)i,j =

{
1 if (i, j) ∈ {(1,m+ 1), (2,m+ 2), . . . , (ℓ−m, ℓ)};
0 if not;

and Nm is the zero matrix if m > ℓ.
Fix ε > 0 and t1 ∈ K with |t1| > |λ|. Then every entry of the matrix t−n

1 Jn

has the form t−n
1 λn multiplied by a polynomial in n and hence goes to zero

as n→∞. Therefore there is some constant C > 0 such that

‖t−n
1 Jnx‖ 6 C‖x‖

for all n > 0 and x ∈ Kℓ. Given a metric d on Kℓ we see that if d(tj1x, 0) <
ε
C

for some j > 0, then d(Jjx, 0) < ε. Thus

Dt1

(
0, n, ε

C

)
⊆ DJ (0, n, ε) ,

for all n > 1 and

Dt1

(
0, n, ε

C

)
=

{
t−n+1
1 Bε/C(0) if t > 1,

Bε/C(0) if t < 1.

It follows that

ℓ dimK log+ t1 > lim sup
n→∞

− 1

n
logm (DJ(0, n, ε)) (6.7)

where m is Lebesgue measure on Kℓ.
Now let t2 ∈ K satisfy |t2| < |λ|, so that the entries of the matrix tn2J

−n

are of the form tn2λ
−n multiplied by a polynomial in n for all n > 1, so that

we again have some C > 0 with

‖tn2J−nx‖ 6 C‖x‖

for all n > 0 and x ∈ Kℓ. As before, it follows that

DJ (0, n, ε) ⊆ Dt2 (0, n, Cε)

and therefore

lim inf
n→∞

− 1

n
logm (DJ(0, n, ε)) > ℓ dimK log+ |t2|.
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Together with (6.7), this shows (recalling that |t1| and |t2| can be chosen
arbitrarily close to |λ|) that

lim
n→∞

− 1

n
logm (DJ(0, n, ε)) = ℓ dimK log+ |λ|.

Recalling that in the case of dimK = 2 we are actually dealing simultane-
ously with a pair of complex eigenvalues this concludes the proof of Proposi-
tion 6.10. �

Exercises for Section 6.3

Exercise 6.3.1. Show that the volume decay entropy for a linear map can be defined
using any bounded set Q ⊆ Rd that contains the origin in its interior, by showing that for
such a set

volµ(A) = lim
n→∞

−
1

n
logm

(
n−1⋂

k=0

A−kQ

)
.

Exercise 6.3.2. Show that Lemma 5.20 is false without the assumption that X is compact.

6.4 Entropy for Flows on Compact Homogeneous Spaces

In this section† G will denote a unimodular Lie group. A uniform lattice‡ is
a discrete subgroup Γ 6 G for which X = Γ\G is compact. Recall (see, for
example, [52, Sect. 9.3.3], or the more general Lemma 8.26) that it is possible
to define a left-invariant metric dG(·, ·) on G which then via

dX(Γg1, Γ g2) = min
γ∈Γ

dG(g1, γg2)

defines a metric on any quotient X = Γ\G by a discrete subgroup Γ 6 G.
Moreover, for every compact subset K ⊆ X there exists some r > 0 (called
an injectivity radius) with the property that

BG
r ∋ h 7−→ xh ∈ BX

r (x)

† In this section we follow Bowen [24] closely. We would like to point out that the material
here and in Section 6.3 gives an easy route to a ‘formula’ for the entropy of certain maps
at the expense of masking the detailed dynamics.
‡ A lattice is a discrete subgroup Γ 6 G for which the quotient space Γ\G has finite
volume but is not required to be compact. Unfortunately, Theorem 6.5 does not apply in
the non-compact setting, hence the need to restrict to uniform lattices.
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is an isometry for every x ∈ K. Hence, as we are assuming that X = Γ\G is
compact, this implies the assumptions regarding the metric in Theorem 6.5
and the canonical map π : (G, dG)→ (X, dX) defined by π(g) = Γg.

We also recall that the Haar measure mG on a unimodular group G gives
rise to a right-invariant Haar measure mX on the quotient X = Γ\G of G by
a discrete subgroup Γ such that mX(π(B)) = m(B) for any Borel set B ⊆ G
on which π is injective. As we assume here, in addition, that X is compact
we may normalize the Haar measures so that mX(X) = 1.

Now fix some a ∈ G and define

TG : g 7−→ ga−1

for g ∈ G, respectively
TX : x 7−→ xa−1

for x ∈ X . Then we also have the commutative diagram in Theorem 6.5,
which implies that hdG(TG) = hdX (TX). These quantities can be calculated
as in the following theorem. For this we need another notion, that of the
adjoint Ada of the element a ∈ G, which is defined to be the derivative of
the map g 7→ aga−1 at the identity e ∈ G. Recall that the tangent space
of G at the identity is the Lie algebra g of G. In the case of a closed linear
Lie group G < GLd(R), the Lie algebra is a subspace of Matd,d(R) and the
adjoint of a is simply conjugation by a on the Lie algebra.

Theorem 6.11. Let X = Γ\G be a compact quotient of a unimodular† Lie
group by a discrete subgroup. Let a ∈ G, and define TX(x) = xa−1 for x ∈ X.
Then the topological entropy of TX is given by

htop(TX) = hmX
(TX) = volmG

(TG) = volmg
(Ada) =

dim(G)∑

i=1

log+ |λi|,

where λ1, . . . , λdim(G) are the eigenvalues (listed with algebraic multiplicity)

of the linear map Ada, and mg is the Lebesgue measure on g ∼= Rdim(G).
If Ada is diagonalizable then there exists a constant c > 1 (depending only

on a and d) such that

c−1εdimGe−htop(TX )n 6 m(DTX
(x, n, ε)) 6 cεdimGe−htop(TX )n

for all n > 1 and ε ∈ (0, δTX
).

Proof. By the discussion before the statement of the theorem, we have

htop(TX) = hdX (TX) = hdG(TG).

Let θa : g 7→ aga−1 denote conjugation by a as a map on G. Since dG is
invariant under left multiplication, it follows that

† The existence of a lattice in G implies that G is unimodular (see [52, Prop. 9.20]).
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dG

(
θka(y), θ

k
a(x)

)
< ε

if and only if
dG

(
T k
G(y), T

k
G(x)

)
< ε,

for any k ∈ Z. This implies that DTG
(x, n, ε) = Dθa(x, n, ε) is the Bowen ball

for TG and for θa. Similarly, DTG
(hx, n, ε) = hDTG

(x, n, ε) for any h ∈ G,
which implies that the bi-invariant Haar measure mG is homogeneous (in the
sense of Definition 6.6) both for TG and for θa.

We also note the Bowen balls in X for TX are, by Theorem 6.5, (and for
sufficiently small ε) simply the images of the Bowen balls in G for TG, so
that mX is a TX -homogeneous and invariant measure on X . This implies

htop(TX) = hdX (TX) = hdG(TG) = volmG
(TG) = volmG

(θa) = volmX
(TX).

On the other hand Ada : g → g is linear, and so Proposition 6.10 shows
that

hdg(Ada) = volmg
(Ada) =

dimG∑

i=1

log+ |λi|.

Thus it remains only to show that volmG
(θa) = volmg

(Ada), which will fol-
low by analyzing how the (measures of the) Bowen balls Dθa(I, n, ε) at the
identity in the Lie group, and DAda

(0, n, δ) at 0 in the Lie algebra relate to
each other. This will also imply the last statement in the theorem by using
the last statement in Proposition 6.10.

Recall that exp : g → G is a diffeomorphism when restricted to be a
map from some open neighbourhood of 0 ∈ g to some open neighbourhood
of e ∈ G. Moreover, exp(Ada(v)) = θa(exp(v)) for any v ∈ g. This clearly
implies that there exists an ε0 and a constant c > 1 so that for every ε ∈ (0, ε0)
we have

exp (DAda
(0, n, ε)) ⊆ Dθa(I, n, cε), (6.8)

and
exp (DAda

(0, n, cε)) ⊇ Dθa(I, n, ε). (6.9)

Finally, the Haar measure mG is a smooth measure, see Lemma 6.12 below.
In particular, there is a neighbourhood Bg

δ0
of 0 ∈ g, and some constant C > 1

such that
mG(exp(B))

mg(B)
∈ [ 1C , C] (6.10)

for any Borel subset B ⊆ Bg

δ0
. Now (6.8)–(6.10) and the definition in (6.3)

together imply that volmG
(θa) = volmg

(Ada) as required. �

Suppose a manifold G is written as a countable union of open sets Uk ⊆ G
with the property that for each k there is a diffeomorphism

ψk : Bk −→ Uk
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from a bounded open subset Bk ⊆ Rd to Uk, where d = dimM . A measure µ
on G is said to be smooth if there are non-negative smooth functions ρk on Bk

such that for any bounded measurable function f : G→ R with Supp(f) ⊆ Uk

we have ∫

Uk

f dµ =

∫

Bk

f(ψk(x))ρk(x) dx,

where the integral on the right is taken with respect to Lebesgue measure dx
on Rn.

Lemma 6.12. Let mG be a left-invariant Haar measure on a σ-compact† Lie
group G. Then mG is a smooth measure on G.

Proof. Let G be a σ-compact Lie group with Lie algebra g and suppose
that δ0 > 0 is small enough to ensure that v 7→ exp(v) is a diffeomorphism
from the neighbourhood Bg

4δ0
of 0 ∈ g to a neighbourhood U ′ of I ∈ G. Write

log : U ′ −→ Bg

4δ0

for the smooth inverse of the map exp |Bg

4δ0

, and set U = expBg

δ0
. Since G

is σ-compact we may write

G =
∞⋃

k=1

gkU.

We define Uk = gkU and ψk : Bg

δ0
→ Uk by ψk(v) = gk exp(v) for k > 1.

Fix a Lebesgue measure on g, denoted dv. We claim that there exists a
smooth function ρ : Bg

δ0
→ R>0 such that the left Haar measure mG on G

satisfies
∫

Uk

f(g) dmG(g) =

∫

U

f(gku) dmG(u) =

∫

Bg

δ0

f (gk exp(v)) ρ(v) dv

for any bounded measurable function f defined on Uk and for all k > 1.
To define ρ we first recall that (v, w) 7→ v ∗ w = log(exp(v) exp(w)) is a

smooth map wherever it is defined.‡ Fix v, define the map φv : w 7→ v ∗ w,
and let Dφv(w) denote the total derivative of φv at w. We define

ρ(v) = (det (Dφv(0)))
−1
, (6.11)

which is smooth on Bg

4δ0
by construction. Also notice that the derivative of

the map (v, w) 7→ v ∗w at 0 is simply (v, w) 7→ v+w, so we may assume (by
choosing δ0 smaller if necessary) that

† We note that connectedness implies σ-compactness: If U < G is a symmetric neighbour-
hood of the identity with compact closure, then

⋃∞
n=1 U

n is an open subgroup. If G is
connected, this forces G =

⋃∞
n=1 U

n and so G is σ-compact.
‡ For example, for v lying in the set Bg

4δ0
and any w chosen small enough to ensure

that exp(v) exp(w) ∈ expBg

4δ0
.
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Bg

δ0
∗Bg

δ0
⊆ Bg

3δ0
.

Now let f be a measurable bounded function on G that vanishes outside of U ,
and fix v0 ∈ Bg

δ0
. Then

∫

(−v0)∗B
g

δ0

f(exp(v0) exp(v))ρ(v) dv

=

∫

(−v0)∗B
g

δ0

f(exp(v0 ∗ v))ρ(v0 ∗ v)
det(Dφv0∗v(0))

det(Dφv(0))
dv (6.12)

by the definition of ρ in (6.11). Since

φv0∗v(w) = log (exp(v0) exp(v) exp(w)) = φv0(φv(w))

for all v, v0 ∈ Bg

δ0
and all sufficiently small w ∈ g, we may apply the chain

rule to obtain

det (Dφv0∗v(0)) = det (Dφv0 (v)) det (Dφv(0)) ,

and deduce that the Jacobian of φv0(v) = v0 ∗ v at v takes the form

Jφv0
(v) =

det(Dφv0∗v(0))

det(Dφv(0))
.

Applying the substitution v′ = v0 ∗ v in (6.12) gives

∫

(−v0)∗B
g

δ0

f(exp(v0) exp(v))ρ(v) dv =

∫

Bg

δ0

f(exp(v′))ρ(v′) dv′. (6.13)

This ‘translation invariance’ for functions with support near I is the key step
in proving the claim and the lemma.

Choose a partition {P1, P2, . . . } of G with Pk ⊆ Uk = gkU for all k > 1,
and define a measure m on G by the formula

m(B) =

∞∑

k=1

∫
1B∩Pk

(
gk exp(v)

)
ρ(v) dv

for any measurable set B ⊆ G. First note that this clearly defines a measure
because each summand defines a measure. We prove first that this measurem
is independent of the choice of the points gk and the partition {P1, P2, . . . }.
Suppose therefore that

G =

∞⋃

ℓ=1

U ′
ℓ
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with U ′
ℓ = g′ℓU for all ℓ > 1 and {P ′

1, P
′
2, . . . } is a partition of G with P ′

ℓ ⊆ U ′
ℓ

for all ℓ > 1. Taking the common refinement of the two partitions we have

m(B) =
∑

k,ℓ:P
k
∩P ′

ℓ
6=∅

∫
1

B∩P
k
∩P ′

ℓ

(gk exp(v))ρ(v) dv

for all measurable B ⊆ G. Fix a pair (k, ℓ) with Pk ∩ P ′
ℓ 6= ∅. Choose a

point vk,ℓ ∈ Bg

δ0
so that

gk,ℓ = gk exp(vk,ℓ) ∈ Pk ∩ P ′
ℓ

and define f(u) = 1

B∩P
k
∩P ′

ℓ

(gku) so that f vanishes outside of U . Apply-

ing (6.13) with v0 = vk,ℓ we obtain

∫

Bg

δ0

1

B∩P
k
∩P ′

ℓ

(gk exp(v))ρ(v) dv =

∫

(−vk,ℓ)∗B
g

δ0

1

B∩P
k
∩P ′

ℓ

(gk,ℓ exp(v))ρ(v) dv

=

∫

Bg

3δ0

1

B∩P
k
∩P ′

ℓ

(gk,ℓ exp(v))ρ(v) dv

and so

m(B) =
∑

k,ℓ:P
k
∩P ′

ℓ
6=∅

∫

Bg

3δ0

1

B∩P
k
∩P ′

ℓ

(gk,ℓ exp(v))ρ(v) dv,

where the partitions {P1, P2, . . . } and {P ′
1, P

′
2, . . . } appear symmetrically,

which implies the claimed independence.
Now let B ⊆ G be measurable and g ∈ G. Then

m(gB) =

∞∑

k=1

∫
1gB∩Pk

(gk exp(v))ρ(v) dv

=

∞∑

k=1

∫
1B∩g−1Pk

(
g−1gk exp(v)

)
ρ(v) dv = m(B)

since {g−1P1, g
−1P2, . . . } is a partition with g−1Pk ⊆ g−1Uk = U ′

k = g−1gkU
for all k > 1 and this translated partition can also be used to define the
measure m.

Using the independence of m from the choice of the partition it is easy to
see that m is locally finite and positive on non-empty open sets. Thus m is
smooth and is a left Haar measure on G, giving the lemma. �
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Notes to Chapter 6

(28)(Page 156) The following example to illustrate this is taken from Walters [202,
Sect. 7.2]. Let d1 be the usual metric on X = (0,∞); define another metric d2 by set-
ting d2(x, y) = | log x − log y|. Notice that d1 and d2 define the same topology on X.
Since T : (X, d2) → (X, d2) is an isometry, hd2

(T ) = 0. On the other hand,

max
06j6n−1

{d1(T
jx, T jy)} = 2n−1|x− y|,

so the cardinality of an (n, 1
2k

)-spanning set for any compact sub-interval with non-empty
interior is ≫ 2n. It follows that hd1

(T ) > log 2, showing that the topological entropy
depends on the uniform equivalence class of the metric, not just the equivalence class.
(29)(Page 157) Lemma 5.21 is shown by Adler, Konheim and McAndrew [5]; Lemma 5.22
is shown by Goodwyn [75] (both have a purely topological argument, without the use of a
metric: as pointed out by Goodwyn, even for compact topological spaces it is necessary to
assume that the spaces are Hausdorff to know that N(U ×V ) = N(U )×N(V )). Lemma 6.4
is taken from Bowen [24]; the possible non-additivity over products is missed in [24] and
corrected in [25]. The only obstacle to additivity is that we cannot pass from the inequal-
ity an > bn + cn to the inequality limsupn→∞ an > lim supn→∞ bn + limsupn→∞ cn
without additional hypotheses.
(30)(Page 164) This idea was developed by Bowen [24], [25]; he used it to compute the
topological entropy of affine maps of Lie groups and other homogeneous spaces, and to
show that Haar measure is maximal for affine maps. Much of the material in Section 6.3
comes from [24]. Theorem 6.9 (the generalization of Theorem 1.32 to automorphisms of
the r-torus) was shown for r = 2 by Sinăı [187]; the general case was stated in [187] and
in a paper of Genis [68]. Arov [10] gave a proof as part of his calculation of the entropy
of endomorphisms of solenoids (these are generalizations of the torus). Berg [11] gave an
independent proof using different methods. Finally Yuzvinskĭı [212] computed the entropy
of any compact group endomorphism. For modern treatments, see Walters [202, Chap. 7] for
toral automorphisms; Lind and Ward [123] for automorphisms of the solenoid, as discussed
in Section C.4.
(31)(Page 167) There are several ways to do this; the path chosen here is done so in order
to relate the calculation for each block directly to a real part of the space on which the
matrix acts, rather than a different complexified space.


