
Chapter 4

Existence of Generators

We have seen that the existence of a finite (or a finite entropy) generator is
helpful in several settings. In the Kolmogorov–Sinăı theorem (Theorem 1.21)
a generator allows us to calculate the entropy of a dynamical system using
only the generator. Moreover, in Theorem 2.27 the Pinsker σ-algebra of a
dynamical system is obtained as the tail σ-algebra of a generator. In this
chapter we reverse the question and ask whether it is always possible to find
a finite (or finite entropy) generator.

4.1 Countable Generators

The main result of this section is the following theorem of Rokhlin [173], which
we will strengthen under the additional hypothesis of ergodicity in the next
section. We recall that (X,B, µ, T ) is aperiodic if µ

(
{x ∈ X | T kx = x}

)
= 0

for all k ∈ Zr{0}.

Theorem 4.1 (Finite entropy generator). Let (X,B, µ, T ) be an in-
vertible aperiodic measure-preserving system on a Borel probability space.
If hµ(T ) <∞, then there exists a countable generator ξ with finite entropy. In
fact, for every ε > 0 there is a countable generator ξ with Hµ(ξ) < hµ(T )+ε.

4.1.1 Entropy-free Construction

We introduce in this subsection a method for the construction of generators
by giving a simpler result, whose proof will serve as a template for the proof
of Theorem 4.1.
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110 4 Existence of Generators

Proposition 4.2 (Existence of generators). Let (X,B, µ, T ) be an aperi-
odic invertible measure-preserving system on a Borel probability space. Then
there exists a countable partition ξ with B =

µ
ξ∞−∞.

In the proofs of this chapter we will identify partitions with measurable
functions (called codes) whose range or alphabet is countable. In the proof
below we will use some ad hoc language for the code, but in the proof of
Theorem 4.1 we will choose the language more carefully.

Proof of Proposition 4.2. As (X,B, µ) is a Borel probability space, there
exists an increasing sequence of finite partitions (ξ(k))k>1 with ξ(k) ր B

as k → ∞. Let (Nk)k>1 be any sequence of natural numbers with Nk > k
for all k > 1. As (X,B, µ, T ) is aperiodic, for any k > 1 there exists by the
Rokhlin–Halmos lemma (Theorem A.13) and Exercise A.6.2 a set Qk, which
we will refer to as a marker set, with

µ

(⋃

n∈Z

T−nQk

)
= 1

and with the property that the first return of a point x ∈ Qk to Qk is larger
thanNk (that is, x ∈ Qk implies that Tx, T 2x, . . . , TNkx /∈ Qk). In particular,
we therefore have

µ(Qk) 6
1
Nk

6 1
k . (4.1)

We claim that we can find these sets in such a way that in addition we
have

Q1 ⊇ Q2 ⊇ · · · .
In fact we may simply apply the Rokhlin–Halmos lemma to find Q1. Then
consider the induced transformation

TQ1 : Q1 → Q1,

which is again aperiodic and invertible. Applying the Rokhlin–Halmos lemma
again to TQ1 gives the set Q2 ⊆ Q1 such that the first return under TQ1 (and
hence also under T ) is larger than N2. Applying this argument inductively
gives the claim.

Notice that

µ

(
∞⋂

k=1

Qk

)
= 0

by (4.1). We will ignore the orbit of this set, which is a null set. We now
define our code by

c(x)=

{
0 x /∈Q1, and(
k,
(
n1(x),[x]ξ(1)n1(x)−1

0

)
, . . .,

(
nk(x),[x]ξ(k)nk (x)−1

0

))
x∈QkrQk+1,
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where nk : Qk → N is the first return time function of x ∈ Qk to Qk.
It is clear by construction that c has countable range. We claim that the

associated countable partition is a generator. Suppose therefore that

c(T nx) = c(T ny)

for all n ∈ Z. We need to show that this almost surely implies that x = y.
Let k > 1 be arbitrary. If x ∈ Qk, then c(x) = c(y) implies that y ∈ Qk

and that [x]ξ(k) = [y]ξ(k). If x /∈ Qk, then there exists a minimal n > 1 with

T−nx ∈ Qk

(and, equivalently, with T−ny ∈ Qk). As n is minimal we have nk (T
−nx) > n.

This implies that

[T−nx]
ξ(k)

n1(x)−1
0

= [T−nx]
ξ(k)

n1(x)−1
0

since c(T−nx) = c(T−ny). In particular, we have [x]ξ(k) = [y]ξ(k). As this
holds for all k > 1 and ξ(k)ր B as k →∞, we obtain x = y almost surely,
as required. �

4.1.2 Outline of the Proof of Theorem 4.1

We use the notation and assumptions from the statement of the theorem.
Let ξ(k) ր B be an increasing sequence of finite partitions. Much as in
Section 4.1.1, we wish to construct a generator using the sequence (ξ(k))k>1

via a sequence of marker sets (Qk)k>1 and a sequence of codes ck defined
on the marker sets with values in a countable alphabet. Clearly this time we
need to concern ourselves with the entropy of the constructed partition at
each stage. For the main estimate of the entropy we will use Section 1.2, and
therefore will work with the countable alphabet

⋃
ℓ>1{0, 1}ℓ.

Let ξ(0) = {X} and Ak = ξ(k)∞−∞ for k > 0. Notice that additivity of
dynamical entropy (Proposition 2.19(2)) gives

hµ
(
T, ξ(k)

)
= hµ

(
T, ξ(k) ∨ ξ(k − 1)

)

= hµ
(
T, ξ(k − 1)

)
+ hµ

(
T, ξ(k)

∣∣ξ(k − 1)∞−∞

)
,

for k > 1, and so

hµ(T ) =

∞∑

k=1

hµ
(
T, ξ(k)

∣∣Ak−1

)
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by the Kolmogorov–Sinăı theorem (Theorem 2.20).
We use this to split our argument into countably many constructions of

codes c = ck, where at each stage we will work with a fixed finite partition

ξ = ξ(k)

and a fixed T -invariant σ-algebra

A = Ak−1.

Our generator will be easily constructed from the partitions obtained along
the sequence.

4.1.3 Entropy of the First Return Time Partition

In the construction of the codes ck we will need marker sets Qk and the
derived partitions ρQ, whose entropy we now estimate more generally.

Lemma 4.3. Let (X,B, µ, T ) be an invertible measure-preserving system on
a Borel probability space, and let Q ∈ B be a set with positive measure. We
define the first return time partition of Q by

ρQ =
{
XrQ, Q1 = Q ∩ T−1Q, Q2 = Q ∩ T−2QrT−1Q, . . . ,

Qm = Q ∩ T−mQr(T−1Q ∪ · · · ∪ T−(m−1)Q), . . .
}
.

Then Hµ(ρQ) < ∞. Moreover, for every ε > 0 there exists some Nε such
that Hµ(ρQ) < ε if the set Q is such that the first return from Q to Q is
always greater than or equal to Nε.

Proof. By construction, the sets

Q1, Q2, TQ2, . . . , Qm, TQm, . . . , T
m−1Qm, . . .

are all disjoint, so
∞∑

m=1

mµ(Qm) 6 1, (4.2)

which will give us the entropy estimate. Fix ε > 0 and split the sum defining
the entropy of ρQ as



4.1 Countable Generators 113

Hµ(ρQ) = −µ(XrQ) logµ(XrQ)−
∑

µ(Qm)>e−mε

µ(Qm) logµ(Qm)

−
∑

µ(Qm)<e−mε

µ(Qm) logµ(Qm)

6 −µ(XrQ) logµ(XrQ) + ε
∑

m>1

mµ(Qm) + ε
∑

m>1

me−mε + C,

where we have used monotonicity of x 7→ − log x in the first sum, monotonic-
ity of x 7→ −x log x for small values of x in the second sum, and where C
denotes an absolute constant to bound the finitely many terms for which the
latter monotonicity may fail. Applying this bound with ε = 1 gives the first
claim in the lemma.

Suppose now that the first return time to Q is larger than N . In this
case (4.2) implies that µ(Q) < 1

N . By continuity of the function x 7→ −x log x
we deduce that −µ(XrQ) logµ(XrQ) < ε for large enough N . Also notice
that in this case we can set C = 0 in the entropy estimate above if N is
sufficiently large, giving

Hµ(ρQ) < ε+ ε+ ε
∑

m>N

me−mε.

As the last sum converges, we deduce that Hµ(ρQ) < 3ε for large enough N .
�

4.1.4 Definition of the Code c = cξ,A

Let (X,B, µ, T ) be an invertible measure-preserving system on a Borel prob-
ability space, let ξ be a finite partition, and let A = T−1A be an invariant σ-
algebra. We define in this section the code c = cξ,A with values in the alpha-
bet

⋃
ℓ>1{0, 1}ℓ. We wish to control the average length of the code (that is, the

entropy of the associated partition) by the conditional entropy hµ(T, ξ
∣∣A ).

For this, let ε > 0 be arbitrary and choose M large enough to ensure that

1
M < ε (4.3)

and
M+1
M

1
MHµ

(
ξM−1
0

∣∣A
)
< hµ(T, ξ

∣∣A ) + ε, (4.4)

and then choose N > Nε large enough to ensure that

⌈log2M⌉+ 3M⌈log2 |ξ|⌉
N

+
M

N
< ε, (4.5)



114 4 Existence of Generators

where Nε is chosen as in Lemma 4.3. Finally, choose a set Q ∈ B using the
Rokhlin–Halmos lemma with

µ

(⋃

n∈Z

T−nQ

)
= 1

and with the property that the first return time to Q is bigger than N almost
surely.

We define the code c(x) = cξ,A (x) for x ∈ Q by the tuple

c(x) =

(
[
j(x)

]
2
,
[
ξ
j(x)−1
0 (x)

]
uo
,
[
ξ
M+j(x)−1
j(x) (x)

∣∣A
]
Sh
,

[
ξ
2M+j(x)−1
M+j(x) (x)

∣∣A
]
Sh
, . . . ,

[
ξ
L(x)M+j(x)−1
(L(x)−1)M+j(x)(x)

∣∣A
]
Sh
,

[
ξ
n(x)−1
L(x)M+j(x)(x)

]
uo

)

as explained below, but note that we do not claim that c is prefix-free. In the
definition of c(x) we are using the following notation:

• n(x) is the first return time of x ∈ Qn(x) ⊆ Q to Q, L(x) = ⌊n(x)M ⌋ − 1;
• j(x) ∈ {0, . . . ,M − 1} is chosen as the offset to minimize the partial

ergodic sum

1

L(x)

L(x)−1∑

ℓ=0

Iµ
(
ξM−1
0

∣∣A
)
(T ℓM+j(x)(x)), (4.6)

for the transformation TM ;
• [j(x)]2 denotes the binary expansion of j(x) with added leading zeros to

ensure that the total length of the expansion is precisely ⌈log2M⌉ (which
makes it prefix-free);

• [ξ
j(x)−1
0 (x)]uo denotes an arbitrary (unoptimized) prefix-free code every-

where of length M⌈log2 |ξ|⌉, describing the fragment x, Tx, . . . , T j(k)−1x
of the orbit, say by using a fixed enumeration of ξ and again using the
binary expansion of the corresponding number padded out with trailing
zeros;

• [ξ
(ℓ+1)M+j(x)−1
ℓM+j(x) (x)

∣∣A ]Sh = [ξM−1
0 (T ℓM+j(x)x)

∣∣A ]Sh denotes the Shan-

non code for the partition element of ξM−1
0 containing the point T ℓM+j(x)x

using the conditional measure µA
x in the definition of the Shannon code

(and using some fixed lexicographical order to break potential ties in the
definition of the Shannon code for µA

x in a well-defined manner);
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• and finally, [ξ
n(x)−1
L(x)M+j(x)(x)]uo denotes an arbitrary (unoptimized) prefix-

free code of length 2M⌈log2 |ξ|⌉ describing the remaining fragment of the
orbit of x until the next return to Q, again padded out with trailing zeros.

4.1.5 Properties of the Code cξ,A

We start with some observations about the code cξ,A constructed above.

• If A = N (which it will be at the beginning of the induction), then c
defines a prefix-free code on each set Qn ∈ ρQ. Here n needs to be fixed
to ensure the prefix-free property.
• In general not even that may be true since n(x) does not determine the

Shannon code used to encode [ξ
M+j(x)−1
j(x) (x)

∣∣ A ]Sh (which depends on the

measure µA
x ). We will fix this by a rather simple procedure in Lemma 4.4

below. For example, we may insert after every digit a 0 except at the very
end we put a 1 to signal the end of the code (which also lifts the above
restriction that x needs to belong to a particular Qn).
• By construction and the properties of the Shannon code (see Lemma 1.11)
the length of c(x) for x ∈ Q is bounded by

⌈log2M⌉+3M⌈log2 |ξ|⌉+
L(x)−1∑

ℓ=0

1

log 2
Iµ
(
ξM−1
0

∣∣A
)
(T ℓM+j(x)x)+L(x)

< εN +
1

M

M−1∑

j=0

L(x)−1∑

ℓ=0

1

log 2
Iµ
(
ξM−1
0

∣∣A
)
(T ℓM+jx) +

n(x)

M

<

n(x)−1∑

n=0

(
1

M log 2
Iµ
(
ξM−1
0

∣∣A
)
(T nx) + 2ε

)
,

where we have used (4.5), the choice of j(x) to minimize (4.6), the defi-
nition of L(x) in terms of n(x), the fact that n(x) > N , and (4.3).
• Let ηξ,A be the partition generated by ρQ and the partition defined by

the code cξ,A , where the latter contains XrQ and the various level sets
of the code. Then

ξ∞−∞ ⊆
µ

A ∨ (ηξ,A )
∞
−∞ . (4.7)

The proof of (4.7) is very similar to the argument in Section 4.1.1. Let

C = A ∨ (ηξ,A )
∞
−∞

and x, y ∈ X with [x]C = [y]C . If x ∈ Q then y ∈ Q, and since the
partition element [x]ρQ

= [y]ρQ
∈ ρQ determines n(x), we obtain
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n(x) = n(y).

Also, since [x]A = [y]A the same measure µA
x is used to encode

the orbit ξ
n(x)−1
0 (x), which, together with cξ,A (x) = cξ,A (y), implies

that ξ
n(x)−1
0 (x) = ξ

n(y)−1
0 (y). As almost every point has infinitely many

returns to Q in the past and in the future, this gives [x]ξ∞−∞
= [y]ξ∞−∞

almost surely, and hence the claim.

4.1.6 Entropy of the Partition Associated to cξ,A

Lemma 4.4. Let ηξ,A be the partition generated by ρQ and the partition
defined by the code cξ,A as above. Then Hµ

(
ηξ,A

)
< hµ(T, ξ

∣∣A ) + 10ε.

Proof. As mentioned above, the code cξ,A may not be prefix-free. We wish
to modify the code to make it prefix-free. For this, we first add extra trailing 0s
(at most M − 1 of them) to the code until the length of the new sequence is
divisible by M . Then we insert after every block of M digits a 0 (to signify
that the code continues) and instead of the 0 after the last block add a 1
(to signify the end of the code). Finally, we add another block of length M
comprising leading 0s and trailing 1s, where the leading 0s indicate which
digits of the previous block existed in cξ,A and the 1s indicate the added
digits. In this way we obtain a new prefix-free code c̃ξ,A with the property
that the length of c̃ξ,A (x) for x ∈ Qn(x) ⊆ Q is bounded by

M + 1

M




n(x)−1∑

n=0

(
1

M log 2
Iµ
(
ξM−1
0

∣∣A
)
(T nx) + 2ε

)
+ 2M




6
M + 1

M




n(x)−1∑

n=0

(
1

M log 2
Iµ
(
ξM−1
0

∣∣A
)
(T nx) + 4ε

)
 (4.8)

by (4.5) and n(x) > N . Switching from cξ,A to c̃ξ,A does not change the
partition ηξ,A but allows us to use Section 1.2 in the argument below.

Let us write µQ = 1
µ(Q)µ|Q for the normalized restriction to Q. Recall

that Hµ(ρQ) < ε by Lemma 4.3 and our choice of N > Nε. Therefore,

Hµ(ηξ,A ) = Hµ(ρQ) +Hµ(ηξ,A
∣∣ρQ)

< ε+Hµ(ηξ,A
∣∣{Q,XrQ})

= ε+ µ(Q)HµQ
(ηξ,A )

6 ε+ log 2

∫

Q

|c̃ξ,A (x)| dµ(x)
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by Lemma 1.10, where we write |c̃ξ,A (x)| for the length of the code for x ∈ Q.
Let us assume ε ∈ (0, 1] and recall that 1

M < ε by (4.3), which gives

M+1
M < 1 + ε < 2.

Using the upper bound (4.8) for |c̃ξ,A (x)| we obtain

Hµ(ηξ,A ) 6 ε+ M+1
M

∑

Qm⊆Q

∫

Qm

m−1∑

n=0

(
1
M Iµ

(
ξM−1
0

∣∣A
)
(T nx) + 4ε

)
dµ

= M+1
M

1
MHµ

(
ξM−1
0

∣∣A
)
+ 9ε

< hµ
(
T, ξ

∣∣A
)
+ 10ε

where we used the consequence

∞⊔

m=1

m−1⊔

n=0

T nQm =
µ
X

of the definition of Qm for m > 1, and the choice of M in (4.4). �

4.1.7 The Inductive Proof of Theorem 4.1

Using the arguments above countably many times, it is now relatively easy
to construct a countable generator with finite entropy.

Proof of Theorem 4.1. Let (X,B, µ, T ) be an invertible measure-preserving
system on a Borel probability space with finite entropy, and let ξ(k)ր B be
an increasing sequence of finite partitions, so that

hµ(T ) =
∞∑

k=1

hµ
(
T, ξ(k)

∣∣Ak−1

)
,

where A0 = N and Ak = σ(ξ(k)∞−∞) for k > 1.
Now apply the construction from Sections 4.1.3–4.1.6 for the partition ξ(k),

the σ-algebra Ak−1, and the number ε
2k

for all k > 1. In this way we obtain

a sequence
(
ηk = ηξ(k),Ak−1

)
of countable partitions with

Hµ(ηk) < hµ
(
T, ξ(k)

∣∣Ak−1

)
+ 10

ε

2k

by Lemma 4.4. Therefore,

Hµ

(
K∨

k=1

ηk

)
<

K∑

k=1

hµ
(
T, ξ(k)

∣∣Ak−1

)
+ 10ε,
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and letting K →∞ gives

Hµ

(
∞∨

k=1

ηk

)
< hµ(T ) + 10ε

by monotone convergence. However, this implies that there exists a countable
partition η with

σ(η) =
∞∨

k=1

ηk.

We claim that η∞−∞ =
µ

B. Notice that

η∞−∞ ⊇ (η1)
∞
−∞ ⊇ ξ(1)∞−∞ = A1

by (4.7) with ξ = ξ(1), A = N , and ηξ,A = η1. Similarly, (4.7) applied
with ξ = ξ(k), A = Ak−1, and ηξ,A = ηk now inductively gives

η∞−∞ ⊇
µ

Ak = ξ(k)∞−∞.

Therefore, η∞−∞ =
µ

B. �

4.2 Existence of a Finite Generator

If (X,B, µ, T ) is an invertible measure-preserving system on a Borel proba-
bility space and ξ is a finite generator, then

hµ(T ) = hµ(T, ξ) 6 Hµ(ξ) 6 log |ξ| (4.9)

by the Kolmogorov–Sinăı theorem (Theorem 1.21). Also notice that equality
in (4.9) implies that each P ∈ ξ has µ(P ) = 1

|ξ| (by the trivial bound in

Propositions 1.17(1) and 1.5) and that the partitions

T nξ, . . . , T ξ, ξ, T−1ξ, . . . , T−nξ

are mutually independent. In other words, equality in (4.9) implies that the
system (X,B, µ, T ) is measurably isomorphic to the Bernoulli shift with |ξ|
symbols of equal weight. This shows (apart from the ergodicity assumption)
that the following result due to Krieger [110], [111] is the best possible one
could hope to obtain for general systems.(21)

Theorem 4.5 (Krieger’s finite generator theorem). Let (X,B, µ, T ) be
an ergodic invertible measure-preserving system on a Borel probability space.
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Suppose that hµ(T ) < log k for some k > 1. Then there exists a generator
for (X,B, µ, T ) with k atoms.

For the proof we will use both the Shannon–McMillan–Breiman theorem
(Theorem 3.1) as well as the existence of a countable generator (Theorem 4.1).
In fact, given the countable generator ξ from Theorem 4.1 we wish to con-
struct a map φ : X → {1, 2, . . . , k}Z with the properties

φ(σ(x)) = σ(φ(x)) (4.10)

and
φ(x) = φ(y) =⇒ x = y (4.11)

for x, y ∈ X ′, where X ′ ∈ B is a set of full measure and σ denotes the left
shift map. The generator with the property claimed in the theorem is then
defined by

η = {φ−1([0]), . . . , φ−1([k − 1])},
where

[j] = {x ∈ {0, . . . , k − 1}Z | x0 = j}
is the cylinder set at time zero. The map φ is defined by using a marker
set Q ⊆ X and a marker word wQ ∈ {1, 2, . . . , k}M chosen so that every
appearance of wQ in φ(x) at location n corresponds to a visit of the orbit
of x to Q at time n (that is, to the statement T nx ∈ Q). The words in
between two consecutive appearances of wQ, at 0 and at N say, will encode
the partition elements of ξ that x belongs to between the corresponding two
consecutive visits of x to Q. To be able to do this we need to analyze the
number of possible trajectories between those times, and this is where the
Shannon–McMillan–Breiman theorem will be useful.

Proof of Theorem 4.5. Let (X,B, µ, T ) and k > 1 be as in Theorem 4.5.
Applying Theorem 4.1 we find a countable generator ξ with finite entropy.

Let h = hµ(T ) = hµ(T, ξ). By the Shannon–McMillan–Breiman theorem
(Theorem 3.1) we find for every ε > 0 some measurable subset Xε ⊆ X with
measure greater than 3

4 and some Nε such that

e−(h+ε)n < µ
(
[x]ξn−1

0

)
< e−(h−ε)n

for x ∈ Xε and n > Nε. In particular, we deduce that if n > Nε then

Xε is covered by less than e(h+ε)n elements of ξn−1
0 . (4.12)

We define wQ as the word

10M = 1 0 · · ·0︸ ︷︷ ︸
M

.
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Let W ′
ℓ be the set of words in the alphabet A = {1, 2, . . . , k} with length ℓ

that do not contain wQ as a subword, where we say that wQ is a subword of w
if there exist words w1, w2 ∈

⋃
ℓ>0A

ℓ with the property that w = w1wQw2

is the concatenation of w1, wQ, and w2 in turn. We claim that

|W ′
ℓ | > k

M−1
M

ℓ = e(
M−1
M

log k)ℓ.

To prove the claim, let ℓ = aM + b for a > 0 and b ∈ {0, 1, . . . ,M − 1}. Let

v ∈ Aa(M−1)+b

be an arbitrary word. Then we can construct a word w(v) ∈ W ′
ℓ of length ℓ

from v by inserting the symbol 1 after every (M − 1) letters. In this way we
ensure that w(v) does not contain a contiguous run 0M of 0s of length M ,
so w(v) ∈W ′

ℓ . Since the map v 7→ w(v) is injective by construction, the claim
follows. Below we would like to always use elements of W ′

ℓ after wQ, so we
define

Wn = {(wQw) | w ∈W ′
n−(M+1)}.

As above, this has

|Wn| > k
M−1
M

(n−M−1) = e(log k)M−1
M

n−M−1
n

n (4.13)

many elements.
We want to split the difference between the two estimates (4.12) and (4.13).

Specifically, we let ε = log k−h
2 , chooseM so large that (log k)M−1

M > log k−ε
and choose N ′ so large that

(log k)
M − 1

M

n−M − 1

n
> log k − ε = h+ ε

for n > N ′. With these choices we have

|Wn| > e(h+ε)n (4.14)

for n > N ′.
Having chosen ε, the set Xε and the number Nε are now also defined (by

the discussion leading to (4.12)). We now define the marker set Q using the
Kakutani–Rokhlin lemma. In fact by that lemma there exists a set Y ⊆ X
such that

Z = Y ⊔ TY ⊔ · · · ⊔ Tmax{Nε,N
′}Y

is a disjoint union and µ(Z) > 3
4 . It follows that µ(Z ∩Xε) >

1
2 and so there

exists some 0 6 ℓ 6 max{Nε, N
′} such that Q = T ℓY ∩ Xε has positive

measure.
The so-defined marker set Q has the following convenient properties:

(1) for any x ∈ Q the first return time to Q is greater than max{Nε, N
′};
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(2) the subset

Qn = Q ∩ T−nQr(T−1Q ∪ · · · ∪ T−(n−1)Q)

of Q with first return time equal to n > max{Nε, N
′} is covered by less

than e(h+ε)n many elements of the partition ζn = ξn−1
0 ;

(3) for n > max{Nε, N
′} there are at least e(h+ε)n many words in Wn that

begin with wQ but do not contain it later; and
(4) almost every point in X ′ has infinitely many visits to Q in the future and

in the past.

We now define φ : X → AZ using some fixed sequence of injective maps Φn

from ζn as in (2) to Wn as in (3) for all n > max{Nε, N
′}. In fact, if we let

VQ(x) = {m | Tm(x) ∈ Q}

be the set of visits to Q and define φ(x) by the concatenations of

Φn

(
[Tmx]ξn−1

0

)

whenever
[m,m+ n] ∩ VQ = {m,m+ n}. (4.15)

More precisely, if (4.15) holds, then

Φn

(
[Tmx]ξn−1

0

)

defines the coordinates (φ(x))j for

j ∈ {m,m+ 1, . . . ,m+ n− 1}.

For† x ∈ X ′ as in (4), this defines a point φ(x) ∈ AZ.
The construction ensures that the property (4.10) holds, so that φ defines

a factor map. Suppose now that x, y ∈ X ′ and φ(x) = φ(y) as in (4.11). The
properties of the set Wn for n > N ′ then imply that VQ(x) = VQ(y) and that

[x]ξ∞−∞
= [y]ξ∞−∞

since we use injective maps Φn from ζn to Wn for n > N ′. By the property
of ξ this gives x = y almost everywhere. This gives the theorem (see also
Exercise 4.2.1). �

† For x in the null set X′rX we may set φ(x) = 1∞ or leave φ undefined.
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Exercises for Section 4.2

Exercise 4.2.1. Analyze φ−1([j]0) for any j ∈ {0, 1, . . . , k − 1} for φ as in the proof of
Theorem 4.5. Conclude from this that φ is measurable (as implicitly required for the result).


