
Appendix A: Topological Groups and
Homogeneous Spaces

A.1 Metrics on Topological Groups

Definition A.1. A collection U of neighbourhoods of a point x in a topological
space is a neighbourhood basis if for any open neighbourhood V ∋ x there is some
neighbourhood U ∈ U with U ⊆ V .

A topological space is first countable if every point has a countable neigh-
bourhood basis.

A metric space (X, d) is automatically first countable, since the open neigh-
bourhoods B1/n(x) for n ∈ N form a countable neighbourhood basis at x.(39)

Recall that a topological group is a group G together with a Hausdorff topol-
ogy T with respect to which the maps g 7→ g−1 and (g, h) 7→ gh are continuous.
This means that

❼ if U is a neighbourhood of a product gh ∈ G, then there are neighbour-
hoods U1 ∋ g and U2 ∋ h with U1U2 ⊆ U ;

❼ if U is an open neighbourhood of g ∈ G, then there is an open neighbour-
hood V of g−1 with V −1 ⊆ U .

Lemma A.2 (Birkhoff–Kakutani [5], [76]). The following properties of a

topological group G are equivalent.(40)

(1) G has a left-invariant metric, that is a metric d giving the topology which

additionally has d(gh1, gh2) = d(h1, h2) for all g, h1, h2 ∈ G.

(2) Each g ∈ G has a countable basis of open neighbourhoods.

(3) The identity 1 ∈ G has a countable basis of open neighbourhoods.

Proof. It is clear that (1) ⇒ (2) ⇔ (3) since the rotation g 7→ gh is a home-
omorphism of G for any h ∈ G. So we will assume (2). Let U = {V1, V2, . . .}
be a countable neighbourhood basis at the identity I consisting of open sets.
Without loss of generality we may assume that

V1 ⊇ V2 ⊇ · · · ⊇ {I},
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324 Appendix A: Topological Groups

and since G is Hausdorff we have

⋂

n⩾1

Vn = {I}.

We wish to construct sets that mimic the behaviour of nested metric open
sets. To that end we use the continuity properties of the two group operations
to construct from the sequence of sets (Vn) another nested sequence of open
neighbourhoods of the identity

U1 = G ⊇ U1/2 ⊇ U1/22 ⊇ · · · ⊇ {I}

with the property that U−1
1/2n = U1/2n (each set is symmetric), U1/2n ⊆ Vn,

and U1/2n+1U1/2n+1 ⊆ U1/2n for each n ⩾ 1. It follows that

⋂

n⩾0

U1/2n ⊆
⋂

n⩾1

Vn = {I}. (A.1)

For any rational of the form a
2n with a ∈ {1, . . . , 2n − 1} and n ∈ N we define

Ua/2n = U1/2n1 · · ·U1/2nr

where
a

2n
= 2−n1 + · · ·+ 2−n

r

is the binary expansion of a
2n arranged in the natural order with

1 ⩽ n1 < · · · < nr.

By construction†

Ua/2nU1/2n ⊆ U(a+1)/2n (A.2)

for n ⩾ 1 and 1 ⩽ a ⩽ 2n−1. Hence the sets Ua/2n are nested in the sense that‡

0 < a < b ⩽ 2n ⇒ Ua/2n ⊆ Ub/2n .

Using this neighbourhood basis we can define a function f on G by

f(x) = inf{ a
2n | x ∈ Ua/2n}.

† If there is no carry in the binary addition of a/2n and 1/2n this is just the definition, if
there is a carry one uses the defining properties of U1/2n .
‡ Suppose a = 2−n1 + · · · + 2−n

r . If b = a + c
2nr+1

for an integer c ⩾ 1 this follows simply

from the definition of Ub. If b = a+ 1
2nr

this follows from (A.2). If b > a+ 1
2nr

the conclusion
follows from the latter case and induction on nr.
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A.1 Metrics on Topological Groups 325

We claim that f has the following properties†:

(a) f(g) > 0 for g ∈ G∖{I} and f(I) = 0;
(b) the collection

{
{g ∈ G

∣
∣ f(g) < 1

n} | n ∈ N
}
form a neighbourhood base at

the identity I ∈ G; and
(c) for any ε > 0 there is an open neighbourhood U ∋ e such that

|f(hg)− f(h)| ⩽ ε

for all g ∈ U and h ∈ G.

Property (b) holds since the collection of sets {Ua/2n} form a neighbourhood
basis at the identity, and (a) follows from (A.1). The uniform continuity prop-
erty (c) is a consequence of (A.2). Indeed if ε > 0 is arbitrary we may choose
some n with 1

2n < ε and set U = U1/2n+1 . We let h ∈ G and g ∈ U be ar-

bitrary. If f(h) ∈ [ a
2n+1 ,

a+1
2n+1 ) then h ∈ U(a+1)/2n+1 , and so hg ∈ U(a+2)/2n+1

which implies f(hg) < a+2
2n+1 ⩽ f(h) + 2

2n+1 < f(h) + ε. Using U−1 = U the
inequality f(h) < f(hg) + ε follows from the former.

We now define a metric-like function d
f : G×G → [0,∞) by

d
f (g1, g2) = sup

h∈G
|f(hg1)− f(hg2)|.

Clearly
d
f (g1, g2) = d

f (g2, g1)

and
d
f (hg1, hg2) = d

f (g1, g2)

for all g1, g2, h ∈ G, df (g, g) = 0, and d
f obeys the triangle inequality. That

is, df is a left-invariant pseudometric on G. Now assume that d
f (g1, g2) = 0.

Then f(g−1
1 g2) ⩽ d

f (I, g−1
1 g2) = 0 implies that g1 = g2 by (a). Hence we see

that df is a metric on G.
It remains to show that the metric topology induced from d

f is the origi-
nal group topology. As both topologies make G into a topological group it is
sufficient to study the neighbourhoods of I with respect to both topologies.
Any h ∈ G with d

f (h, I) < 1
2n satisfies h ∈ U1/2n , which shows that a neigh-

bourhood in the original topology is also a neighbourhood in the the metric
topology. Now let ε > 0 and let U be a neighbourhood as in the uniform conti-
nuity property (c). Then d

f (h, I) ⩽ ε for all h ∈ U , which shows that a metric
neighbourhood is also a neighbourhood in the original topology. □

Notice in particular that this means the groups encountered in this volume,
like GLd(R) and SLd(R), have left-invariant metrics that give the group topol-
ogy.

† Notice that the existence of such a function would follow easily from the conclusion we
seek. If G has a left-invariant metric d defining its topology, then the function f defined
by f(g) = d(e, g) has the three properties claimed.
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326 Appendix A: Topological Groups

Exercise A.1. Let d ⩾ 2. Show that G = SLd(R) cannot be equipped with
a metric that gives the standard topology and is bi-invariant, that is, satis-
fies d(gh1, gh2) = d(h1, h2) = d(h1g, h2g) for all g, h1, h2 ∈ G.

A.2 Invariant Measures on Quotients of Groups

Proposition A.3. Let G be a locally compact, σ-compact, metrizable group and

let H < G be a closed subgroup. Suppose that both G and H are unimodular.

Then there exists a non-trivial locally finite G-invariant measure mG/H on G/H
and this measure is unique up to scalar multiples.

We refer to the work of Knapp [87] or Raghunathan [121] for a more general
treatment of the existence of invariant measure on quotients. Concerning the
necessity of the assumptions in Proposition A.3 we simply note that P1(R)
carries a transitive action ofG = SL2(R) and so is of the formG/H but possesses
no invariant measure.

A.2.1 Existence of Cross-Sections

An important tool for us will be the existence of a cross-section for G/H. Set-
theoretically a cross-section is simply a subset of G containing exactly one
element from each coset of H, which is readily obtained using the axiom of
choice. Where the construction becomes more difficult—and far more useful—
is if additional measure-theoretic or topological requirements are sought in the
cross-section.

Definition A.4 (Cross-section). We say that S ⊆ G is a cross-section

for H < G if

(i) S is measurable,
(ii) |S ∩ gH| = 1 for all g ∈ G, and
(iii) S ∋ s 7→ sH ∈ G/H is a Borel isomorphism.

Lemma A.5 (Cross-sections exist). Let H < G be a closed subgroup of

the group G as in Proposition A.3. Then there exists a cross-section S ⊆ G
for H. Moreover, there exists a subset Slocal ⊆ S with compact closure such

that SlocalH ⊆ G/H has a non-trivial interior.

We refer to [40, Sec. 5.5.4] for a general proof of Lemma A.5, but explain that
for a Lie group (or for a closed linear p-adic group) it is quite straightforward to
construct such a cross-section S ⊆ G for H < G. Indeed, let g be the Lie algebra
of G and h ⊆ g be the Lie algebra of H. Moreover, let V ⊆ g be a subspace so
that g = V ⊕ h. We define a map
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A.2 Invariant Measures on Quotients of Groups 327

φ : V × h −→ G

(v, w) 7−→ exp(v) exp(w).

As the derivative of φ is the linear isomorphism

h× V ∋ (v, w) 7−→ v + w ∈ g

it follows that there exists δ0 > 0 such that the restriction of φ to BV
δ0

× Bh

δ0

is a diffeomorphism onto its image. Let Slocal = exp(BV
δ ) for δ ∈ (0, δ0) de-

termined as follows. Suppose sj = exp(vj) for vj ∈ BV
δ satisfy s1H = s2H.

Then exp(v1) = exp(v2)h for some h ∈ H implies for sufficiently small δ > 0
that

h = exp(v2)
−1 exp(v1) = exp(w)

for some w ∈ Bh

δ0
, which in turn implies w = 0 and v1 = v2.

To summarize, (for δ > 0 as above) the map

Slocal ∋ s 7−→ sH ∈ O = SlocalH ⊆ G/H

is continuous, injective, and has an open image O. Moreover, Slocal is σ-compact
which also implies that the map is a Borel isomorphism from Slocal to O. For
any g ∈ G we may translate the above and obtain the fact that

gSlocal ∋ gs 7−→ gsH ∈ gO ⊆ G/H

is a Borel isomorphism with open image gO. As G is σ-compact we can
cover G/H by countably many translates gnO for n ∈ N. We assume g1 = e and
define

S =

∞⊔

n=1

(

gnSlocal∖

n−1⋃

k=1

gkSlocalH
)

⊇ Slocal.

It then follows from the construction that S ⊆ G is a cross-section for G (see
also the proof of Lemma 1.20 or [40, Lem. 5.52]).

A.2.2 Two Actions on S × H

Let S ⊆ G be a cross-section for H < G as in Lemma A.5. The properties of S
imply that the map

φ : S ×H −→ G = SH

(s, h) 7−→ sh

is a Borel isomorphism. Indeed, φ is continuous and the inverse can be obtained
as φ−1(g) =

(
p(gH), p(gH)−1g

)
, where p : G/H → S is the measurable selection

map satisfying gH ∩ S = {p(gH)} for all gH ∈ G/H.
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328 Appendix A: Topological Groups

We now consider two actions on G and use φ to transport these to S × H.
Firstly we let H act on G on the right and this simply corresponds to the
right action of H on the second factor in S × H (without changing the first
coordinate).

Moreover, G acts on itself on the left which descends to the natural action
of G on G/H ∼= S. Within S we have the action g.s = p(gsH) for g ∈ G
and s ∈ S. The action of g ∈ G on S ×H therefore has the form

g : (s, h)
φ

7−→ sh
g.
7−→ gsh

φ−1

7−→
(
p(gsH)
︸ ︷︷ ︸

=g.s

, p(gsH)−1gs
︸ ︷︷ ︸

=c(g,s)

h
)
.

That is, g acts on the first coordinate s ∈ S corresponding to the action of g
on G/H ∼= S and simultaneously multiplies the second coordinate in H on the
left by an element c(g, s) ∈ H that depends on g and the first coordinate s ∈ S.
We note that the function c(·, ·) is called an (exact) cocycle.

A.2.3 Existence and Uniqueness

Lemma A.6. Let H < G be as in Proposition A.3 and let S ⊆ G be a cross-

section for H. Using the Borel isomorphism φ : S×H → G the Haar measure mG

considered on S×H has the form µ×mH for a measure µ on S with µ(BS) < ∞
for any BS ⊆ S with compact closure.

Proof. For a measurable set BS ⊆ S with compact closure we define

ν(B) = mG

(
φ(BS ×B)

)

for measurable B ⊆ H. Using our discussions in Section A.2.2 and in particular
the right action of H on G it follows that ν defines a (right) invariant measure
on H. Moreover, if B ⊆ H has compact closure then φ(BS × B) = BSB has
compact closure in G and ν(B) < ∞ follows. If ν vanishes for a set B ⊆ H
with non-empty interior, then the invariance implies that ν(K) = 0 for any
compact K ⊆ H and hence ν(H) = 0 follows from σ-compactness.

The uniqueness of the Haar measure on H up to scalar multiples now implies
in any case that ν = µ(BS)mH for a scalar µ(BS) ∈ [0,∞). By varying BS this
defines a measure µ on S so that

mG

(
φ(BS ×B)

)
= µ(BS)mH(B)

for BS ⊆ S and B ⊆ H. Initially this holds for BS ⊆ S with compact closure,
but σ-compactness of G means that this condition can be dropped. □

Proof of existence in Proposition A.3. Let µ be the measure on the
quotient S ∼= G/H from Lemma A.6, let f ⩾ 0 be measurable on S and g ∈ G.
Fix some compact K ⊆ H with non-empty interior. Then
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∫

S

f(g.s) dµ(s) =
1

mH(K)

∫

S×K

f(g.s)1K(h) dµ×mH(s, h)

=
1

mH(K)

∫

S×K

f(g.s)1K

(
c(g, s)h

)
dµ×mH(s, h)

by Fubini’s theorem and the invariance of mH . Moreover µ ×mH corresponds
to mG and the simultaneous action of g on s ∈ S and multiplication of h on the
left by c(g, s) corresponds to left multiplication by g on G. Therefore we obtain

∫

S

f(g.s) dµ =
1

mH(K)

∫

S×K

f(s)1K(h) dµ×mH(s, h) =

∫

S

f dµ.

Using the isomorphism G/H ∼= S we obtain a G-invariant measure µ on G/H.
Moreover, by construction µ(SlocalH) < ∞. As SlocalH has non-empty inte-

rior, invariance implies that µ(K) < ∞ for any compact K ⊆ G/H. □

Proof of uniqueness in Proposition A.3. Suppose µ′ is a non-trivial locally
finite G-invariant measure on G/H. Since S ∼= G/H we can move µ′ to S.
Replacing µ as in Lemma A.6 by µ′ we obtain a σ-finite G-invariant measure m′

on S × H ∼= G—this follows from the same calculation as was used in the
existence proof above. We claim that there exists a subsetBH ⊆ H with compact
closure such that SlocalBH has non-empty interior in G. Indeed by Lemma A.5
there exists an open subset O ⊆ G with compact closure such that

OH ⊆ SlocalH.

Let BH = (S−1
localO) ∩H. For g ∈ O with g = sh, s ∈ Slocal, and h ∈ H we then

have h ∈ BH as claimed. As SlocalH is compact, it follows that m′(SlocalBH) is
finite. Using invariance it follows that m′(K) < ∞ for all compact K ⊆ G. By
uniqueness of Haar measure on G the measure m′ is therefore a multiple of mG,
which shows that µ′ is a multiple of the measure µ constructed above. □

Notes to Appendix A

(39)(Page 323) First countable topological spaces are not automatically metrizable. An ex-
ample to see this is the Sorgenfrey line [147], the space R with the topology formed by using
the half-open intervals [a, b) with a < b as basis. It is clear that this is first countable, since
the sets [a, a + 1

n
) for n ∈ N form a countable neighbourhood basis at a. Much less clear is

the fact that it is not metrizable, and we refer to Kelley [80] for the details.
(40)(Page 323) If dℓ is a left-invariant metric then dr(x, y) = dℓ(x

−1, y−1) is a right-invariant
metric defining the same topology. A bi-invariant metric with

d(xgy, xhy) = d(g, h)

for all x, y, g, h ∈ G only exists in special cases: We refer to [45, Lem. C.2] for the simple case

that a compact metrizable group has a bi-invariant metric, and [45, Ex. C.3] for an explanation
of why GL2(C) has no bi-invariant metric. A striking result of Milnor [110] is that a connected

Page: 329 job: AAHomogeneousDynamics macro: svmono.cls date/time: 27-Oct-2025/14:38



330 NOTES TO APPENDIX A

Lie group admits a bi-invariant metric if and only if it is isomorphic to K × Rn for some
compact Lie group K. The proof of Lemma A.2 given here is taken from the monograph of
Montgomery and Zippin [112, Sec. 1.22] and Tao’s blog [150].
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