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Setting: T : X → X a continuous map on a compact metric space.

Let H(U) be the least cardinality of a subcover of an open cover U .
Then H(U ∨ T−1U ∨ · · · ∨ T−n+1U) grows like enh(T ) for some
constant h(T ) ⩾ 0.

This growth rate h(T ) is the ‘topological entropy’ of T .

Algebraic example: X = Td , T = TA given by an integer matrix A
in SLd(Z). Then

h(TA) =
∑

eigenvalues λ

log+ |λ|,

the ‘Mahler measure’ of the characteristic polynomial of A.
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Can h(TA) be small and positive?

Specifically, can it lie in the interval (0, 0.1623569 . . . )? This is
‘Lehmer’s problem’, open since the 1930s.

It means we cannot entirely describe the measurable structure of
group automorphisms.
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A map T : X → X has two associated integer sequences:

▶ its ‘count of periodic points’
(
FT (n)

)
, where

FT (n) = |{x ∈ X | T nx = x};
▶ its ‘count of closed orbits’,

(
OT (n)

)
.

Any integer sequence is
(
OT (n)

)
for some smooth map T — there

are no rules unless you fix X .

However
(
FT (n)

)
has rules to obey...

(1, 3, 4, 7, 11, 18, . . . )✓
(1, 1, 2, 3, 5, 8, . . . )✗

(5, 5, 10, 15, 25, 40, . . . )✓



A map T : X → X has two associated integer sequences:

▶ its ‘count of periodic points’
(
FT (n)

)
, where

FT (n) = |{x ∈ X | T nx = x};
▶ its ‘count of closed orbits’,

(
OT (n)

)
.

Any integer sequence is
(
OT (n)

)
for some smooth map T — there

are no rules unless you fix X .

However
(
FT (n)

)
has rules to obey...

(1, 3, 4, 7, 11, 18, . . . )✓
(1, 1, 2, 3, 5, 8, . . . )✗

(5, 5, 10, 15, 25, 40, . . . )✓



A map T : X → X has two associated integer sequences:

▶ its ‘count of periodic points’
(
FT (n)

)
, where

FT (n) = |{x ∈ X | T nx = x};
▶ its ‘count of closed orbits’,

(
OT (n)

)
.

Any integer sequence is
(
OT (n)

)
for some smooth map T — there

are no rules unless you fix X .

However
(
FT (n)

)
has rules to obey...

(1, 3, 4, 7, 11, 18, . . . )✓
(1, 1, 2, 3, 5, 8, . . . )✗

(5, 5, 10, 15, 25, 40, . . . )✓



A map T : X → X has two associated integer sequences:

▶ its ‘count of periodic points’
(
FT (n)

)
, where

FT (n) = |{x ∈ X | T nx = x};
▶ its ‘count of closed orbits’,

(
OT (n)

)
.

Any integer sequence is
(
OT (n)

)
for some smooth map T — there

are no rules unless you fix X .

However
(
FT (n)

)
has rules to obey...

(1, 3, 4, 7, 11, 18, . . . )✓

(1, 1, 2, 3, 5, 8, . . . )✗
(5, 5, 10, 15, 25, 40, . . . )✓



A map T : X → X has two associated integer sequences:

▶ its ‘count of periodic points’
(
FT (n)

)
, where

FT (n) = |{x ∈ X | T nx = x};
▶ its ‘count of closed orbits’,

(
OT (n)

)
.

Any integer sequence is
(
OT (n)

)
for some smooth map T — there

are no rules unless you fix X .

However
(
FT (n)

)
has rules to obey...

(1, 3, 4, 7, 11, 18, . . . )✓
(1, 1, 2, 3, 5, 8, . . . )✗

(5, 5, 10, 15, 25, 40, . . . )✓



A map T : X → X has two associated integer sequences:

▶ its ‘count of periodic points’
(
FT (n)

)
, where

FT (n) = |{x ∈ X | T nx = x};
▶ its ‘count of closed orbits’,

(
OT (n)

)
.

Any integer sequence is
(
OT (n)

)
for some smooth map T — there

are no rules unless you fix X .

However
(
FT (n)

)
has rules to obey...

(1, 3, 4, 7, 11, 18, . . . )✓
(1, 1, 2, 3, 5, 8, . . . )✗

(5, 5, 10, 15, 25, 40, . . . )✓



Problem: characterize those linear recurrence sequences that
‘count periodic points’.

Sample results:

▶ (1, a, 1 + a, 1 + 2a, 2 + 3a, 3 + 5a, . . . ) counts periodic points
⇐⇒ a = 3;

▶ binary recurrences understood;

▶ some ‘dominant root’ cases understood;

▶ much deeper results known for T of a specific type (a ‘shift of
finite type’).
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Perplexing problem: characterize those integer sequences that
‘count periodic points’ for some group automorphism.

Modest knowledge:

▶ ‘local’ (at each prime) conditions are necessary but not
sufficient;

▶ toral examples are deceptive;

▶ linear recurrence + divisibility are not sufficient: no group
automorphism has (1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . . ) as periodic
point count.
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We have
FT (n) =

∑
d |n

dOT (d),

which can be expressed in multiple ways using the ‘dynamical zeta
function’ and the ‘orbit Dirichlet series’:

OT (n) =
∑
d |n

µ(n/d)FT (d)

ζT (z) := exp
∑
n⩾1

zn

n FT (n) =
∏
n⩾1

(1− zn)−OT (n)

dT (z) :=
∑
n⩾1

OT (n)
nz =

1

ζ(z + 1)

∑
n⩾1

FT (n)/n
nz
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‘Dynamical prime number theorem’: analytic properties of ζT
or dT (meromorphic extensions past radius / abscissa of
convergence) + ‘Tauberian’ theorems =⇒ asymptotics for other
counting functions.

A baby case
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If T : X → X has exactly one orbit of each length, then
dT (z) = ζ(z).

Nature of ζ’s singularity at z = 1

=⇒
∑
n⩽N

OT (n) ∼ N.

Hardy / Ramanujan formula for
∑

n⩾1
σa(n)σb(n)

nz

=⇒ dT×T (z) =
ζ2(z)ζ(z−1)

ζ(2z) ,

=⇒
∑
n⩽N

OT×T (n) ∼ π2

12N
2.
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However, dT×T×T shows new phenomena: abscissa of convergence
at 3, meromorphic extension to ℜ(z) > 1 — but a natural
boundary at ℜ(z) = 1.

We find∑
n⩽N

OT×T×T (n) ∼ π2ζ(3)
18 N3︸ ︷︷ ︸

expected

×
∏
p

(1 + p−5 + 2p−2 + 2p−3)︸ ︷︷ ︸
weird

.
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Toral automorphisms have rational zeta functions...

but the
simplest non-toral compact abelian group automorphisms have
periodic point counts like

FT (n) = expected formula× effect of lifting,

for example
(2n − 1)︸ ︷︷ ︸
‘ det(An−I )‘

× |2n − 1|3︸ ︷︷ ︸
some orbits killed

.

A periodic point sequence
(
2n − 1

)
has dynamical zeta function

1−z
1−2z .

The expression
(
(2n − 1)× |2n − 1|3

)
gives a dynamical zeta

function with a natural boundary at |z | = 1
2 .
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Conjecture: The zeta function of a compact group automorphism
is either rational or admits a natural boundary.

If true (many cases are known), this is tied up with the elusive
interaction between the group structure and dynamics.

Cautionary example: there is a smooth map T with
FT (n) =

(2n
n

)
for all n ⩾ 1, and hence with an irrational algebraic

zeta function.
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Time-changes: If (an) is a sequence that counts periodic points,
then h ‘preserves realisability’ if (ah(n)) is also a sequence that
counts periodic points.

The set of such h is a monoid M under composition.

Theorem: M ∩ {polynomials} = {monomials}.
Both inclusions are a bit involved. This means (for example) that

(21, 24, 29, 216, . . . )

counts periodic points for some smooth map, and explains various
combinatorial identities.

Nonetheless...

Theorem: M is uncountable.
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