Chapter 9
Unitary Representations of SL(2)

In this chapter we will again focus our attention on SLy(R) and its unitary
representations. For this, we recall some of our previous discussions:

e We already classified all finite-dimensional representations of SL,(R) in
Section 6.1l This result, and even more so the method of proof, will be
of interest here.

e In SectionB.3 we recalled the geometric significance of SLy (R) = SU; ; (R)
by connecting it to the hyperbolic plane H = .

e In Section B4 we already found our first two types of non-trivial irre-
ducible unitary representations of SLy(R), namely the discrete series and
the mock discrete series representations.

e In Section we studied the regular representation of SLy(R).

e This allowed us to characterize temperedness for SLy(R) in terms of in-
tegrability and decay of matrix coefficients in Section

We will extend these results here, to obtain a complete description of SL/Q(TR)
Moreover, we will decompose natural unitary representations into irreducible
representations.(!8) In particular, we will study the Koopman representation
of SLy(R) on L2(H), and see that the ‘hyperbolic Fourier transform’ is inti-
mately related to the principal series representations of SLy(R). Finally, the
complementary series representation will allow a better understanding of (the
lack of) spectral gap, decay rates, and integrability exponents for SLy(R).

9.1 The Universal Enveloping Algebra and Smooth
Vectors

We recall that the Casimir operator for SU,(R) in Proposition[f.2Tland Corol-
lary commutes with SU,(R). Because of the connection between SU,(R)
and SL,(R) developed in Section 6122 it stands to reason that SLy(R) should
also possess a Casimir operator. However, the Casimir operator of SLy(R)
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388 9 Unitary Representations of SL(2)

will have ‘mixed signature’, and will not arise from an application of Propo-
sition [7.211

After developing the necessary abstract machinery in this section, it will
also be relatively straightforward to define the raising and lowering operators
for any unitary representation of SLy(R), which will lead to the description

_

of SL,(R) in Section @2

9.1.1 The Universal Enveloping Algebra

We briefly introduce the algebra € containing the Lie algebra g of a Lie
group GG as well as higher-order terms like the Casimir elements. We refer to
Knapp [44, Ch. 3] for a more careful introduction to this concept.

Definition 9.1 (The algebra €). The universal enveloping algebra € of
a Lie algebra g is the linear hull of all formal multi-linear associative non-
commuting products byobgyo---0ob, for n € Ny and by,...,b,, € g modulo
the ideal generated by the expressions aob —boa — [a,b] for a,b € g. By
also allowing the empty product 1 (corresponding to n = 0) the algebra &
is also unital. We will write b =bobo---ob for powers of b € € in the
algebra € for all n € N, and define b°® to be 1 for all b € €.

At first sight this definition might look very much like abstract nonsense.
However, as we will see, we should think of & as the algebra of all partial
differential operators that can be obtained by composition from the first order
differential operators that correspond to elements of g.

Because of its definition, € is not a graded algebra (that is, there is no
good definition of homogeneous degree in €), since the generators of the ideal
in its definition have terms of different degree. However, it can be written as
an increasing union

¢=Je
d=0

where €.y = Clg, €¢q = €y +g, and €, is the subspace of € generated
by all products by obyo---0ob, with n < d and by,...,b, € g. We say
that e € € has degree d € Nife € €, E,;_;, and has degree 0 if e € €.

We note that the algebra € is enveloping in the sense that it contains
the Lie algebra g, and that it is universal in the sense that any Lie algebra
representation of g (sending Lie brackets to Lie brackets as in (€1])) can be
extended to an algebra representation of ¢ (sending products to products).
This functorial property holds essentially by definition of €.

However, let us start by extending the adjoint representation to &. We
define Ad,(1¢) = 1,

Adg(bl 00 bn) = (Adg bl) -0 (Adg bn)
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9.1 The Universal Enveloping Algebra and Smooth Vectors 389

for all g € G, n € N, and by,...,b, € g and extend Ad, linearly to all of €.
For this we need to point out that

Adj(aocb —-boa—[a,b]) = (Ad,a)o(Ad, b)—(Ad, b)o(Ad, a)
— Ady([a, b))

= (Ad, a)o(Ad, b)—(Ad, b)o(Ad, a)

~ [Ad,(a), Ad, (b)

for g € G and a, b € g. Hence the adjoint action of G on the algebra of formal
products sends the ideal appearing in Definition to itself, and we obtain
a well-defined representation of G on € and, by restriction. also on &, for
all d € N.

By the discussion in Section [6.1.3] we may also take the derivative of
the adjoint representation of G on €& (or, said more carefully, on €, for
all d € Ny) to obtain a representation of g on €. We will again call this
representation the adjoint representation, and denote it by

ad: g — End(€)

cr— ad..
In fact, for n € N, by,...,b,,,c € g the adjoint representation satisfies
d
a'dc (bl -ob ) dt (Adcxp(tc) bl) ©---0 (Adcxp(tc) bn)

=0
:(adcbl)ob2o"'Obn+"'+blob20"'o(a'dcbn)' (91)

This generalized product rule follows, for example, by restricting to €, for
some d > n, applying the approximation formula

Adexpic) (b)) =b; +tad.(b;) + o(t%)

for t - 0 and j € {1,...,n}, using multi-linearity to expand the product
above, and letting ¢t go to zero.
We note that substituting the relation

adc(b;) = [c,b;] =cob; —b,oc
for j=1,...,n into [@I) gives the telescoping sum

ade(bjo---ob,) = (cobjobyo---ob, —bjocobyo---0b,)
+ (bjocobyo---0ob,, —bjobyoco---ob,)
N
+ (byobyo---ocob, —b;obyo---0b,oc)
=coby;o---0b, —bjo---0b,oc,
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390 9 Unitary Representations of SL(2)
which by linearity shows that
ad.(e) =coe—eoc (9.2)

forcegandec €.

To get a better feeling for €, we describe how to obtain a basis for it. For
this, suppose that bq,...,b, € g form a basis of the Lie algebra g. Then, by
the Poincaré-Birkhoff-Witt Theorem (see Knapp [44] Th. 3.8]) the products

bikl 0O---0 b;k7l (9_3)

for (ky,...,k,) € N§ form a basis of & We will not need or prove this in
detail, but wish to indicate briefly why this should be true.

Firstly, because of the assumed multi-linearity of the products appearing
in Definition [0.]] it is clear that & is the linear hull of 14, by,...,b,,, and all
non-commuting products of by,. .. ,b,, in any order and multiplicity. However,
using the ideal appearing in Definition we may swap two basis elements
in such a product, possibly at the cost of adding a term of lower degree. This
allows us to order the basis elements in a product so that they are of the form
in ([@3)). Using this and an induction on the degree, we arrive at the statement
that @ is the linear hull of products as in (@3) for (kq,...,k,) € Nj. In a
way the ideal appearing in Definition precisely allows us to do this re-
ordering of arbitrary products of basis elements to transform them to the
shape of ([@3), but does not allow anything else. This suggests the second
half of the Poincaré-Birkhoff-Witt Theorem, namely the statement that the
products in ([@3)) are all linearly independent within €.

9.1.2 The Casimir Element for sl,(R)

—

As it is our goal in this chapter to describe the unitary dual SL,(R), and the
notion of universal enveloping algebra is meant to be a tool for that goal, it is
only natural that we want to study the universal enveloping algebra & of the
Lie algebra sl,(R). This will, in particular, reveal that & has some interesting
central elements.

Hence we let g = sl,(R). We will use the basis elements a, e, f as in (6.2).
These form an sly-triple as they satisfy the relations [a, e] = 2e, [a, f] = —2f,
and [e, f] = a by ([63)). In addition to these, we will also use the Lie algebra

elements
01 00 01
azort= (04 (00) = (°0) o

and
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9.1 The Universal Enveloping Algebra and Smooth Vectors 391

k=-e+f= <8 _01) + <(1) 8) = ((1) _01> € sly(R).

We will define the central element {2 of the universal enveloping algebra &
of sly(R) directly below. However, we first wish to explain an abstract ar-
gument (relying on the Poincaré-Birkhoff-Witt Theorem and the theory of
finite-dimensional representations of sly(R) in Section [61]) showing that such
a central element of degree two has to exist.

For this, note first that by the Poincaré-Birkhoff-Witt Theorem €, has
the 10 elements

1g,a,e,f 2% ace,aof, e eof, f?

as a basis. To understand €, as a finite-dimensional representation for the
Lie algebra sly(R), we have to find its highest weight vectors. Clearly 1
is a highest weight vector corresponding to weight 0 and spanning a trivial
sub-representation. Next we note that e is a highest weight vector (since we
know that ad,(e) = 2e and ads(e) = 0). Also note that e generates the
sub-representation g C €,. Moreover, e°? is another highest weight vector,
since

ady(ece) =ad,(e)oe+eocad,(e) =4eoce
and
ade(eoe) = ad.(e) oe+ eoadg(e) = 0.

Since e°? has weight 4, it generates a 5-dimensional irreducible subspace V;
inside €. Together we see that the sub-representations Cl, g, and V5 found
so far have dimension 1, 3, and 5 respectively. As €<, has dimension 10 we
see that there exists a one-dimensional invariant complement Cf2 to

Cﬂ@ @g (&) V5 = Gél @V5,

on which sly(R) acts trivially. This shows the existence of an element {2 of
degree 2 with ady, (£2) = 0 for all b € sl,(R). By (3.2)) we may also write this
as

bo2=20b

for all b € sl5(R). Since € is generated by 1, and sl,(R) as an algebra, we
find that {2 belongs to the centre of €.

In order to be logically independent of the Poincaré—Birkhoff-Witt The-
orem and, more importantly, to be able to do concrete calculations with (2,
we now give a direct definition of (2.

Lemma 9.2 (The Casimir element for sl,(R)). Let g = sl,(R) and
let a, e, f be the sly-triple from [62). Defined = e+f and k = —e+f. Then
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392 9 Unitary Representations of SL(2)
N=1g+a2+d?-k? =1 +a°? +2eo0f +2foe

is a degree two element in the centre of €.

PROOF. We use the definitions of d and k to see that

]l@+a°2+(e+f)°2—(—e+f)°2
=1 +a” +e? +eof+foe+f?— (e —eof —foe+f)
=1g+a%2 +2eof +2foe.

Hence the two expressions in the lemma define the same element (2. Next we
note that ad,(1g) = 0 for all b € g. Hence we obtain, by the product rule

in ([@1), that

ad,(£2) = ad,(a°®> +2eof + 2f o e)
=2(ad,e)of +2eo (ad, f) + 2(ad, f) o e + 2f o ad,(e)
=2(2e)of+2eo0(—2f)+2(—2f)oe+2fo(2e) =0

and

ade(£2) = ad,(a°® + 2e o f + 2f o )
=ads(a)oca+aocad.(a)+2eo(ad.f) +2(ad.f) ce

= —2eo0a—2aoe+2eo0a+2aoe=0.

The calculation adg(2) = 0 is similar, but also follows from the properties
of finite-dimensional representations of sly(R) in Section applied to ad
on €cy: Since ad,(£2) = ade(f2) = 0 it follows that 2 € €., is a highest
weight vector with weight zero, and so generates the trivial representation
of sly(R).

Applying ([@2)) and using the fact that € is generated by 1 and sl,(R) as
an algebra, this implies (as discussed just before the lemma) that {2 belongs
to the centre of €.

It remains to prove that {2 has degree two. Assume the opposite, so
that {2 € €. Since €¢; = 1g © g and g has no centre, this would im-
ply that 2 = alg for some a € C. To derive a contradiction from this, we
apply the universal property of €: Any Lie algebra representation p of sly(R)
on a real vector space V can be extended to an algebra representation of €.
Indeed, we may simply define p by p(1g) = I, composition as in

p(bl 0---0 bn) = p(bl) : p(bn)

for by,...,b,, € g and n € N, and linear extension. For this, note that the
ideal appearing in Definition is sent to 0 due to the definition of a Lie
algebra homomorphism (see (61)).
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9.1 The Universal Enveloping Algebra and Smooth Vectors 393

We first apply this universal property to the trivial representation p on C.
Here p(b) = 0 for all b € g, which implies that p(£2) = p(1¢) = 1. Hence we
see that a = 1.

Next we apply the universal property to the standard representation p
on V = C? and the vector .

v = (O> |

p(2)v = v+ a%v + d?v — kv,

In this case

where a2 = I, d> = I, k = —I are just the matrix squares. This
gives p(2)v = 4v and hence with @ = 4 a contradiction to the previous
calculation. It follows that the central element (2 € €, is not a multiple
of 1¢, does not belong to €¢y, and hence has degree two as claimed. O

The reader who hopes to find more central elements in €, for larger
values of d € N, is invited to solve the following exercise.

Essential Exercise 9.3. Let g = sl,(R), and assume the Poincaré-Birkhoff—
Witt Theorem for its universal enveloping algebra.

(a) For every d € N, calculate the weight of e°? € ;. Show that all other
eigenvectors of €, have smaller weight. Conclude that €, contains an irre-
ducible invariant subspace V,,4,, of dimension (2d + 1) that is not contained
in eédfl'

(b) Calculate the dimension of € 3 and €, analyze the representation ap-
pearing, and show that the centre of € intersected with €, is the linear hull
of 1,0, 2°2.

(c) Repeat (b) for all €., with d € N to see that the centre of € is the linear
hull of 1, and £2°™ for n € N.

9.1.3 Higher-order Differential Operators

We return to the general case and now show, as promised, that & can be
thought of as the algebra of differential operators arising by composition
from g.

Proposition 9.4 (Differential operators coming from €). Let G be a
Lie group with Lie algebra g and let m be a unitary representation of G. Then
the representation of g via w5 on smooth vectors extends to a representation
of the universal enveloping algebra & of g on smooth vectors in such a way
that

To(byo---oby,) =my(by) - my(by,) (94)

for alln € N and by, ..., b, € g. Furthermore,

T,mo(e)my—1 = my(Ad,(e)) (9.5)
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394 9 Unitary Representations of SL(2)
for alle € € and g € G.

ProoOF. Let v € H, be smooth. Recall that by Lemma the vec-
tor ma(b)v depends linearly on b € g. This extends to multi-linear dependence
of my(by) - m5(b,)v on by, ... b, € g. Therefore w5 extends from g to the
algebra of formal multi-linear non-commuting products of elements of g as
appearing in Definition

However, to see that 75 extends to & we have to show that 75 sends the
ideal appearing in Definition to zero, or equivalently that

7o ([a, b])v = (my(a)my(b) — my(b)my(a))v (9.6)

for all a,b € g and all smooth v € H,.. To see this, we fix a vector w € H,
and look at the matrix coefficient ¢ = ¢, ,. Let us use left-translation by
elements of G to define a vector field Ay(m) on G for every m € g, as in
Proposition [[.7] Smoothness of v and Lemma [7.I8 show that

d d
Aa(m)%’(g) = a <P$,v (exp(—tm)g) = a <7Texp(—tm)ﬂ-gwav>
t=0 t=0
d
T t:0<7rgw77rcxxa(tm)v>

= <7Tg’LU,7T8(m)1)> = <P:'u,7ra(m)v(g)

exists for all m € g and g € G, which, when iterated, shows that ¢ € C*°(G).
However, for smooth functions on G, the formula

Aa([a, bl)p = As(a)Ag(b)e — Ag(b)As (@) (9.7)

is the definition of the Lie bracket for general Lie groups (see Exercise [0.9]).
At g = e, together with the above, this becomes

(w,my([a,b])v) = Aa([a, b])@ . (€)
= (Aa(a)Ag(b )SDZU—)\B(b))\a(a)SDZ,U)(e)
= (M (@)&] 1y by — 20(D)P] 1, (a)0) (€)
= (w,my(a )Wa(b) ) — (w,ma(b)ma(a)v) .

As this holds for all w € H,., we obtain (9.6).
For ¢ € G and e € g, the identity in (@) is simply the chain rule in
Proposition [[.6l Moreover, if e =a; cayo---oa, € & then we also have

Ta(ag) - mo(ay, )ngl

Ty 1y (85) g1 - Ty (8, )~
))ma(Ad, (ag)) -7 (Ad,(a,))
Jo---oAd,(a,)) =my(Ad,(e))

T, To(€)Ty—1 = m,my(ay
=,y (ay
=Ty (A
=Ty (A

)
) .

g (al
g (al
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9.1 The Universal Enveloping Algebra and Smooth Vectors 395
which, together with linearity, proves ([@.3) for e € €. O

Essential Exercise 9.5 (Lie brackets for linear groups). Prove ([@.7]) for
closed linear groups, where the Lie bracket is defined by (6.1]) using matrix
products.

Corollary 9.6 (Adjoint representation). Let G be a Lie group with Lie
algebra g and universal enveloping algebra €. Then there exists a linear anti-
homomorphism

TE—¢

satisfying a* = —a and (eof)* = f*oce* for alla € g, and e,f € €. Moreover,

we have
(ma(e)u, v) = (u, my(e")v)
for all e € € whenever 7 is a unitary representation of G and u,v € H, are
smooth.
We will refer to * on € as the formal adjoint.

PROOF OF COROLLARY We define *: g 3 a— —a € g and extend * to
a linear map from & to & by requiring

(e 0 ez)* =ejoej} (9.8)

for all e, ey € €.

To see that * is well-defined, we verify that the relations appearing in
Definition are preserved. For a,b € g we have a* = —a, b* = —b, and
that [a, b] € g satisfies [a, b]* = —[a, b]. Together with ([@.8]), we obtain that

(aob—boa—[abl) = (=b)o (~a) - (~a) o (=b) + [a,b)
=boa—aob — [b,a]

indeed is once more in the ideal appearing in the definition of €.
Now let u,v € H, be smooth and a € g. Then

(ry(a)u,v) = lim <%( Texp(ta)lh ),v

t—0

)
= lim (<u Texp(— ta)v> ( ,v))
)

t—0 T u
= lim (u, 7 (Texp(—1a)? = v))
= (u, —my(a)v) = (u,my(a")v) .

Moreover, if b € g then

(rg(aob)u,v)=(my(b)u, ms(a*)v) = (u, m5(b* o a*)v)= <u, wa((a o b)*)v> )

The corollary follows by iterating this, and combining it with sesqui-linearity
of the inner product. O
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396 9 Unitary Representations of SL(2)

9.1.4 Central Elements of the Universal Enveloping Algebra

We have seen in Section[@.T.21that the universal enveloping algebra € of sl,(R)
has a central element, to which we will apply the following general results.

Essential Exercise 9.7. Let G be a connected closed linear group with Lie
algebra g and universal enveloping algebra €. Suppose that {2 € & is central
in the sense that ao 2 = 2 oa for all a € g (or, equivalently, a € &). Show
that Ad,(2) = £2 for all g € G.

Proposition 9.8 (Operators coming from the centre of &). Let G be
a closed linear group with Lie algebra g, and let 2 be a central element of
the universal enveloping algebra € of g satisfying Ad,(£2) = £2 for all g € G.
Then, for any unitary representation © of G, the closure of m5((2) (defined
on smooth vectors) is a well-defined closed equivariant operator. If 2* = 2,
then the closure is a self-adjoint operator. If w is irreducible, then the closure
is multiplication by a scalar g . € C (respectively ag, . € Rif 2% = §2 also).

PROOF. Let 2 € & be central and let m be a unitary representation as in
the proposition. We define T, as the closure of 75({2) acting on smooth
vectors. More formally, we have that v € Dy belongs to the domain of T,
and T,v = w is the image, if there exists a sequence (v,,) in H, of smooth
vectors with

(Un, m5(£2)v,,) € Graph(my(£2))

converging to (v,w) as n — oo. To see that this defines a well-defined oper-
ator, we need to show that

(v,w) = er;o(vn,wa(ﬂ)vn) € Graph(wa(ﬂ))

n

with v = 0 implies that w = 0. To see this, suppose u € H, is smooth, then

(wyu)y = lim (7m5(2)v,,u) = lUm (v, 75(2%)u),
n—oo n—r oo
where we applied Corollary Since lim,,_,. v, = 0 by assumption, we
obtain (w,u) = 0 for all smooth uw € H . Since smooth vectors are dense
by Proposition [Z7, it follows that w = 0. Hence T, is a well-defined closed
operator.
Suppose now that v € Dy, so that, by definition,

(v, Tpv) = lim (v, 75(2)v,) € Graph(T}),

n—oo

and fix some g € G. Then

TyTo(2)v, = 5 (Ad,(2))m
-0

GV = T(2)m4v,
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9.1 The Universal Enveloping Algebra and Smooth Vectors 397

by Corollary[@:6land our assumptions on 2. Now v,, — v and 75 (£2)v,, — T,v
as n — 00, 80 Ty, — T,v and
To(£2)m

GUn = TyTa(2)v, — mTrv

as n — 0o. Therefore

(mgv, g Trev) = nlirgo(wgvn,ﬁa(ﬁ)ﬁgvn),
which shows that T mv = 7,/Tov for all g € G and v € Dy _. In other
words, T is a well-defined closed equivariant operator.

We note that if 7 is irreducible then Schur’s lemma in the form of Corol-
lary [[.38 implies that T is simply multiplication by some a., o € C. If, in
addition, 2* = 2 and v € H,. is a smooth unit vector, then

Or2 = . (0,0) = {(mp(2)0, ) = {0,75(2")0) =Tz (v,0) = T

shows that o, , € R. We note that this case suffices (for instance) for the
classification of irreducible unitary representations of SL,(R) in the next
section.

For completeness we now drop the assumption of irreducibility but still
suppose that 2* = 2 | and will show that T is in this case a closed self-
adjoint operator. For this we define the operator

B = PIPGraph(T,r)Zla

where
11: Hye 20— (v,0) € HZ

is the embedding of H, into the first factor, Pgrapn(r,) is the orthogonal
projection onto the closed subspace Graph(T,) C H2 and

Pl: H?’r = (’Ul,'UQ)’—>'Ul 67{”

is the projection onto the first factor.

Since the adjoint of +; is P;, it follows that B: H, — H, is self-adjoint.
Note that if Pgapn(r,)(v,0) = (0, T;0) for some v € H, then Bv =% € Dy, .
From this and (v, T,7) — (v,0) € Graph(7T})*, it follows that

(Buv,v) = (v,v) = (v, T5V), (v,0)) = ((v, T0), (v, T;v)) = || (7, TWE)H?H%

belongs to [0,]|v]|?]. Since B is self-adjoint, this proves that the spectrum
of B is contained in [0, 1]. Moreover, suppose now that Bv = v = 0. Recall-
ing that by definition (v,7,v) = (0,0) is the orthogonal projection of (v,0)
onto Graph(7’;), density of the domain of Dy 2 D, () now forces v = 0.
This implies that B is injective.
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398 9 Unitary Representations of SL(2)

Recall that T is equivariant by the first part of the proof. Hence Graph(7,)
is invariant, and B is also equivariant. We use the measurable functional cal-
culus for B to define

Vo= (Lt 1) e M

n+1’'n
Hence
Hﬂ' = (]l(O,l])FCHTr = @ Vn (99)
neN
is a decomposition into closed invariant subspaces. Indeed, the measurable
functional calculus also shows that all operators that commute with B (for
example, 7, for any g € G) also commute with any operators constructed
by the measurable functional calculus. Since the spectrum of B is contained
in [0, 1], but the kernel of B is trivial, this gives (9.9).
Let 7, = 7|y, . Then Bly, : V,, =V, has a bounded inverse defined on all
of V,,, which shows that for any v € V,, we have that

(57 Tﬂ'a) = PGraph(T,,)(B_l:Eu O) € Graph(T,r)

and
1@, Tp0) I3z < 1B~'0]| < (n+1)0. (9.10)

Therefore, V,, € Dy,_ for all n € N.

Let v = Y cnvn € H, be smooth with v, = Py v eV, foralneN,
where Py, : H, — V), is the (equivariant) orthogonal projection. Then the
definition of smoothness implies that v, is smooth for m, for all n € N.
Moreover, for every n € N we have that v,, € V,, is smooth for 7, if and only
if v,, is smooth for 7. Using the definition

Craph(T},) = Graph(m,(12)),

this implies that 7|, = T, . Using ([@.10), £2* = §2, and Corollary [0.6] we
obtain that T, is a bounded self-adjoint operator.
We now define the subspace

o{5

n=1

o0 o0
v, €V, forn € N Z v ]I? < oo, andz ||T7Tnvn||2 < oo}.

n=1 n=1

For >>>° v, € D and any N € N we have Zf:’:l v, € Dy and

n=1
N N
(Z Uy, Z Twnvn> € Graph(T,).

n=1 n=1

Letting N — oo, and using the fact that Graph(7,) is closed, we obtain
that D g DTﬂ.'
Assume now that, on the other hand, v € Graph(7T,). We may write
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9.1 The Universal Enveloping Algebra and Smooth Vectors 399

00
v = g U,
n=1

o0

for some v, € V, for n € N, with Y77, |[v,[|* < oo. Projecting (v, T,v)
onto V,, @V, C H, & H, and noting again that the projection of a smooth
vector in H, to V), is a smooth vector in V,,, it follows that

o0
T.v= E T vy,
n=1

and hence Y >° | || T, v,||*> < oc. This shows that D = Dy . Since the opera-
tor T :V,, =V, are bounded and self-adjoint, it is now a standard exercise
(see [24, Ch. 3] and Exercise @) to show that T is a closed self-adjoint
operator. ([l

Exercise 9.9. Let H,, be a Hilbert space and T,,: H,, — H,, a self-adjoint bounded
operator for all n € N. Then

T (i vn> = S T, v,

n=1 n=1

oo} oo
for all Z v, € @ H,, with Z 1T, vnl1? < oo defines a self-adjoint operator.
n=1 n=1 n=1

9.1.5 Complexification of the Universal Enveloping Algebra

For some of our discussions, the following extension of Definition will be
important.

Definition 9.10 (The complexification &c). Let g be a Lie algebra with
universal enveloping algebra &. We define the complezification of & by

GC =¢ ®]R(C

For a; +1iby,a, +iby € €¢ with a;,b;, a5, by € € and g € G, we also define
multiplication by

(a; +1iby) o (ay +iby) = a; 0ca; — by o by +i(a; o by + by 0ay),
the adjoint operator by
Adg(a; +ib;) = Ady(a;) +iAdy(by),
conjugation by

ag + lbl =a; — ibl,
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400 9 Unitary Representations of SL(2)
and the formal adjoint by (a; +ib;)* = a} — ib7.

We verify that multiplication is actually bilinear over C on €. To see this,
note first that multiplication is clearly linear over R. Moreover,

(i(al —+ lbl)) o (3.2 + 1b2) = (_bl —+ ial) o (3.2 + 1b2)
= —byoa; —a; oby +i(~b; oby +a; cay)
:i(aloaQ—blon—l—i(al ob2+bloa2))
i((a1 —+ lbl) o (3.2 + lb2))

Together with linearity over R in the first argument, linearity over C in the
first argument follows. The proof the second argument is identical. Finally,
the proof of conjugate-linearity of conjugation and the formal adjoint on &¢
are similar.

Proposition 9.11 (Differentials operators coming from &¢). Let G be
a Lie group with Lie algebra g, and let m be a unitary representation of G.
Then the representation of g via mg5 on smooth vectors extends to a complex
representation of the complexification €¢ of the universal enveloping algebra €
of @ on smooth vectors in H,. satisfying the properties of Proposition and
Corollary 0.6

PRrROOF. For a,b € €, we define my(a + ib) = my(a) + imy(b). This gives
an extension of the above representation to €, satisfying linearity over C.
Moreover, if a;,as, by, by € €, then, by definition of o on &g,

Wa((al +iby) o (ag + ibz)) =Ty (31 cas —byo bz) +imy (31 oby+b;o 32)
= my(ay)mp(ag) — mo(by)my(by)
+i(my(ar)my(by) — mo(by)my(az))
= my(a; +iby)my(ag +iby),

so ([@4) also holds for &¢.

The extension of ([@5]) follows simply by linearity of both sides over C.
Finally, the complex version of Corollary 0.6l follows from its real counterpart
and sesqui-linearity of the inner product on H,. (I

To conclude, we wish to emphasize that the operators m5(e) for
ecgec=g®pCC ¢

(or e € €¢) do not in general directly correspond to first (or higher order)
partial derivatives, but instead to complex linear combinations of these.

We also note that the complexification &g of the universal enveloping
algebra of sly(IR) reveals that our definition of {2 as in Lemma formally
matches the definition of the Casimir operator in Corollary Indeed,
there we used the basis vectors
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i0 . 01 . 0-1
b1—<0_i>—la,b2—<i 0>—1d,b3—(1 O>—k

of suy(R) C sl,(C) = sl,(R) ® C, and hence
Q:]].@+aO2+dO2_k02 :]l@_bcl)2_b§2_b§2

within the complex universal enveloping algebra &c.

9.2 Raising, Lowering, and the Dual of SL,(R)

We now specialize and extend the material from the previous section in the

case of SLy(R). Our final goal of the section is a description of SLy(R), al-
though the concrete construction of the principal and complementary series
representations will be postponed to later sections.

9.2.1 The Casimir Operator

It follows from the discussion in Section that Proposition applies
to unitary representations of SLy(R) as in Corollary below (see also
Exercise[0.7). Indeed, the Casimir element {2 = 1¢ +a°?4d°% —k°2 of sl,(R)
satisfies £2* = (2 by its definition in Lemma [0.21

Corollary 9.12 (Casimir operator). Let m be a unitary representation
of SLy(R) and let 2 € € be the Casimir element in the centre of the en-
veloping algebra € of sly(R). Then the closure T, of m5(§2) is a self-adjoint
equivariant operator. If m is in addition irreducible, then T, = a I for
some o € R.

9.2.2 The Raising and Lowering Operators

We defindi the elements r+ = i(a—id) and r~ = i(a+id) of sly(C), and
note that r+ = r~. We calculate

adg(a) = [—e+f,a] =[a,e] — [a,f] = 2e+2f = 2d

and
adi(d) = [-e+f,e+f] = —[e,f] +[f,e] = —2[e,f] = —2a,

t It is an unfortunate coincidence that d € sly(R) multiplied by i € C, giving id, is
notationally close to a familiar ‘identity’ notation, id.
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402 9 Unitary Representations of SL(2)
which gives
adi (rt) =d —i(—a) = i(a —id) = 2ir™
and, by conjugation,
adg(r7) = —2ir~
also. With Adgyp,(gx) = exp(adgy) for 0 € R, this also implies

{Adke (r+) = e20p+ (011)

for all ky € K.
For a unitary representation m of SLy(R), we will call 75(r™) the raising
operator and 7y (r~) the lowering operator.

Proposition 9.13 (Raising and lowering operators). Let © be a uni-
tary representation of SLy(R). For any smooth K -eigenvector v, € H, of
weight n € Z, the vector wy(r*)v,, has weight n+2 (but either or both might
be zero).

ProoF. Let ky € K and let v,, € H, be a smooth vector of K-weight n.
Then the chain rule in Proposition @4 and ([@IT]) imply that

Wkgﬂa(rJr)vn =Ty (Adkg (1“+))7Tkgvn
= 7y (e20rt) ey,
=", (1 ),
and the calculation for 75(r~)v,, is identical. O

We also wish to relate the elements r* to the Casimir operator in
Lemma [0.2] By definition of r* and r~, we have

a=r"+ ro,
d=i(rt —r),
and
[t r7]=1la—id,a+id]
= i (i[av d] - i[dv a])
=1[a,d] = -ik (9.12)
since

[a,d] = [a,e + f] = 2e — 2f = —2k.

Using the definition of {2 in Lemma [0.2] we now obtain
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Q=1+ " +r )o@ +r )" —r)o(rm —r7) —k*?
=le+(rtorf+rfor  +r ort +r or)
+

—(rtort —rtor —r or" +r or”)— k%

=1g+2rfor  +2r ort —k°.

We can also write this in the form
Q=1¢+4rtor  —2@r",r ] -k
Using (@.12)), this gives
Q=4drtor +1¢ + 2ik — k2.

Therefore

R =drtor + (1g +ik)°? =4r~ or™ + (1 — ik)°?, (9.13)
where the second formula follows from the first by conjugation.

Corollary 9.14 (Norm of raised and lowered vectors). Let m be a uni-
tary representation of SLy(R) so that the closure of w5(£2) is multiplication
by a, € R. Then for any smooth K -eigenvector v,, € H, of weight n € Z, we

have
{nw@(rﬂvnn? = H(n+1)2 = ay) v.]?
o ol = 1((n—1)2 = ay) o,

To make these two formulas more memorable, we note that in both
cases n 1 is precisely the weight that lies in between the weight n of v,, and
the weight n + 2 of the vector 75 (r*)v,,.

PROOF OF COROLLARY [I14. We note that (r*)* = —r+ = —r~ by Corol-
lary and Definition @10l Using Proposition @11 and the identity (@13
in the form

rrort =1(02— (1 —ik)?)
gives
||7T8(I‘+)’Un||2 = <7T3(r+)vn7ﬂ-8(r+)vn>

= — <7ra(r* o r*)vv,vn>

= _% <7T8(Q - (]l@ - ik)02)vn7 Un> .
Since

ﬂ—a(]IG - lk)vn =Up — iWa(k)Un = Up + nv, = (n + 1)’0717

we obtain
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404 9 Unitary Representations of SL(2)

7o (1), |* = =7 (ar = (n+ 1)) [Jv, 1%,
Similarly,
7o (x ™ )va® <7Ta( T n, T (X )0
<7Ta 0T )v,,v,)
= —%< — (le +1K)°?)v,, vy, )
——%(aﬂ (n=1)%) [|vall?,
completing the proof. (I

We note that the raising and lowering operators will be useful for proving
irreducibility of the principal and complementary series representations in
the next sections. In fact we already used these operators implicitly in the
proofs of irreducibility of the discrete and mock discrete series representations
of SLy(R) = SU; ;(R) in Section .4l More importantly, we will use the
more abstract framework above involving the Casimir operator to classify all
irreducible unitary representations of SLy(R). In fact Corollary already
implies important restrictions on the Casimir eigenvalue a: If v,, as in the
corollary is non-zero, then we must have

oy < (n£1)2% (9.14)

Applying our above discussion to the irreducible unitary representation of
Section B4 we obtain their Casimir eigenvalue.

Corollary 9.15 (Casimir for discrete and mock discrete series). For
every integer n = 2, we have

Qgn+ = agn = (n—1)°
for the discrete series representations 6™*. Similarly, we have
s+ = Og1,— = 0
SLE,

for the two mock discrete series representations

PROOF. Let n > 2 and write eo for the constant function in A, (D) which
has K-weight n by Lemma[8:22] The proof of irreducibility in Theorem [
shows that eq is smooth (see also Lemma[0.17). By Proposition [0.13 we know
that 6g’+(r_)eo has weight n — 2, and by Corollary [0.14] we have

155" (x 7 )eoll = § ((n = 1)* = agn.+) [leoll-
However, by Theorem[8.23] there is no vector of weight n—2. Hence 5g’+ (r7)eg

must be trivial, and so
agnt = (n—1)%
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9.2 Raising, Lowering, and the Dual of SLj(R) 405

as claimed. The argument for the mock discrete series representation §':+
uses Theorem B30 but is otherwise identical.

This implies the same formulas for the contragredient representations 6™~
for n > 2 and for 4. O

Exercise 9.16. Explain the last step in the proof of Corollary [0.15] more carefully.

9.2.3 Smooth K-finite Vectors

For a unitary representation 7w of SLy(R) and a vector v € H,, we say that v
is K-finite if dim(m(K)v) < oo (or, equivalently, if v is a finite sum of K-
eigenfunctions).

Because of the discussions above, the following lemma is useful for the
study of general unitary representations of SLy(R).

Lemma 9.17 (Smooth K-finite vectors). Let m be a unitary representa-
tion of SLy(R). Then the subspace of smooth K -finite vectors is dense in H..
Moreover, if for some n € Z the space of K -eigenvectors in H, of weight n
18 finite-dimensional, then every K -eigenvector of weight n is smooth.

PROOF. Let v € H, and let ¢ € C°(SLy(R)). By Proposition [[77] we know
that 7, (¥)v is a smooth vector. Now let n € Z and let x,,(ky) = e for ky
in K be the nth character on K. Recall that (7T|K)* (ﬁ)w is a K-eigenvector
of weight n for all w € H,.. Combining these two with w = =, (¢))v, we obtain
using Fubini’s theorem and the substitution h = kyg that

mmxmmww—kzmw%ﬂy@%mmmmWw>

://me@mwmwmww>
KJG ——

=TV

=//EMMM?WMMMMMMMM
GJK

¥n(h)

where

) = [ o) lhy ) domc o)
for h € SLy(R). We note that 1,, has compact support, with

supp ¢, € K supp ¢.

Moreover, 1,, is also smooth, which follows for instance by considering the
derivatives
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406 9 Unitary Representations of SL(2)
Po (m)wn - ig% g (pcxp(m)z/}n - wn)

for the right-regular representation and proving that

pim)in = [ o) o)) (55 ) e )
for all m € sly(R). Hence Proposition [[.7 shows that

(WlK)* (ﬁ)ﬂ—* W)U = T (djn)v

is a smooth vector. The first claim in the lemma now follows from

N

m (W= (vlk),(Ga)m(@)o = lim > m,(¥,)0.

N —oc0
nez n=—N

Fix some n € Z and suppose now that
V, ={v € H, | v has K-weight n}

is finite-dimensional. Using Proposition [[.49 for a smooth approximate iden-
tity and each vector in a basis of V,,, we can find some 1) € C°(G) such
that 7, (¢)v is close to v for each of the basis vectors v of V,,. Since (7| g ). (X5)
is the orthogonal projection onto V,,, it follows that

Ty (Q/Jn)h/n : Vn — Vn

is as close to the identity on V), as we desire. In particular, we may ensure
that 7, (¥,,)(V,,) = V,,, and the final claim of the lemma follows from the first
part of the proof. O

9.2.4 A Differential Equation for Matrix Coefficients

We continue our journey towards the description of SLy(R) by examining
matrix coefficients of K-eigenvectors in irreducible unitary representations
of SLy(R). In fact we now show how the Casimir eigenvalue a, for some

unitary representation m € SL,(R), and the mere existence of a smooth unit
vector v € H, of K-weight n, determines its matrix coefficient 7.

Lemma 9.18 (The differential equation for the matrix coefficient).
Let  be a unitary representation of the group SLy(R). Suppose that v € H,
is a smooth K -eigenvector with weight n € Z and Casimir eigenvalue o € R.
Then

©y (keatkw) = ein(9+w)‘ﬁg (as)
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9.2 Raising, Lowering, and the Dual of SLj(R) 407
for all kga,k,, € SLy(R) and the smooth function ¢: R — C defined by
o(t) = ¢y (ar)

for t € R satisfies the second order linear differential equation

COos 'n.2
8(t) + 255306/ (1) + (1— a+ 2oy ) 6(t) = 0

of degree two for all t € RN{0}. Moreover, ¢ is real-valued and satisfies

for allt € R.

The proofs of Lemma [0.18 and the following Proposition [0.19 are rather
elementary, but parts of them may require good motivation by the reader.
To gain this motivation, the reader may at first skip the two proofs in order

to see how these results are used to help us describe Sﬁ) in Section [9.2.5]

ProOF OF LEMMA [0.1I8] The first part of the lemma follows simply because v
is a K-eigenvector of weight n. Indeed, we have

(Pg (kGGtde) = <7Tat7Tka,7Tk79U> - <7Tat (einwv)7e—in9v> = ein(9+w)¢g(at)

for all kga,k,, € SLy(R). We note that

0-1\ (et 0 01
kw/2atk7ﬂ'/2 = (1 0 ) (0 et) (_1 0) = G_y,

for all ¢t € R. For ¢ = ¢} this implies

d(—t) = pyla_y) = oy (krr/Qatkfﬂ'/Q) =y (a,) = o(t)

for all ¢ € R by Lemma [0.18 In other words, ¢ is an even function on R.
Moreover,

W = <7Tatvav> = <vaﬂ-atv> = <7Ta7t1),1)> = (b(_t) = ¢(t)

for all ¢ € R, which also shows that ¢ only takes values in R.

To obtain the differential equation for ¢(t) = ¢T(a,) for t € RN{0},
we will combine the information that v has K-weight n € Z, the assump-
tion m5(§2)v = av, and the formula

N=1¢+a"*+2o0f+2foe

in Lemmal[0:2] For this, recall that v having K-weight n implies 75 (k)v = inv

and 7y (k°%)v = —n?v.
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We start by calculating how to express ¢ and ¢ as matrix coefficients.
Indeed,

&(t) = lim ~ (8(¢ + 1) — B(0))

h—0 h

and, similarly,

¢"(t) = lim — 1 < T, (wahwa(a)v — wa(a)v),v> = <7Tat7ra(a°2)v,v>

h—0 h

for all t € R.

We note that a®? is one of the terms in (2, but that we do not yet have
an interpretation of the term 2e o f 4+ 2f o e in terms of ¢. To obtain such
an interpretation, we use the consequence of v having K-weight n mentioned
above to express —n2¢ in three different ways. Indeed, we have

—n2p(t) = —n? (mq,0,0) = <7Tat(—n2v), v)
= (g, wa(k°2)v v);
C20(0) = (i, ) = — (1, 0 (0 1) = (o () o )
<7T mo(Ad, (k) ok)v, v>
<7T v, —n v> <7ratv,ﬂ'a(k°2)v> = <ﬂ'a(k02)ﬂ'atv,v>

ag

i )

for all t € R. We recall that k = —e + f and note that

Ad, (k) =—e e+ e*f

for all t € R. We put these two formulas into the three expressions above,
expand the resulting parentheses, and obtain from this that

—n*¢(t) = (m,,mp(e® —eof —foe+f?)v,v)

= (7, ™o (e‘2te02 —eYeof —efoe+ e2tf°2)v, v)

= (7,4, ™o (e_4te02 —eof—foe+ e4tf°2)v, v)

for all t € R.

As our aim is to find a formula involving 2e o f 4+ 2f o e, we wish to
rid ourselves of all expressions involving the two terms e°2 and f°2. As we
have three formulas for —n2¢, this is an exercise in linear algebra. In fact,
multiplying the first line by 1, the second by —(e** + e~2'), the third by 1,
and taking the sum gives
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—n?¢(t) (1 — (e +e72") +1) = n?¢(t)(e* — 2+ e ) = dn’sinh® t ¢(t)

on the left-hand side.
On the right-hand side, we use the similarities between the three formulas
and obtain the expression

<7Tat7Ta(mt)U7U> ;
where m, is the element of €, defined by
m, = (e°2—e0f—foe+f°2)
_ (e2t i e—2t) (e—2teoz e eof _efoet e2tf02)

+ (ef4te°2 —eof —foe+ e4tf°2).

Our choice of the three coefficients 1, —(e* +e72"), and 1 was made so that
the coefficient in front of e°? is

1— (ezt T ef2t)672t T T B e
and the coefficient in front of £°2 is
1— (62t+ef2t)62t+e4t 1M 1 et —g
also. Therefore,

m;, = (—eof—foe)—(e*+e %) (—e *eof—e*foe)+(—eof—foe)
=(-1+1+e ¥ —1)eof+ (-1+e"+1-1)foe
= (e_4t — 1)e of + (e4t — 1)fo e.

Using
e —1=e*(e* —e ?) = 2¢* sinh(2t),

e 1 =e"% (e —e™?") = —2¢*'sinh(2t),
we also have
m, = —2e¢ ! sinh(2t)e o f + 2¢* sinh(2t)f o e.
To summarize, we have shown that

4n?sinh®t p(t) = (74, ma(my)v,v)
= 2sinh(2t) (7, 7o (—e *'eof +e*foe)v,v).

Dividing by 2sinh(2t) = 4 sinh ¢ cosh ¢, we obtain

5sinht
cosht

B(t) = (m,,mp(—e eof +e*foe)v,v).
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410 9 Unitary Representations of SL(2)

Next we note that for s;, sy € R, we have

sjeof 4+ s,foe= m(eOf—i—foe)—i— 1 5 e, f],
2 \\/J
=a
which, with the choice s; = —e™2! and s, = 2!, gives
inh ¢ 2 _ o2t 2 | o2t
w220 ) = < <%<eof+ Foo) - %) >
sinh(2t)

=— (T, mp(2e o f + 2f 0 €)v, v) — cosh(2t)¢'(t).

smh(2t)

Dividing by = sinh ¢ cosh ¢, we also obtain

n? cosh(2t) ,

(ma,mo(2e 0 £+ 26 0 )v,v) = S d(t) + 2050 6/ (1),

Using the relations 75 (2)v = av and 2 = 1 +a°%2 +2eof +2foe, we
finally arrive at the differential equation

0 (1) = (4, (0), )
= < mo(2)v, v)
o(t ) +¢"(t) + <7Tat7Ta(2€ of 4+ 2f o e)v, v>

o n? cosh(2t) ,,
=00+ (14 ) olo) + 25000,

as in the lemma. O

Proposition 9.19 (Determining the matrix coefficient). Let m be a
unitary representation of SLy(R). Suppose that v € H, is a smooth K-
eigenvector of weight n € Z and Casimir eigenvalue o € R. Then the matriz
coefficient ©T is uniquely determined by «, n, and ||v]|.

We would like to apply the uniqueness part of the theorem of Picard—
Lindel6f(*) to the function ¢(t) = ¢7 (a,) for t € R introduced in Lemma Q.18
In fact ¢(0) = ||v|? and ¢'(0) = 0 (see Exercise [@.20) give two initial condi-
tions for the second-order differential equation satisfied by ¢. Unfortunately,
applying the Picard-Lindelof theorem is not straightforward, as the differen-
tial equation is really only defined on the domain R~{0}.

Exercise 9.20. Show that the function ¢ defined in Lemma [0.T8] satisfies ¢’ (0) = 0.
PRrOOF OF PROPOSITION [0.19] Let 7, v, a, n, and ¢ be as in Lemmal[9.18 We

briefly discuss the structure of all real-valued solutions to the second-order
linear differential equation
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'+ 25+ (1ot i)y =0 019

for t € R~{0}. Restricting to the connected component (—o0,0) of R~N{0}, a
corollary of the theorem of Picard-Lindelof shows that

F ={y: (—00,0) = R | y solves ([@.I3]) for all t € (—o00,0)}

is a two-dimensional real vector space. In fact this corresponds to the inde-
pendence and sufficiency (to determine the unique solution) of the two initial
conditions y(tg) = yo and y'(ty) = y( for some t; < 0. By Lemma we
have

Yo = ¢|(—oo,0) € 7.

We claim that .# contains an element y., with

lim y/(t) = . 9.16

lim Yoo (1) = 00 (9.16)

Assuming the claim for now, we see that y,,y., € % are linearly inde-
pendent, and so they form a basis for .%. Suppose now that 7 and w are an-
other unitary representation and vector as in Lemma [0.I8] with the same K-

weight n, the same Casimir eigenvalue «, and the same norm |[jv] = |w]|.
Then

Yu(t) = ila_y)
for t € (—o0,0) defines another element of .%#. It follows that

yw = S’Uy’l) + SOOyOO

for some s, 5o, € R. Recall that ¢7(a;) and 7, (a;) defining y, and y,, are
both even by Lemma 018 If s # 0 we may use Exercise[0.20] and (@16 to
obtain the contradiction

0= lim AGIES Jim S0 + Soclbo| = 00
Hence s, = 0, and so

ll® =l o (8) = Jim 5,90 (8) = s o]

shows that s, = 1, and so y,, = y,.

Using Lemma [0.18] we see that the claim implies the proposition.

It remains to construct y,, € % as in the claim. We note that since the
coefficient 22:’5}}1’3: of ¥ in the differential equation ([@.IH]) goes to infinity in
absolute value as t — o0, it is natural to expect the claim to hold. The follow-
ing elementary proof of the claim precisely relies on this property of ([@.13])
and is simply an exercise in real analysis.

To bound the effect of the term involving y in (@.15), we define
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412 9 Unitary Representations of SL(2)

2
M= max |l-a+ ——
te[—1,0] cosh? t
and choose ¢y € [—1,0) so that
cosh(2t)
— | >M+1
Sinh(20) ’ +

for all t € [ty,0). Using the existence part of the theorem of Picard-Lindeldf,
we define y,, as the solution of ([@IF) on (—oo,0) with the initial value

conditions
Yo (tO) = Oa
Yoo(to) = 1.
We note that this gives

cosh(2tg)

—F— >0
sinh(2t,) ”

Yoo(to) = —2

by (@I5). We will show that

li t) = oo.
t%yoo() o0

For this, we first define
B ={t€[ts,0) | Yo = Yoo = 0},

so that t, € B. Moreover, since y.o(ty) > yoo(ty) = 0, there exists some d,
with [tg,to + 0g) C B and yo(tg + dg) > 0. We also define

§ = sup{t € [_t070) | [Oat) c B}
and note that [ty,s) C B. Now consider the derivative of y., — ¥4, which is
given by

cosh(2t) ‘ , n?

sz | V) (1 ot m) Yoo (1) = Yo (1)

cosh(2t) , n?
2———=1 -1 t)—|1—- — t
sinh(2t) ‘ ) Yoo 1) < ot cosh? t Voo 1),

>M <M

Yoo (t) — Yoo (t) = |2

where the indicated estimates hold for all ¢ € [ty,0). For ¢ € [tg, s) we obtain
from our definitions of ¢, and of B that

Yoo (t) — Yno(t) = Myl (t) — My.(t) > 0.
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9.2 Raising, Lowering, and the Dual of SLj(R) 413
However, this shows that ¢ — y. (t) — y,(f) is monotone non-decreasing
on [ty, s). Suppose for a moment that s < 0. Then monotonicity of y., — Yoo
and of y. on [ty, s] imply

Yoo (8) = Yoo (8) 2 ¥ho(to) — Yoo (to) =1 >0,
yoo(s) Z yoo(to + 50) > 0.

However, this also implies the existence of some § > 0 with [s,s +d) C B
and contradicts the definition of s. Therefore we have s = 0.
Equivalently, we have shown that

Yoo (t) = Yoo(t) =0

for all t € [ty,0). With this we now estimate the growth of y., on [ty,0).
Indeed,

h(2t) n?
(1) =[S0 1-— — t
yoo( ) Slnh( t) ( ) o+ COSh2t yoo( )
cosh(2t)
M My, (t) >0
Smh(20) ‘y )+ Myl (t) — My (t)

>0

for all ¢ € [ty,0) implies that y., is monotone non-decreasing.
With y.(t,) = 1, this gives y/ (t) > 1 for all ¢ € [t,,0), which leads to

Yoo(t) =

cosh(2t) S <
sinh(2t) |~ |¢]

for all t € [ty,0) and some absolute constant ¢ > 0. Therefore

}%y ()—}%ym():m-

This proves the claim, and hence the proposition. (I

9.2.5 The Unitary Dual of SL,(R)

The following corollary to Proposition [0.19] will be our main tool for the
classification of the elements of SL,(R).

Corollary 9.21 (Isomorphisms). Let © and 7 be irreducible unitary repre-
sentations of SLy(R). Suppose that the Casimir eigenvalues a, = o, agree,
and that there exists some n € Z such that both H, and H,. contain a K-
eigenvector of weight n. Then m = 7.
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414 9 Unitary Representations of SL(2)

PRrROOF. Let v € H, and w € H, be K-eigenvectors of weight n. Without
loss of generality, we may assume that ||v]| = |Jw|]| = 1. By Proposition [0.19)
this implies ¢T = ¢7,. However, Proposition [[.63] now shows that

Hy = <v>ﬂ' = <w>‘r =M,

are isomorphic as unitary representations of SLy(R). (I

We are now in a position to completely describe the unitary dual of SLy(R).
Since SLy(R) has the non-trivial centre {+I}, the first distinction we can
make between irreducible unitary representations of SLy(R) is by use of the
central character as in Corollary Since the centre of SLy(R) is given

Y

by {1}, we say that m € SLy(R) is even if 7_; = I and odd if m_; = —1I.
The second distinction is in terms of the ‘infinitesimal character’ obtained by
applying Proposition to all central elements of the universal enveloping
algebra € of sly(R). Actually this centre is generatecﬂ by 1¢ and the Casimir
element 2 of Section Hence the infinitesimal character is in our case
simply the Casimir eigenvalue o, € R. The third and final distinction is in
terms of which K-weights are present in the representation .

The following result of Bargmann |2] contains all the possibilities of these
three aspects, and introduces the final two types of irreducible unitary rep-
resentation of SLy(R); these will be studied in detail in Sections and

We depict SLy(R) geometrically in Figure @Il where we draw even rep-
resentations on the top half and odd ones on the bottom half. We also

o —

present SL,(R) as a list in Table

Table 9.1: The different types of irreducible unitary representations and their
main properties.

Notation Name Tempered? pa51m1r K-weights
eigenvalue
st discrete series 2
. -1 2
forn > 2 representation v (n ) :I:(n + NO)
sLt .mock discrete. v 0 +(1+ 2N,)
series representation
rée even principal v _¢? 27
for € >0 series representation
760 odd principal v €2 14927
for £ > 0 |series representation
v complementary X 2 27
for s € (0, 1)| series representation
1 trivial representation X 1 {0}

T We do not have to know this (see Exercise [I3) if we simply define the infinitesimal
character as the Casimir eigenvalue.

Page: 414  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



9.2 Raising, Lowering, and the Dual of SLj(R) 415
Theorem 9.22 (Unitary dual of SLy(R)). Suppose that m € Sm) is
even. Then one of the following four possibilities holds:

e, =1 and m =1 is the trivial representation.

ea, = (n—1)% for somen € 2N, and 7 = §™F is either the holomor-
phic or the anti-holomorphic discrete series representation with terminal
weight +n (see Section [B7]).

ea, = —£2 <0 for some £ € [0,00) and © = 7&° is the even principal
series representation for the parameter £ (see Section [0.3]).

o, = 52 for some s € (0,1), and m = ~v° is the complementary series
representation for the parameter s (see Section [0.5]).

o —

Suppose that m € SLy(R) is odd. Then one of the following three possibilities
holds:

e, =0 and m = 6% is either the holomorphic or the anti-holomorphic
mock discrete series representations (see Section BA).

ea, = (n—1)% for somen € (2N+1), and © = 6™* is either the holomor-
phic or the anti-holomorphic discrete series representation with terminal
weight +n (see Section [B.4]).

ea, = —£2 for some ¢ € (0,00) and m = w&° is the odd principal series
representation for the parameter £ (see Section [0.3)).

mée
54 52— s 2‘5.2’+ st 56+
° ° — 1 % 3 3 even
"""""" ™ Y SV 1 |
53— 51,— 51,+ §3+ §a+
6o

o

Fig. 9.1: The graphical representation of SLy(R) as a subset of C (with the
representations 70, 65—, 61t at the origin and both 1 and §>F at 1 € C) also
has the property that «, is the square of the position of © when drawn in C
(except for the artificial small gap between the even and odd representations, and
problems arising from {70 §F §1:=} and {§%T,1} which should be drawn at
the same point).

PROOF OF THEOREM In the following we let m be an irreducible uni-
tary representation of SL,(R). By Corollary @12 the closure of 75(f2) is
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416 9 Unitary Representations of SL(2)

multiplication by «, for some «, € R. By Lemma [0 T7 there also exists a
smooth K-eigenvector v € H, with weight n € Z and unit length |Jv|| = 1.
By Corollary @.21] we have that (n, o, ) uniquely determines 7 up to isomor-
phism. Hence the question is really which (n,a,) € Z x R are possible (in
general, and within each irreducible representation). As already explained,
Corollary gives the constraint

ar < (n+1)% (9.17)

(see the discussion leading to (O.I4]), and Figure 0.2)).

a, €R
°
2 2
. .
€L
. . . . . . .
e
N 2% X X
< >) ~ £
Q"‘/ >/ )

Fig. 9.2: The shaded region is the union of the region defined by the two inequal-
ities a; > (n+1)? and a,, > (n—1)2. By ([@I7), we know that this region cannot
contain a pair (n,a,) corresponding to a non-zero K-eigenvector for some repre-

sentation 7 € SLy(R). In addition, we see how Proposition [0.I3] creates additional
pairs from one pair. We also note that the two parabolas have width 2 precisely
at height o, = 1.

We first go through the list of representations that we have already en-
countered.

o If 1 = 1 is the trivial representation on C, then v = 1 € C has K-
weight n = 0 and Casimir eigenvalue 1, since 75(2) = m5(1¢) = 1. By
the above, it follows that 14 is characterized by the pair (n =0, = 1).

e For the holomorphic discrete series representation 6% or the anti-
holomorphic discrete series representation §™~ with n > 2 we have, by
Theorem RB.23] that §™* contains vectors with K-weights +(n+2N;) and
only these. Moreover, Corollary [0.15] gives agn+ = (n — 1)2.
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‘We
the

This also holds similarly for the mock discrete series representations 6%+

with K-weights (1 4+ 2Ng) and ag1,+ = 0 (see Theorem B30 and Corol-
lary [0.15).

next describe the remaining irreducible unitary representations listed in
theorem and in Table

Suppose 7 is an irreducible unitary representation with o, < 0. Now
let v, € H, be a smooth K-eigenvector of weight n € Z. Using the
raising and lowering operators in Proposition [@.13] we can define two
other K-eigenvectors my(r™)v,, of K-weights n+2. By Corollary [@.14] we
have

7o (x5 )onl? = (0 £1)* = ag)[|va > (9.18)

Since we assume «, < 0, it follows that (n £ 1)> — a, > 0 and so
that 7 contains smooth non-zero K-eigenvalues of K-weights n + 2. It-
erating this shows that 7 contains K-eigenvectors with K-weights m for
all m € n+ 27Z. Suppose next that 7 is another irreducible unitary repre-
sentation with o, = a;. If m and 7 are both even (or both odd) irreducible
representations, this, together with the first argument of the proof, im-
plies that 7 = 7. In other words, if there is an even (or, similarly, an
odd) irreducible unitary representation m with a given a, < 0, then a,
uniquely determines 7 up to isomorphism. We will show in Section
that for any & > 0 there exists an irreducible unitary representation ¢
with ae. = —€2 and K-weights in 27, and an irreducible unitary repre-
sentation 75° with o, e.0 = —€2? and K-weights in 1 + 2Z. These are the
even and odd principal series representations.

The discussion above almost applies to the case where the Casimir eigen-
value a, = 0. Indeed, if 7 is an even irreducible unitary representation
with «, = 0, then the K-weight n is even, n + 1 is odd, and hence

(n+t1)?—a,=m+1)*>0.

Applying the argument above, it follows that 7 must contain K-eigen-
vectors for all even K-weights, and that 7w is uniquely determined up
to isomorphism. We will show in Section that the even princi-
pal series representation 7%° is this irreducible unitary representation
with 0. = 0. We note that the argument above fails in the odd case
precisely when n = 4+1. Moreover, we already found the two odd irre-
ducible unitary representations 6%* with vanishing Casimir eigenvalue
and with K-weights in £(1 + 2N) respectively.

Suppose now that 7 is an even irreducible unitary representation with

a, € (0,1).

We note that
nt1)?—a,>1-a, >0
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418 9 Unitary Representations of SL(2)

for all even n € Z. Hence the argument above applies once more, 7
contains K-eigenvectors for all even K-weights, and is uniquely deter-
mined up to isomorphism by «,. We will show in Section that
this so-called complementary series representation +* for s € (0,1)
with o,. = s? € (0,1) exists.

It remains to show that the cases above give all possible irreducible uni-
tary representations. So let 7 be an irreducible unitary representation with
Casimir eigenvalue o, and let v,, € H, be a smooth K-eigenvector of K-
weight n € Z. We will now use Figure to repeat and extend the argu-
ment that we used above for the principal series representation. By Propo-
sition and Corollary @14 the vectors 7y (r®)v,, have K-weight n =+ 2
and satisfy ([@I8). In particular, this implies that o, < (n 4 1)%, or equiva-
lently that (n,a,) does not belong to the ‘forbidden’ shaded region in Fig-
ure @021 Moreover, if (n, «,) does not belong to either of the two parabolas
defined by o = (n 4 1)?, then we may replace n by n + 2 and iterate this
argument to obtain further eigenvectors with different K-weights. If, how-
ever, a; = (n+1)? (or a; = (n — 1)?), then ([@.I8) shows that m45(r)v, =0
(or my(r~)v, = 0, respectively).

This argument creates a chain of points (n,a,) avoiding the forbidden
region in Figure [0.2] possibly with end points belonging to either of the
parabolas defined by a, = (n £ 1)2. There are a few possibilities for this
chain of points, as follows.

a, < 0, and the chain is bi-infinite.

a, =0, n is even, and the chain is bi-infinite.

a,; = 0, n is odd, and the chain is one of (1 + 2N;) x {0}.

a, € (0,1), n is even, and the chain is bi-infinite and jumps over the two

shaded regions that have width less than two at the height a.

e However, a,; € (0,1] and n is odd is impossible, since the chain starting
on either side would lead to the creation of one of the points (%1, «,)
inside the forbidden region.

e o, = 1 and n even has three such chains, one starting at (2,1) going
to the right, one starting at (—2, 1) going to the left, and one consisting
of (0,1) only.

e «, > 1andn > 0 creates a half-infinite chain going to the right. It cannot
go infinitely far to the left, as the forbidden region has width larger than 4
and the gaps in the chain have size 2. Hence the chain has to stop with a
point on the right parabola. Replacing n by this minimal K-weight, we
see that a; = (n —1)% > 1.

e o, >1and n < 0 gives rise to a half-infinite chain going to the left.

We leave it to the reader to match the cases above to the irreducible unitary
representations discussed earlier and appearing in Table[@.1], which concludes
the proof. ([
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9.2 Raising, Lowering, and the Dual of SLj(R) 419

Corollary 9.23. Let w be a unitary representation of SLy(R) and suppose
that v € H, is a smooth K -eigenvector of weight n € Z and Casimir eigen-
value a € R. Then the restriction of w to the cyclic subspace (v), is irre-
ducible, and its type is determined by (n, o).

PrROOF. The last part of the proof of Theorem [.22] shows that every
pair (n,a,) that does not lead via raising and lowering to a pair inside the
forbidden region in Figure is achieved by a unit vector w € H, for one of
the irreducible representations p of SLy(R). By Proposition @19l this shows
that o] = ¢4, which implies (v), = (w), = H, by Proposition [.63l O

Using the description of SLy(R) it is possible to derive similar descriptions
of related groups.

o —

Exercise 9.24. (a) Describe PSLy (R).
(b) Describe GL4(R)°.

For the following exercise, the reader may have to also use the concrete
properties of the principal and complementary series representations in Sec-
tions and

Exercise 9.25. Let G = {g € GLy(R) | | det g| = 1}, and note that G = SLy(R)U7rSLy(R)
10
0-1
(a) Show that G has two one-dimensional representations.

(b) Describe how r interacts with K-weights.

(c¢) Use the (mock) discrete series representation to define for every n € N an irreducible
unitary representation 6™¢ whose restriction to SLy(R) is equal to 6™t @ 6™ .

(d) Extend the principal series representation from SLy(R) to G. Twist these by the non-
trivial character to obtain a second non-isomorphic series of representations of G.

(e) Repeat (d) for the complementary series representation.

(f) Show that G comprises precisely the representations found in (a), (c), (d), and (e).

(g) Describe GLy(R).

where 7 is the diagonal matrix r = with r2 = 1.

Exercise 9.26. Let G denote a locally compact o-compact metric group. Show that
SLy(R) x G = SLy(R) x G

(in a natural sense, as in Proposition [5.21)).

9.2.6 (Non-)Spherical Representations

Definition 9.27. We say that a unitary representation 7 of SLy(R) is spher-
ical if H,. contains a non-trivial vector invariant under K (equivalently, of K-
weight 0). Otherwise we say that 7 is non-spherical.

Essential Exercise 9.28. Let 7 be a unitary representation of SLy(R).
Show that 7 is non-spherical if
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/ eh(k)dmg (k) =0 (9.19)
K

for all v € H.

Corollary 9.29 (Non-spherical representations are tempered). Every
non-spherical unitary representation of SLy(R) is tempered, and so has decay
exponent 1 — e for all € > 0.

PrOOF. By Theorems and the discrete series representations and
mock discrete series representations are tempered. By the discussions in the
next section, the odd principal series representations 7%° are also tempered
for & € R~{0}. Hence Theorem (and Table @), imply that every non-
spherical irreducible unitary representation of SLy(R) is tempered.

Suppose now that p is a non-spherical unitary representation of SLy(R). By
Exercise [0.28, being non-spherical is equivalent to the vanishing of the inte-
gral in (@19)). Using the definition of weak containment, it follows that every
irreducible unitary representation of SL,(R) that is weakly contained in p
must be non-spherical also. By our discussion above, this shows that every
irreducible unitary representation weakly contained in p is tempered. We now
combine the definition of temperedness, the definition of weak containment,
and Proposition .36l By the latter, we know that for any unit vector v € H,
the matrix coefficient ¢} can be approximated in the compact-open topol-
ogy by sums of the form E?Zl gogj for some irreducible unitary representa-
tions m; < p and vectors v; € ’H,,,j for j =1,...,n; since m; < Agp,(r) We can
approximate gpgjj for j =1,...,n by some sum of diagonal matrix coefficients
for the regular representation. Putting these together, we obtain the same

property for ¢, which gives p < Asp,(®)- The last claim now follows from
Theorem B411 O

9.3 The Principal Series Representations

We will now modify the representation 7° from Section 5.2, which will give
rise to the even and odd principal series representations appearing in Theo-
rem [0.22] Along the way we will also explain the connection to Example

Definition 9.30 (Principal series representation). For a given £ € R,
we define the character x,. on

B = {au, | t,z € R}

by _
Xe(agu,) = e

for all a,u, € B. The representation 7¢ of G' = SLy(R) is defined by
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G
(7'[57775) = IndB(QXg),

or, more concretely, by the left-regular representation on the space H, of
those functions f: G — C with the following properties:

(1) f is measurable,
(2) f(gb) = xe(b)Ap(b) f(g) for all g € G and b € B, and
(3) Hf|KHL2(K) < 0.

The even principal series representation m&° = w5V (for frequency param-
eter ) is defined as the restriction of 7¢ to the subspace

Hgvcn _ {f c H§ | f(_g) = f(g) for all g € G}

Similarly, the odd principal series representation m&° = 7¢°44 (for frequency
parameter ¢) is defined as the restriction of 7¢ to the subspace

'Hgdd ={feH| f(—g)=—f(g) for all g € G}.

Let us summarize the properties of the even and odd principal series rep-
resentations that we will prove in this section.

Theorem 9.31 (Even and odd principal series representations). The
representations w¢, 7&°, and 76° are unitary representations with Casimir
eigenvalue —&2 for any & € R. The representation 7&° is irreducible for
any € € R and 7¢° is irreducible for all ¢ € R~N{0}. Moreover, m=5¢ is iso-
morphic to m6°, and w5 is isomorphic to 7° for all £ € R, and 7°° is
isomorphic to the sum 84t @ 6V~ of the holomorphic and anti-holomorphic
mock discrete series representations. Finally, all of these representations are
tempered with almost decay exponent 1 and are not discrete series represen-
tations.

PROOF OF UNITARITY IN THEOREM [0.31] Recall from Example[[6lthat SLy(R)
acts on St C R? via
1 1
S's2vr— gv=-——gv
lgvll

for g € SLy(R) and v € S!, and let m again denote the normalized length
measure so that the Radon-Nikodym derivative is given by

dg,.m
dm

Let ¢ € R and note that the map

(v) =g~ o] 7%

SLy(R) x 8" 3 (g,v) — c(g,v) = g~ 0] 71

satisfies the equation
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-1 —1-i¢
-1 91 v

2 —
gz ]

= (g192) "0l 7€ = c(g192,v)

1—i¢

c(g1,v)e(g2, 97" +v) = llgr "ol

for g1, 92 € SLy(R) and v € St. By Proposition [ the formula
1 _ 1 _
my () =g~ ol T f (g o)

for g € SLy(R), f € L2,(S"), and v € S! defines a unitary representation IS
of SLy(R) on LZ,(Sh).

We now show that 7 is 75" ¢ in disguise. In fact, we define for f € L2,(S!)
the function

U(f): SLa(R) 3 g = U(f)(9) = llger ]|~ 7 f(g-er)-

Then ||U(f)ll2x) = [Ifllz2,s1) since the normalized Haar measure my is
mapped under the action to the normalized length measure m on S!. More-
over, g € SLy(R) and b = a,u, € B imply be; = ee; and so

U(f)(gb) = ligbesll ™~ f(gb-es)
=7 T lgey | TTEA(

— 1
= xe(b)Ag(0)2U(f)(g
by ([B22), which shows that U(f) € H¢. We note that since f € L2, (S')
was arbitrary, this shows in particular that every F' € L?*(K) has an ex-
tension to an element of H,. Moreover, by the Iwasawa decomposition and

Definition [0.30)(2) this extension is also uniquely determined.
Finally, we let gy € SL,(R) and calculate

U(f)(95'9) = llgg "geal ™ 7 f g0 'gwer)

g-v)
)

and

1 1—i 1
U (S <) (g) = llges |71 (x5, f) (g-€1)
= llgeal ™ % llgo H(gre) T flgo tgrer).

llgo "gerl—1-i¢

Together these show that U: L2,(S') — H, is an equivariant isomorphism,
and hence that 7¢ is a unitary representation.

Since —1I belongs to the centre of SLy(R), the subspaces Hg"", 'H,gdd of H,
are closed invariant subspaces. It follows that 7¢, 7&¢, 78° are well-defined
unitary representations of SLy(R). O

Exercise 9.32. As an alternative, use Corollary B36] to show that 7¢ defines a unitary
representation of SLg(R).
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For the proof of irreducibility, we will use the following lemma.

Lemma 9.33 (Casimir eigenvalue for 7¢). Let ¢ € R. Then the closure
of wg(Q) is equal to multiplication by o = —&2. Moreover, for every n € Z
the extension of x_,, € L*(K) to an element F, , € H¢ has K-weight n, and
is given by o

Fye p(kypagu,) = e mvisti—t (9.20)

for all kya,u, € KAU = G. These functions satisfy

n+1+ig
Fg(r—i_)Fng = fFEKn‘FQ’
_ —n+1+i€
ﬂ—g(r )Ff,n = fFE,nf%
an +1+ i +14 i
n i —-n i
my(a)Fe = 5 Fe nyo fFE,n72 (9.21)
for alln € Z.

PROOF. For any n € Z, we define Fy ,, € H, by setting
Ff,n|K = X-n S L2(K)

to be the character defined by —n and extending it by the defining properties
of its elements to an element of H,. Using the formula Ag(a,u,) = e for
all a;u, € AN = B and the definition of H,, this gives ([9.20).

To see that I ,, has K-weight n, we calculate

7, (Fen) (ko) = Fe (ko) = €070 = & B (ky)

for all ky, kg € K. Since the characters x_,, for n € Z form an orthonormal
basis of L?(K), it follows that the functions Fy ,, for n € Z form an orthonor-
mal basis of H.. We note that each F¢ , is a smooth function on G, which
implies, by dominated convergence, that it is also a smooth vector for <.
Alternatively, the latter also follows from Lemma

Next we wish to calculate wg(a)ngn. For t € R we have

exota) = (7 1),

—t
(7 p(tmy Feun) (ko) = Fe o (exp(—ta)kg) = Fe,, ((e et) ke)-

and

In order to apply the definition of Fy ,, in (A.20), we need to write the argu-
ment in the form
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e—t
< et) k@ = kwatoumoa

where in fact we are only interested in the angle parameter ¥ = ¥ (t,6)
and the diagonal parameter t, = t((¢,6) considered as functions in ¢ and 6.
As in the proof of the estimate for the Harish-Chandra spherical function
in Proposition B39, we obtain 1) and t, by using polar co-ordinates in R2.
Indeed,

cos
kypag ug e = elo <Sin Z’Z}> (9.22)
must equal
et 0 e t 0 [cosd e~ tcosf
( 0 et> Foer = ( 0 et) (sine) = (et sin 0 ) (9:23)
Therefore

e = ¢t cos? 0 + %t sin? 0.

Since we will later take the partial derivative with respect to ¢ at t = 0, we
calculate from this that

2¢2to %to = %(e%) = % (e72" cos® 0 + e sin® 0)

—2e¢7 2t cos? 0 + 2e2t sin? 6.
For t = 0, this gives, with ¢4(0,0) =0 for all § € R,

0

o (tg) = —cos® 0 +sin® 6 = — cos(20) = —1 (2 +e72%).  (9.24)

t=0

For the angle ¢ = ¢(6,t), we obtain from (@22]) and (@.23) that

t .
tany = ﬂ = e tané,
e~tcosf
0 0 0
2 2 2
(14 tan w)gw = g(tanw = a(e *tanf) = 2e* tan 6.
Setting ¢ = 0 and using in addition (0, 0) = 6 for all § € R, we obtain

0 2tan6 . . 200 —20i
En tzo(w):mz2sm6‘ces6‘=sm26‘:%(e —e 2. (9.25)

Combining (@24, [@23)), and using again ¢,(0,60) = 0 and ¢(0,60) = 8 for
all 8 € R, this gives
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(e—inw—igto—to)

t=0
t=0

0
1/1) — (i€ + 1)(&
_oinf (—ini, (X — o) 1 (i + 1)% (X + e—20i))

(Fen(kparuz,)) = 5

2i
_ n+1+ lf e_i(n+2)0 + —n+1+ 16 e—i(n—2)9
2 2
n+1+i —n+1+i
= ( 5 ) Fe nia(kg) + < > Fe _o(ky)

for all ky € K. To summarize, we have shown (@.21).
Recalling that a = r* +r~ and that, by Proposition @.13, 75(r*)F; , has
weight n £ 2, we obtain

n+14i¢
Fg(r—i_)Fng = fFEKn‘FQ
and
_ —n+14+i
ﬂ-g(r )Fﬁ,n = fFf,n—Za

as claimed in the lemma.
Using the formula for 2 in ([@I3) in terms of r*, r~, and k, we obtain

with 75 (1 ¢ + ik)F , = (1 —n)Fe,, that
75(2)Fe, = An5(r or ) Fe  + 715 (Le +1k)°%) Fe
=25 (r")(—n+ 1 +i6)Fepp + (1 - 1) Fp
=(n—1+4i)(—n+14i)F., + (1 —n)’F,
= (-1 =&+ (1 -n)*)Fe
= —CF,

for all n € Z. Since the functions Fg ,, for n € Z form an orthonormal basis
of H¢, the lemma, follows. O

PROOF OF IRREDUCIBILITY CLAIMS IN THEOREM [I.31] For £ € R let p = 7&:°
be the restriction of ¢ to

H,=HE" = (Feon | n€Z) = {f €He | 7", f = f},
or let p = 7% be the restriction of 7¢ to

H,=H = (Feopi1 In€L)={feH | 7%, f=—F})

Page: 425  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



426 9 Unitary Representations of SL(2)

Suppose V < H, is a non-trivial closed p-invariant subspace. Since K =
SO, (R) < SLy(R) is compact and abelian, V contains a K-eigenfunction.

As H, is given as the linear hull of orthonormal K-eigenfunctions of dif-
ferent weights, it follows that F¢ ,, € V for some n € Z. By Lemma [0.33, this
implies

n+1+i€
ﬂ-g(r+)F§,n = (f) FE,n+2 (S V
and
Wg(ri)F&n = <%_|—1§> Fﬁ,n—2 eVv.

If &€ # 0, then certainly 2 o2 0, and we obtain Fy ,, 49, Fe o € V.
Moreover, in this case we can iterate this argument and obtain

Hp:<Fg)n+2k|k€Z>gV<Hp,

which implies that p is irreducible.

If ¢ = 0 and p = 7%° is the even principal series representation,
then the K-weight n of F¢, is even, % is non-zero, and we again
obtain F¢,_o, F¢ 4o € V. Once more we can iterate this and thus ob-
tain V = Hg"*", and so deduce that 7%° is irreducible. O

While the above was independent of Section [0.2], for the following step we
are going to use the Bargmann classification (Theorem [.22]).

PROOF OF ISOMORPHISM CLAIMS IN THEOREM Let ¢ € R. By
Lemma the representations 7¢¢ and 7¢° have Casimir eigenvalue —¢2.
By the previous part of the proof, we know that these are irreducible with
the exception of 7%:°. By Theorem there is however only one even irre-
ducible representation with Casimir eigenvalue —¢2, which gives 7&¢ 22 r=%¢,
Similarly, for £ € RN{0} we have 7&° = 70,

Let us now discuss 7%° with Casimir eigenvalue 0. By Corollary
we also have ag1+ = agz.- = 0. By the construction of 7%°, it contains
all odd K-weights. Let v; € H,o0 be a unit vector with K-weight 1, and
let eg € Hgi,+ be the unit vector with K-weight 1 as in Lemma (see
also the paragraph after Theorem B30). By Proposition [0.19, we conclude
that gpgf‘° = cpg;’+. However, Proposition now implies that the cyclic
representations (v;) 0.0 and {ey)s1,+ = Hg1,+ are isomorphic. In other words,
we have shown that 6+ < 7%° (up to isomorphisms). Using a unit vec-
tor v_y € Hrpoo of K-weight —1, we obtain, from the same argument,
that 61~ < 7%°. Together we have §U'F @ §1'~ < 7%°. However, since
in 6t @ 6Y~ and 7°° each odd K-weight appears with multiplicity one,
we must have equality. (Il
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PROOF OF INTEGRABILITY AND DECAY PROPERTIES IN THEOREM [0.31]
Let £ € R and n € Z. By ([@.20) we have |F¢ ,| = Fy,. For m,n € Z this
implies

(78 Fe s Fe)| = ] [ Fents WFe W )
< /K Foolg™ k) Fy o) dmac (k) = Z(g)

for g € SLy(R). By Proposition B.39 and Theorem R4 we deduce that 7¢ is
tempered with almost decay exponent at least 1 for any £ € R.

Also by Proposition B39 we have = ¢ L?(SLy(R)), which shows by Theo-
rem B2 that 7% is not a discrete series representation. For the odd represen-
tation recall the isomorphism 7%° = §1:F @ 61~ and that by Theorem
both §%* and §~ are also not discrete series representations.

So suppose now that £ € RN{0} and n € Z. Let a = —£? < 0. We recall
that by Lemma the function ¢(t) = go}i (a;) satisfies for ¢ > 0 the
second order linear differential equation 1

¢" + frd' + fod =0, (9-26)

where fi(t) = 2+ O(e™2) and fy(t) = 1 —a + O(e™2) for t > 1. Also
recall that ¢/(t) = <7T§t7Ta(a)F£,n,F&n> (essentially by definition; also see

the proof of Lemma [B.18). To see that 7¢¢ and 7¢° are not discrete series
¢

a(a)Fe
integrable for any n € Z and apply Theorem Equivalently, we will show

that ¢ and ¢’ are not both square integrable on [1,c0) with respect to e?! dt
(see (BI1). We define y(t) = e'¢(t), so that

y'(t) =" (¢'(t) + (1)),
y'(t) = e' (¢ (t) + 20 (t) + (1)),
and we wish to show that y and y’ are not both square integrable on [1, c0)

with respect to dt. The differential equation (9:26) for y therefore takes the
form

representations, we will show that w}z and 7 are not both square

y' =2 +y+f1 —y)+fo v =0,
—_— ~—— ~—
=cto!! etg! et
or

'+ Fiy +Fy=0

for [y = f —2=0(e ?) and Fy = 1 — f; + fo = —a + O(e~?"). Finally, we
define z = (y')? — ay? so that
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428 9 Unitary Representations of SL(2)

2 =2y'(y" - ay)
=2y (-Fy' — Foy — o)
= —2F(y')? - 2(Fy + @)yy’
= 0(e ")z, (9.27)

where in the last step we applied the asymptotics for F; and F;; and bounded
both (y')? and 2yy’ by z = 3% + (v')%. As 7€ is tempered, we may use a
multiple of = to bound ¢ and ¢'. By Proposition B39 we have Z(a,) < te™*
for t > 1, which gives |y(t)] < t, [y'(t)] < t, and z(t) < 2 for t > 1.
Therefore (O.27) implies that

2(t) — 2(ty) = /tt Z(s)ds = O (/tt =252 ds)

for t >ty > 1. However, this implies that lim,_,  z(¢) exists. In particular,
S(to) =sup{z(t) | t >t} < o0

for all t; > 1. Note that we have S(t;) > z(tg) > 0 as z(ty) = 0 would
give ¢(tg) = &' (ty) = 0 and contradict the uniqueness of the solution to (@.26])
due to the Picard-Lindel6f theorem. Using ([@.27]) again, there exists a con-
stant C' so that

t
1
|2(t) — 2(t1)| < O/ e 2% dsS(ty) < C§e*2t1S(t0)
g

for all t > t; > ty. Now choose t; > 1 so that Ce 2t %, choose t; >ty so
that Z(tl) > %S(to) Then

S(to) < 52(0)

]

|2(t) = 2(t1)] <

for t > ¢, which implies that lim,_, . z(t) > %z(tl). However, this also implies

that - -
/ (Jely® + (y)?) dt = / zdt = co.
1 1

Hence y and 3y’ are not both square-integrable on [1, 00). As discussed above,
this shows that both 75¢ and 7¢° are not discrete series representations.
Finally, recall from Lemma that the integrability exponent p, of a
unitary representation m of SLy(R) and its almost decay exponent x, sat-
isfy p, < % The above showed for any principal series representation m
that p, > 2 and s, > 1, which implies k, = 1. O

Exercise 9.34. (a) Analyze the above argument to show that for any £ € R~N{0} and n € Z
there exists a constant C¢ ,, so that
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9.4 Two Koopman Representations of SLj(R) 429

3 _
|75 (@) < Cenllgl .

(b) Show that C¢ ,, — 0 as & — 0, which makes the conclusion in part (a) less interesting.

9.4 Two Koopman Representations of SL,(R)*

We wish to show here how the principal series representations can naturally
occur as components of other unitary representations. Since SL,(R) acts both
on the Euclidean plane R? and on the hyperbolic plane H, preserving area
measure on the space in each case, this already gives rise to two natural
unitary representations of SL,(R). As we will see, the case of R? will be
relatively straightforward to analyze. On the other hand, understanding the
case of H will require more work, but we will motivate the formulas arising.

9.4.1 The Koopman Representation on R?

Almost by definition, the group SL,(R) acts continuously on R?, preserving

the two-dimensional Lebesgue measure m = my2. Using Proposition [[3] this
2

gives rise to a Koopman representation 7 of SLy(R) on L2,(R?), where

T (f)(@) = flg ')

for g € SLy(R), f € LZ,(R?), and x € R?.
Using polar coordinates

(r,0) € (0,00) x [0,27)
for R*\{0} with dm = rdr df, we make the following definition.

Definition 9.35 (Radial Mellin transform). For a function f € L2 (R?),
an element h € SLy(R), and a frequency parameter £ € R, we define the
radial Mellin transform of f at (h,&) by

rs

f dd(h, &) = /0 f(rhel)rig dr, (9.28)

()

denotes the first basis vector of R2.

where

Just as in the case of the usual Fourier transform, the integral in (@.28)
may not make sense as a Lebesgue integral. Thus we also need to discuss the
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meaning of this expression more carefully (which we will do in the proof of
Proposition [0.39)). The following lemma, together with the definition of the
principal series representation in Definition reveal why (0.28)) is really
the right definition.

Lemma 9.36 (Equivariance properties). For f € C.(R?) the radial
Mellin transform fmd(h,f) is well-defined and satisfies

rad

T () () = (g7 0, €)

~rad e 1 rad

[ (hb,§) = xe(b)Ap(b)2f (R, €)
for all (h,€) € SLy(R) x R, g € SLy(R), and b € B = AU.

PROOF. It is clear that for f € C,.(R?), the domain of integration in [1.28 can
be chosen to be a compact interval, which gives the first claim in the lemma.
Now fix some g, h € SLy(R) and £ € R. Then

oo

O = [ ) e ar

0

= / f(g~ Yrhey)r's dr
0

~rad

=f (97'h,8),

as claimed.
For the second claim, we calculate for b = a,u, € B = AU that

~rz

f dd(hatuz, £ = / f(rhauze)r®dr
0 ——
=ete;
= / f(They) (Fe_t)ige_t dr
0
= e [ g,

where we used the substitution 7 = efr with d7 = e! dr. The lemma follows
by recalling that Ap(au,) =e % and x¢(asu,) = e for all qu, € B. O

In addition to the correct equivariance properties as shown above, the
radial Mellin transform is also isometric in the following sense.

Lemma 9.37 (Isometry). For f € C.(R?) we have

~~rad
1 haaceny = |7 e

L2(KxR)

where we equip K x R with the Haar measure dmy dé = % dodé¢.
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PROOF. We first note that

2
||f||L2(]R2 / / f(rkgey | rdrdé

27
= T rke 2$d9.
) !f( 9€1)

We now define, for 6 € [0, 27), the function Fg: R — C by

FQ(S) = esf(eskgel)

for all s € R, and note that Fy corresponds, roughly speaking, to the re-
striction of f to the ray from 0 at angle 6 to the positive z-axis. Using
the fact that f has compact support in R? and is bounded near 0, we see
that Fy € LY(R) N L*(R) for all § € R. Using the substitution r = e*
with % = ds we see that

2m oo
1f 172 (ge) = /0 / |Fy(s)|ds de.
—

— 2
=IF 112 5

Next we use the fact that
1 Foll L2y = 1Foll L2 (m)

where l\*"; again denotes the Fourier back transform. Using the definitions and
the substitution » = e® with dr = e®ds again, we obtain

0= [ Rl as

— 00

= / e® f(e*kgeq )€™ ds

— 00

rad

- /O Flrkge)r®™<dr = " (kg, 2mC) (9.29)

for all ¢ € R. Together, we obtain
2m -
ey = [ 175l

:/%/ 7 (ky, 27¢)| dC 40
27

/ 7 kﬁu &)ldedd = ||f |K><RH%2(K><R)
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by using the substitution £ = 2n(. O
Definition [@0.30] and Lemmas [0.36] and suggest the following definition.

Definition 9.38 (Integrals of principal series representations). For
any o-finite measure p on R, we define the space H,, of all functions

F:SLy(R) xR = C

satisfying the following properties:

(1) F is measurable;
(2) F(hb,€) = xe(0)Ap(b)2 F(h,€) for all h € SLy(R), b € B, £ € R; and
(3) 1 f & xrll L2 (& xRymge x ) < 00

The unitary representatiorﬁ

= [ <o
R
is defined by the left regular representation on the first component; that is,

m (F)(h,€) = F(g~'h,¢)

for all F'€ H,,, g,h € SLy(R), and £ € R. Moreover, we also define

e [ e

and

R g

to be the restrictions of 7# to the subspaces
Hy " ={FeHt,|F(-g,2) = F(g,) for all g,z}

and
HOM = (F e H,, | F(—g,2) = —F(g,z) for all g,z}

respectively.
Proposition 9.39 (Spectral decomposition of WRQ). The Koopman rep-

resentation of SLy(R) on R? is isomorphic to

am = gme ey a0 — /
R

e dé @ / &0 d¢,
R

where we use the Lebesque measure p =m on R.

T We did not discuss the integral of unitary representations, but believe that the notation
is justified in this case.
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PRrROOF. By Lemmas and @37 the radial Mellin transform
Co(RY) 5 fr— [ €A,y

is well-defined, equivariant, and an isometry. Hence it extends by the density
of C,(R?) in L?(R?) to a well-defined, equivariant isometry

LXRY) S freo [ eH,,.

We keep referring to fmd as the radial Mellin transform of f € L?(R?).
It remains to show that this map is onto. For this, assume that fx € C(K)
and fr € C,(R). We note that

fe®fa: KXxR—C

can be extended using property (2) in Definition to an element of H,,.
We claim that fr ® fr = fmd for some f € C.(R?). Also recall that the
subspaces C(K) C L*(K) and CT(JRT) C L3R, m) are dense (for the lat-
ter, apply Theorem [ZTH]). Varying fr and fr, we can then, for example,
approximate any function of the form 15, ® 1p extended to an element
of H,,, where Bx C K and By C R are measurable with finite measures. For
this reason, the claim implies that the image of the radial Mellin transform
(extended to L?(R?)) is indeed all of H,,.

To prove the claim, we reuse the argument from the proof of Lemma [@.37]
Let fx € C(K) and fi € C,(R) be as above. We define f € C,(R?) using
polar coordinates by

frkger) = 5= fre(0)r~" fz (3 logr) .

For this f, the function Fy for # € [0,27) appearing in the proof of
Lemma becomes

Fy(s) = e f(e kge) = %fK(e)fR (%5)
for s € R. Hence by ([@.29) and the substitution § = ;-5 we have

rad

™ (kg 27C) = Fp(C) = & Fxc(6) / Fa (i s) €25 ds
R
= 11(0) [ k@ = fie@)Fel2n)

for all 6 € [0, 27) and ¢ € R. Equivalently, we have frad = fr ® fg as claimed,
which gives the proposition. (I

Exercise 9.40. (a) Show that 7# as in Definition [0.38] is indeed a unitary representation
of SLy(R) for any o-finite measure p on R.
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(b) Show that 7# is tempered.

Exercise 9.41. Use Fourier inversion on R to prove a Fourier inversion formula that ex-

~rad
presses f € CS°(R?) as an integral over values of f]ra .

Exercise 9.42. Is the centralizer of the Koopman representation of SLy(R) on L2(R)
abelian? Prove your claim. Can you identify the centralizer?

9.4.2 Moving a Loudspeaker to Infinity

To better understand the formulas required for the hyperbolic Fourier trans-
form we wish to discuss a physical interpretation of the Fourier transform
on the two planes R? and H. As this is just meant as a motivation for the
formal definitions coming later, we leave the details of these calculations as
exercises.

To begin with, we imagine a loudspeaker L, which we assume will pro-
duce the desired sound for any given frequency and amplitude. We imagine
the sound wave being represented by a C-valued function f; on the plane,
where | f |? represents the energy of the wave, and the argument of f; repre-
sents the phase shift of the wave. We also imagine that there is no energy loss
in the passage of the wave through the medium. This physical interpretation
suggests that |f; (Py)|? is inversely proportional to the length of the circle
with centre L containing a point P, as illustrated in Figure

P
Fig. 9.3: The sound waves emanate Fig. 9.4: We move the loudspeaker L
from the loudspeaker L and decrease upwards, and turn up the volume.

in loudness. The concentric circles in-
dicate the phase of fr.

We now fix some origin P, in the plane, and move the loudspeaker L
further away in some pre-determined direction, say upwards as in Figure 0.4
This of course means that we do not hear the sound much at Py if L is already
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far away. To get round this problem, we simultaneously turn up the volume
at L so that |f7,(Py)|? = 1. We now wish to move L to infinity and describe
what will happen to f7, if we do so. However, to do this we have to distinguish
between the cases of the Euclidean and hyperbolic planes.

Euclidean plane: In the Euclidean plane, the circle of radius r has circum-
ference 27rr. If P, belongs to a circle of radius 7y (that is, if vy = || Py — L||)
and P has distance |P — Py|| to Py, then P belongs to a circle of radius r
with Ar = r — rq satisfying |Ar| < ||P — Pyl (by the triangle inequality).
Hence

|fL(Po)? - 2mrg = | fL(P)| - 277

Letting L go to infinity, we have r; — oo and ;FL:O = % — 1. Therefore

the limiting sound distribution f will have the property that |f|? is constant
and equal to 1. Moreover, the concentric circles degenerate to equidistant
parallel lines, so that in the limit we may obtain in this way the function

fla,y) =€

for P = (z,y) € R?, where £ represents the frequency of the wave. Allowing
different frequencies and different directions along which L is moved, one
obtains in this way any character x( ¢,) for (§,&) € R?, which we may
think of as the elementary waves on R-.

This suggests the following interpretation for the Fourier transform of a
function on R2. Given f, we first test the correlation of f against all ele-
mentary waves. Next we imagine infinitely many loudspeakers at infinity in
all directions using various frequencies with well-chosen amplitudes. Fourier
inversion now tells us that these then create the prescribed sound distribu-
tion f by superposition of the so-created (and correctly amplified) elementary
waves.

Exercise 9.43. (a) For a given frequency ¢ € R and two points Py, L € R?, calculate the
function f;, representing a wave of frequency £ emanating from L with fr(Py) = 1.
(b) Calculate the limit f of f;, as L = (0,y) — oco.

Hyperbolic plane: To get some intuition for the hyperbolic Fourier trans-
form, we repeat the above discussion on H, which will lead to the functions
that will take over the role of characters in the more formal discussions of
the following sections.

We again imagine the loudspeaker L moving to infinity along the upward
oriented geodesic and consider equidistant concentric circles with centre L,
as in Figure We note that in the limit we obtain circles (in the Eu-
clidean sense, within C O D) touching the boundary. These are not hyperbolic
geodesics; instead these curves are called horocycles.

To understand the limit function f of the sound distribution f; for L
going to the boundary, we need to calculate the circumference of a circle of
radius R. To simplify matters, we let the centre be 0 € D as in Lemma BT5l
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L
‘D D "’) D

Fig. 9.5: A calculation reveals that any Md&bius transformation z — a;[? on C
maps lines and circles to lines and circles. With this, it is straightforward to verify
that concentric hyperbolic circles with centre L appear in the disk model of the
hyperbolic plane as circles, with L appearing closer to the circle near the boundary.
If L is moved to the boundary, these circles degenerate to circles touching the
boundary.

By ([8I2) the Euclidean radius of this circle is given by p = tanh(%). Hence
the circumference can be calculated using the path

[0,27] 5 6 — pe'?,

which, by definition of the Riemannian metric in (8.0)), gives

sinh (&
/277 2 46 47 tanh(%) 4 Cosiié)) - cosh® %)
[ = = am
o =TT U tank?(5)) T (cost®(§) —sinh*(E))

4n sinh(%) cosh(%) = 27 sinh R.
We let L go to infinity along the Northward geodesic, so that
To = d(Po,L) — OQ.

For a third point P € d, we let » = d(P,L). We also define the ‘relative
distance’ from L compared to P, by setting it equal to

Ar=d(P,L) —d(Py,L) =71 — rg,

see also Figure Note that Ar = r — ry satisfies |Ar| < d(P, Fp).
With sinh R ~ et as R — oo, and

|fr(Py)[*2msinh g = | f(P)|*27 sinhr,
we obtain

|fr(P)? _ sinh o= Ar
|fL(Fo)l?  sinh(rg + Ar)
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as ry — o0. Since we normalize the loudness of L along the way to
have |f.(Py)|?> = 1, we expect that the limit sound wave satisfies

F(P)] = e300

for the limiting function b of Ar. Putting the phase with frequency ¢ into the
discussions, we expect that functions of the for

f(P) = o(—3+36b(P)

are the relevant elementary waves on the hyperbolic plane. This is indeed the
case, so we will have to define the so-called Busemann function b(P) more
carefully (we also refer to Busemann’s monograph [7]).

By varying both the frequency and the position of the loudspeakers on the
boundary of the hyperbolic plane, we again expect that any sound distribu-
tion on the plane can be produced as a superposition of elementary waves.

Exercise 9.44. Repeat (a) and (b) from Exercise [9.43] for H.

9.4.3 The Busemann Function

In the upper half-plane model H, the desired function takes a particularly
easy form. Indeed, if we move the loudspeaker L simply up to the point oo
in OH, then the concentric circles degenerate to horizontal lines near i, as in
Figure

\//
\.i__/ i
— e —

Fig. 9.6: On the left we see that the concentric circles with centre L = yi for
large y are almost horizontal Euclidean lines. On moving y to oo, these become
horizontal Euclidean lines or horizontal horocycles in the hyperbolic plane H.

Definition 9.45 (Busemann function for co € 9H). The Busemann func-
tion on H with respect to oo € 9H (and origin i € H) is defined for z € H
by

b (2) = —log I(2).

t As earlier, we normalize the meaning of frequency in the following discussions to simplify
some of the formulas arising.
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We note that the point co € JH should be thought of as being the point
‘at infinity’ that is higher up than any z € H. Roughly speaking, b (z)
is comparing the distance of z and of i to oo (both of which are of course
infinite). More precisely, b%L (z) measures the hyperbolic distance between the
horizontal horocycle at z = x + iy € H and the horizontal horocycle at our
designated origin i, given by

. Y dy
d(iy,1) = ‘/ 7‘ = |logyl|.
1

We should think of b (z) as an oriented relative distance, since b (z) > 0
means that z is further from oo than i is, while b5 (2) < 0 means that i is
further away from oo.

Using the discussion of Section as in Figure [0.7] we are now led to
the following definition.

Definition 9.46 (Hyperbolic wave). We define the hyperbolic wave func-
tion coming from oo with frequency £ € R (normalized for the origin i € H)
to be - '

Xoo(2) = e(m3 T3 (2) _ g(z)%féé

for all z € H.

Fig. 9.7: We think of a hyperbolic wave coming from oo with horizontal horocycles
being the wave fronts. Since an interval of Euclidean length 1 of the horizontal
horocycle with vertical coordinate y € (0, c0) has hyperbolic length %, the energy
of the wave spreads over a larger region as it spreads down and so its intensity
decreases, as in Definition

We note that by definition of Mébius transformations in (83) and the
description of Ag in ([B22) we have

Xoo)g(b_l-z) = C\‘s(e_%(z — :17)) 3m3¢

oo 1 (9.30)
= e 170G (2) 4 = Ap() ¥ xe(B)xon g (2)
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for all b = u,a, € B and z € H. These formulas suggest a possible link
between the hyperbolic wave of frequency ¢ and the principal series repre-
sentation 7¢ corresponding to the frequency parameter ¢ (see Section [0.3),
which we will explain after defining the hyperbolic Fourier transform.

We also note that the identifications

B3b=uga,— bK € SLo(R)/K — 2z =bi=x+e*icH

are measure-preserving by our choice of the Haar measure mpg on B in Sec-
tion and the normalization mg (K) = 1. We will also simply write m for
the Haar measure m = mp X my on SLy(R) = BK, and will write [, -dm
for integration over G = SLy(R).

9.4.4 The Hyperbolic Fourier Transform

We recall from Section B3] that the action of SL,(R) on H by Mdbius
transformations preserves the hyperbolic area measure defined by
dz dy

dvol = R

By Proposition this gives rise to a Koopman unitary representation
of SLy(R) on L?(H) defined by

for g € SLy(R), f € L?(H), and 2 € H. We note that 7, = I since

—1z+0
Chz=g1 =

for all z € H, so that 7 is an even representation. We also recall that we
may use H = SLy(R)/K to identify L?(H) with the subspace of L?(SLy(R))
consisting of all right K-invariant functions. Under this identification, 7™
becomes the restriction of the left regular representation AS“2(®) to this sub-
space. In particular, 7™ is tempered, and has uniform decay exponent 1 by
Theorem R3]

In analogy to the definition of the radial Mellin transform in Defini-
tion [0.35] and motivated by the discussions in Sections and 0.4.3] we
are led to the following definition.

Definition 9.47 (Hyperbolic Fourier transform). We define the hyper-
bolic Fourier transform of f at (h,§) for f € L2 (H), h € SLy(R), and a
frequency parameter £ € R, by
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~~h,

" = oz z)dv Z:OOOO (x+1 %Jr%gM
e H{f(h Yoo (2) dvol(z) O/_Zof(h( gyt

As with the (radial) Fourier transform, this may not be a well-defined
Lebesgue integral but, as we will see, can be defined for almost every (h, £) by
an isometric extension of the transform on C,(H). We note that the measure-
preserving substitution w = h-z in the definition implies that

~~h;

P (€)= [ o el dvolw). (9.31)

Hence we will think of fhyp(h, §) as the correlation of f with the hyperbolic
wave function H > w — X ¢ (h~t.w) which we think of as ‘coming from h-oco
normalized for the point h-i’.

Lemma 9.48 (Equivariance properties). For f € C.(H) the hyperbolic

Fourier transform fhyp is well-defined and satisfies

~hyp

T (€)= T (g7 hy€)

and

~hyp

T 0. €) = xeB)As(0)* ] (h,€)
for all g € SLy(R), (h,€) € SLy(R) xR and b e B = AU.

In other words, the lemma says that for any £ € R the map
Zhyp even
CC(H) > f — f (75) € H£

is equivariant between the Koopman representation and the principal series
representation 7.

PROOF OF LEMMA For g,h € SLy(R) and £ € R we have

0" 0,6 = [ (B dvol )

H

- / F(g™ ez X e (=) dvol(z)
H

=f (gilhvg)'

Moreover, for b = u,a, € B we also have
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~hyp

f(WOzAﬂMMM@WNMM
:/Hf(h-w)xoof(b*l-w) dvol(w)
::ABwﬁEREA;ﬂmwuw@wommmw

by using the measure-preserving substitution w = b.z and (@30), which
proves the lemma. (Il

We wish to explain Lemma [0.4§] in another, more convenient, way using
convolutions. For this, we let g = kb € KB = SLy(R) with b = u,a; € B and
obtain

Xoo,e(9711) = Xoo,e (b7 140) = e "8 = F (b) = Fe(g)

where Fy = F¢ o € HgY" is defined in (Q.20). We also identify xo, ¢ with the
right K-invariant function

Xoo,e: SLa(R) 2 g — Xoo,e(g+1)-

Recalling that SLy(R) is unimodular, we can use the involution of Sec-
tion [L4.Tl to put the above into the form

Xoo,e = T (9.32)

The identification between functions on H with right SO, (R)-invariant
functions on SL,(R) allows us to use convolutions in L*(SLy(R)) as discussed
in Section [[L41] for functions on H. We will however also use convolutions of
functions in C,(SLy(R)) and C'(SLy(R)), giving rise to functions in C'(SLy(R))

(see Exercise [[40]).
Lemma 9.49 (Convolution formula). For a function f € C,(H) we have

~hyp

7 mO—MQW—Lﬂw%@”MWM)

for all (h,€) € SLy(R) x R.

We note that Lemma implies both claims of Lemma In-
deed, f * Fy € H, since Iy € Hg and H, is defined by a formula using
the right regular representation restricted to B, which commutes with the
left convolution. Similarly, the equivariance under the Koopman representa-
tion (or, equivalently, under the left regular representation) also follows from
the properties of convolutions.

PROOF OF LEMMA For a function f € C,(H) and (h,§) € SLy(R) x R
we have
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~~h,

7 g = /H F(w) Xz (b~ ) dvol(w) (by (O3T))
- / F(gi)xe e~ h) dm(g)

G
- /G F(gi)Fe (g™ h) dm(g) = f * Fe(h), (by ©3)

where we also extended integration from w = g-i € H to g € SLy(R) us-
ing mg (K) = 1. O

Lemma 9.50 (Rapid decay of transform). For any function f € CZ°(H),
we have -
IR>&— ¢ F (L), < oo

for any € € Ny.
PROOF. We first recall that for F' € C°(R) we have

IR 3 € — " F (&)l <o IF Oy (9-33)

by partial integration and induction on ¢ (see, for example, [24, Prop. 9.43]).

To apply this, we rewrite the definition of fhyp using the substitution y = e?*

with % = 2dt, which gives

~~h;

f yp(I,é“):/Hf(Z)Xoo,g(Z)%

o0 oo i d
=/ / o +iy) dey tyre
0 —o00 Yy
_ / / Flo+ i) de2et M dt = F(Le).

=F(t)

Differentiation under the integral sign shows that the function F' € C.(R) is
indeed smooth, so that (@33]) proves the lemma. O

9.4.5 The Hyperbolic Fourier Inversion Formula

As explained at the end of Section[0.4.2] we expect to be able to write a given
function on H as a superposition of elementary waves z — oo ¢(k™1+2) of
various frequencies £ emanating from the boundary points k-co € OH. For this
the hyperbolic Fourier transform fhyp(k, £) for a pair (k,&) € K x R should
be related to the desired volume at k-co € OH for frequency &£. Assuming
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smoothness and compact support of the original function ensures that the
desired integral representation converges.

Theorem 9.51 (Hyperbolic Fourier inversion). Let f € C°(H). Then

1) = 15 [ [ T 00 71 2) i) tanh
for all z € H.

The proof will rely on some elementary integral manipulations, Fourier
inversion on R (applied in a surprising way), and a contour integration to
determine the correct volume amplification factor £ tanh(%g) for £ € R. To
reduce the complexity of the problem, we first consider a special class of
functions.

Definition 9.52 (Spherical functions). A function f: H — C is called
spherical if f(k-z) = f(z) for all k € K and z € H.

We note that due to the equivariance property in Lemma the hyper-
bolic Fourier transform of a spherical function is again invariant under K.
Because of this, for a spherical function f we will also use the simplified
notation

7 e = /H F(2)Xome () dvol(2)

satisfying

“hyp — “hyp

7k €) = /H F(h2)xme (@ dvol(z) = F(€) (9.34)

for all (k,€) € K x R by Definitions and [0.52 above. Recall that

Lemma [0.4]] also shows that the function fhyp(-,ﬁ) belongs to Hg*". With
this, (@34) becomes

~~hyp

F0=F T OF), (9.35)

where Fg is the extension of 1 to an element of Hg'" (the case n = 0

in ([@20)).
The following lemma gives another connection between the hyperbolic
Fourier transform and 7€, or more precisely its matrix coefficient e = cp’}z

hyp(

Lemma 9.53 (Matrix coefficient giving symmetry). Let f € C.(H) be
a spherical function. Then

Fe) = [ focavollz) (9.36)
for all £ € R. Moreover, we have ¢ = ¢_, and
ITe=7"9
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for all € € R.

ProOOF. Using ([@.34), the normalized Haar measure my on K, the convolu-
tion formula in Lemma [9.49, and Fubini’s theorem we have

7 = /K 7 (1, €) dmg (k)
=/ /f(g-i)Fg(g_lk)de(g)de(k)
K JG
_ / £(g+) / Fe(g™ k) Fe (k) dmpg (k) dm(g),
G K

:<W§F§»Fg>:¢g(9)

which proves (@.36)).
Finally, by Theorem .31 7¢ and 7~¢° are unitarily isomorphic. Since

the vector Fp. € HEE™ is, up to scalar multiples, the unique K -fixed vector
and both have unit length, it follows that

£,e

e, -
¢ = 80}515 = 80?5 = .

Together with ([@.30]), this gives the lemma. Alternatively, one may also apply
Proposition [0.19] and Lemma [9.33] (I

We note that we are going to use the assumption that f € C(H) is
spherical to reduce the number of free variables in the proof of the Fourier
inversion formula. In fact, f is spherical if and only if it can be written as

f(Z) = Fd(dhyp('z?i))

for z € H, where Fy: [0,00) — C is a function, and d,, denotes the hyper-
bolic metric on H (see Lemma[816). This follows from the transitivity of the
action of K on every circle with centre i.

In terms of the upcoming integral substitutions, it is better to consider
instead of dy,,(2,1) the closely related expression

r(z) = coshQ(%dhyp(z,i)) = %cosh(dhyp(z, 1)) + % (9.37)

for z € H, where we have used the identity

et tet\? 1 1
cos ( 5 > 5 €O (2t) + 5

for t = %dyy,(2,1). Once more every spherical function f: H — C can be
written in the form

f(z) = F(r(2))

for all z € H and for some function F': [1,00) — C.
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Lemma 9.54 (Inversion at i for spherical functions). For a spherical
function f € C°(H) we have

hyp sm{t
i dedg.
1) = 167T2/f §)¢ R sinht ¢

PROOF. As explained above, for the given spherical function f € Cg°(H)
there exists a continuous function F' € C,([1,00)) with f(z) = F(r(z)) for
all z € H. In fact we can define F by restricting f to {yi | y > 0} and an
appropriate coordinate change. Indeed, if y = e, then dyy,(e*i,i) = 2¢|
and 7(z) = cosh? t, which leads to the definition

F(T) — f (ie2 arcosh \/?)

for 7 € [1,00). Equivalently, we have F(cosh®t) = f(ie*) for t € R, and,
since f is spherical, more generally, F(r(z)) = f(z) for all z € H.
Using the formula for dy,,(-,-) in Lemma we also have, for r(z) as

in (1.37),

1 — 1|2 1
=g (1 )+
1 2 (y—1)2 1
= — 1 S — J—
2<+2y+ 2y +2
1 y—!—yl 1 1 y—|—y’1 x?
=—(14 = -1 - == —.
2<+2y+ 2 +2 2+ 4 +4y

Below we will also use the coordinates (x,t) € R? for z = z +ie?* € H, which
gives
1 e2t 4 e—2t 1 2 o

e =gt e

For our functions f and F', this gives

1
= cosh?t + 4I26_2t

F (cosh®t + ta2%e™%) = f(x +ie?*)

for z,t € R.
We now use this identity in the formula for the hyperbolic Fourier trans-
form, and obtain

“~~hy . 1.1, dI dy
P = [ ror iyt
H Yy
= / / F (cosh2 t+ ixQe*Qt) ettt e=4 44 262t dt
R

= 2/ / F (cosh2t—|— ixQe*%) drete'st dt
R JR
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by using y = ¢** and dy = 2¢* dt. We now set u = ge 'z with 2du = e~ dx
to arrive at

P =4 [ o [ P (eosh® e +u?) duar. (9-38)

We use the inner integral to define the function
d(s) = /RF (s+u?) du
for s € [1,00) and the composition
¥ (t) = d(cosh’ t) = /RF (cosh®t +u?) du

for ¢t € R. We note that ¢ € C,(]1, ))and!I/EC()

With the function ¥ to hand, we realize that f " is essentially the Fourier
transform of ¥. More precisely, we may reformulate (0.38) as

7o) = 4w <%s> (9.39)

for all £ € R.

By Lemma [0.50, we know that fhyp decays rapidly. Hence we may apply
Fourier inversion on R, and the substitution { = 27( to obtain from (@.39)
that

~~hyp

for all t € R. By Lemma [0.53] we have f (€)= f77(—€), which turns the
above into

®(cosh? t) = 87r/f ) cos(&t) d€

Using the rapid decay of f " in Lemma 050 again, we may differentiate
under the integral to obtain

v(t) =~ [ 7 Osm(en ae (9.40)

for t € R. Using the chain rule for ¥(t) = &(cosh®t), we also have
W' (t) = @' (cosh?® t)2 cosht sinh ¢

for t € R~{0}. We divide this by 2sinh¢ to obtain, with (@.40),

U'(t hyp s1n &t
@' (cosh? t) cosht = 9.41
(cosh™?) cos 2 smh t 167 / / smh t dg ( )
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for t € R~{0}.
Moreover, note that

sin £t
lim — =
t—0 sinh ¢
and ¢ ¢
sin &t sin &t t t
= < < 9.42
sinh ¢ t sinh ¢ €l sinh ¢ €l ( )

by the mean-value theorem applied to the function R > t — sinét. To-
gether with Lemma[@.50] this shows that &’ extends continuously from (1, o)
to [1,00). It follows from the mean value theorem for ¢ that ¢ also has a one-
sided derivative as s = 1.

The Fourier inversion formulas above allow us to obtain the value

o(1) = ¥(0) = /RF(I +u?) du

from the hyperbolic Fourier transform, but we wish instead to obtain the
value F(1) = f(i) of the integrand F' in the definition of @. To obtain this,
we rely on some stunning but elementary integration trickery. In fact, we
claim that one can recover F' from & by the formula

™

F(s) = —E/RQ’(S—I—&)dv (9.43)

for all s > 1.
To see this, note first that f € C2°(H) implies that F|; . is smooth, that

@/(s):/F’(s—Fuz)du
R
and
@'(s+v2)=/F’(s+u2+v2)du
R

for all s > 1 and v € R. Integrating the latter over v € R, we obtain

/@’(s+v2)dv:/ F'(s +u?+v?) dudy
R R2 N———
RdRd6

:27r/ F'(s+ R*)RdR
0

=7T/ F'(s +p)dp,
0

where we used polar coordinates (R,6) for (u,v) € R? and the substitu-
tion p = RZ?. For the latter integral we may now apply the fundamental
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theorem of calculus. Since F € C,([1,00)), this takes the form

| e ndo=-re

for all s > 1, which proves the claim in (9.43)) for s > 1. Since F and ¢’ both
lie in C,([1,00)), this extends by continuity to s = 1.

We now set s = 1 in (@43)), substitute v = sinh ¢ with dv = coshtd¢, and
combine the resulting integral with (@41]), which leads to

1
F(1)=——/¢’(1+u2)du
™ JR —
=cosh? t

_ _l / 2

= 7T/]Ré(cosh t)coshtdt

o 1 ~~hyp Sinft
1672 /R (/Rf (g)gsinhtdg) .

Recall that by Lemma we have

~hyp 1
Lf 55
R
Together with ([@.42), we obtain
~~hyp sin ft 52 t
(5)5 . ~N 2\2 o 9
sinh¢ (14 &2)2sinht

which is easily seen to be integrable over R2. This implies that the integrand
above lies in L!(IR?). Hence we may apply Fubini’s theorem and obtain, with

f) = F(1) = — Qﬁ%ﬁémﬁ&%

1672 Jp sinh ¢
the lemma. O

Lemma [0.54] explains why the following result is of interest to us.

Lemma 9.55 (Volume factor). For £ € R we have

/ SILEE 4y tanh (”;) . (9.44)

sinh ¢

PROOF. To prove ([@.44), we will apply the Cauchy integral formula to the
meromorphic function f defined by

eiﬁz

f(z) = (9.45)

sinh z°
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We start with some elementary observations about the function f. For the
point z = z + iy with =,y € R we may apply the reverse triangle inequality
to see that

Ty T a1y xr T
| sinh z| = ee 2e ¢ > ¢ 2e = sinh z.
By symmetry, this gives
|sinh z| > |sinh x|, (9.46)

which implies that f(z + iy) defined in (@48H) decays rapidly for |z| — oo
as long as |y| is bounded. The estimate (@4€) also shows that sinh(x + iy)
can only vanish when & = 0. Since sinh(iy) = isiny for y € R, we see that f
has poles precisely at the points in Zxi. At 0 the residue of f is given by 1.
Finally, we have

eerTri 4 efzfﬂ'i

sinh(z + 7i) = —s =" sinh z

for z € C, which implies that
. eié(z+i) en 047
f(2+771)—m——e f(z) (9.47)

for z € C\(Zri).
We now integrate f over the closed path

Y = Ybottom L Vright U Yeop U Veop U Viefs

indicated in Figure

—R 4+ 7 i R+ i
L
'Ytop \J
MNeft Vright
0
—-R L/ R
Tbottom

Fig. 9.8: The closed path v = v . consists of four pieces. The first path Vpottom
goes from —R to R but avoids the pole at 0 (but including it inside the contour)
by following a semi-circle of radius e around 0. The paths Yyignt, Vtop> a0d Viets
go as indicated via R + mi and —R + 7i back to —R, again avoiding the pole at =i
(but leaving it outside the contour).

The description of the poles of f given above now implies that
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j{ f(z)dz = 2m7i
Y

independent of R > 1 and £ € (0,1). The decay properties of f discussed
above also imply that

lim ]{ f(z)dz = ngn f(z)dz =0.

R—o00
Vright Meft

Moreover, we defined the paths Y,ott0m and Viop 80 that Yepeom + 7 is equal
t0 Viop except for the orientation, which is reversed. Together with ([0.47) this

gives
%f(z % flz+mi)dz =e 57 7{ f(z

Ytop Tbottom Ybottom

again independently of R and e. Putting this together, we obtain

27i = lim j{f(z) dz
R—00

= lim 1—|—e "T f f(z

R—)oo

Ybottom

—€ o0
ict
—¢m e
(1+e77) /sinhtdt+
€

— OO

%f(z) dz |, (9.48)

where 7, : [, 27] > t — eel! is the semi-circular path appearing in y,o¢tom-
To understand the asymptotics of

y{f(z) dz

as ¢ decreases to 0, we note that f(z) = I + h(z) for a function h that is
holomorphic at 0. By continuity of h, we have

lim ¢ h(z)dz =0,
eN\0
Ve

so we only have to calculate

27
1 1 :
%— dz = /—.aie‘t dt = 7i.
z ceit
’YE ™
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We now take the imaginary part in ([@48)) and let £ decrease to 0, which gives

oo oo

27 =(1+ ¢ ) / ziiﬁ At + 7| =(1+e ) / :Elfi dt+m+e ¢,
Solving this equation for the integral gives
T sin &t 1—e¢7 efm/2 _ e=Em/2
ZO simht 1+ oEn T g2 + e—¢7/2 ™
and hence the lemma. O

Having obtained the hyperbolic Fourier inversion formula at i and for
spherical functions in the last two lemmas, we are now in a position to prove
the general case.

PROOF OF THEOREM Let f € Cg°(H). Combining Lemmas
and [@55] we see that if f € C2°(H) is spherical, then

10 = 52 [ 7@€t () ae

To use this for a general f € C$°(H), we define
fonl®) = [ F0e2) dmc ().
Since k-1 =1 for all kK € K, and we may differentiate under the integral sign,

it follows that f. , € C°(H) has f. . (i) = f(i). Applying Lemma[Q.58] to this
spherical function, we obtain

10 = ) = o= [T @ctn (F) i @49

Using Fubini’s theorem and the definition of the hyperbolic Fourier transform,
we also have

~hyp

For© = [ funloRe e dvl()

— [ [ #eona G dvol(e) dmic k)
K JH

= [ 709 dmicr)
K

Putting this into (@49), we obtain
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1 ~~hyp 775
)= E/R/Kf (k, )¢ tanh <7) dm g (k) d€.

Now let h € SLy(R) be arbitrary and define f= mi f. Applying the previous
formula to f and the equivariance claim in Lemma [0.48 we obtain

F(h10) = (EF) ) “ i [ AR € v ) )
=1z | T R )€ b ) s
Next we note that
JFT 0 dmach) = (T 0. ),
= (/"o R,
= [ 7 T dmic )
= [ F e ) dc )
by ([@32). Combining this with the above, and setting h~1.i = z, we obtain
1) = 5 [ 70 71 2) ()€ anh (5)

which gives the theorem. O

9.4.6 The Hyperbolic Fourier Transform in the Disc Model

We recall from Section B33 that the action of SLy(R) on H is conjugated to
the action of SU; ;(R) on D by the map

&:Co>w— 11 -w:,w+l eC
il iw+1

with ¢(D) = H, ¢(0) = i being our choice of origin in H, and (i) = oc.
Using this, we can move the Busemann function to D.

Definition 9.56 (Busemann function for i € 9D). The Busemann func-
tion on D with respect to i € 9D (and origin 0 € D) is defined by

P (w) = B (@(w)) = log <1 - '“?'2>.

|w —if?
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We now verify that the two formulas in Definition [0.56] above are in fact
equivalent. Indeed, for w = x + iy we have

iC\w_Fl

SD(w) = S S tiy+i)(—ir—y+1)

iw+1 T (lz—y+1)(—iz—y+1)
oz —it iy —iy+i 1—a2 -y 1—|w]?
T VA T

as claimed.
Next we recall that

—if
kg = (e ei9) € K <SU,,(R)
rotates ID so that our origin 0 € D is fixed, and ky-i = e~2%1. This suggests
the following more general definitions.

Definition 9.57 (Busemann functions and hyperbolic waves on D).
The Busemann function on D with respect to p € 9D (and origin 0 € D) is

defined by
1— |w|?
B2 (w) = — log (J> |

Moreover, the hyperbolic wave coming from p and with frequency £ € R
(normalized for the origin 0 € D) is defined by the function

2\ 356
(i) _ (1= |w]
ot _ ()1
m [w—pf?

We imagine that the hyperbolic wave x,, ¢(w) is the sound produced by a
loudspeaker at p € JD using frequency £ € R. The following reformulation
of Theorem establishes our goal to obtain any function f € C°(D) as
a superposition of such waves using loudspeakers at any point p € 9D, and
using all possible frequencies £ € R.

Theorem 9.58 (Fourier inversion on d). Let f € C°(d) and define the
abbreviation

Fxpe) = [ Fdvol
for pe 0d and € € R. Then

1
16 = 157 | | U 000e(2) dpg tann (56) a

for all z € d, where dp denotes the normalized Lebesque measure on Od.
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9.4.7 The Unitary Isomorphism

We now show that the hyperbolic Fourier transform is in fact a unitary
isomorphism between the Koopman representation 7 and an integral of all
even principal series representations as in Definition [9.3§

Theorem 9.59 (Unitary isomorphism). The hyperbolic Fourier trans-
form satisfies the identity

1

1) = & " (0|5, € tanh(5) dé

o]

for every f € C.(H). Moreover, it extends to an equivariant unitary isomor-
phism between ™ and

wre— [ wtedu(o),
[0,00)

where
dp(€) = & tanh(75) dE,

and d¢ denotes the Lebesgue measure on [0,00).

The proof of the theorem above will be split into two parts. We start the
proof of the isometric property on p. 56, and surjectivity will be established
on p. We start with some preparatory material for the isometric property.

We note that the left regular representation and right convolutions com-

mute, and that fhyp(-, €) belongs to the irreducible space Hg"*" for any func-
tions f € C.(H) and £ € R (see Lemma [0.48 and Theorem [0.3T]). Together
with the equivariance properties of the hyperbolic Fourier transform, we

might expect for a spherical function v € C,(H) that f/*\whyp(-,{) to be

a multiple of fhyp(-,ﬁ) by Schur’s lemma (Theorem [[.29). We refer to Fig-
ure [0.9 for the geometric meaning of f * v for spherical 1.

Lemma 9.60 (Right convolution by spherical functions). Assume
that f € C,(H) and ¢ € C(H). Then f %1 is again right K-invariant and so
can be considered a function in C(H).

Exercise 9.61. Show that if ¢ € C,(H) is spherical, then

~hyp

T (he) = 9" (O F " (h€)
for all (h,§) € SLy(R) x R.

Proor oF LEMMA [0.60l By definition of convolution and the identification
of right K-invariant functions on SL,(R) and functions on H, we have
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Fig. 9.9: Suppose 1) is the normalized characteristic function of a ball around the
point i € H (or a continuous approximation of it). The geometric meaning of the
value f *1(z) is, in this case, that the ball is moved to z € H and f is averaged
over it. This creates a blurred-out version of f with support in a neighbourhood
(drawn in light grey) of the original support (drawn in dark grey).

frita) = [ S0 g dm(n)
for g € SLy(R). It follows that f *1) is also right K-invariant. This, together

with Exercise [L46] gives the first part of the lemma. We note that we may
now also write

fep(z) = /G F(heiy(h=tz) dm(h)

by using z = g-i € H as the argument instead of g € SLy(R). O

Lemma 9.62 (Symmetry on C,(H)). Let f € C.(H) and £ € R. Then

/K F" (s ©) dime (k) = /H £ # 66T dvol = /K 17"k, —€) 2 dmc ().

. “hyp
PROOF. By Lemma [0.49 we have the convolution formula f (-, §) = f* F.

Combining this with Fubini’s theorem, we obtain for [}, |fhyp(k, )2 dmg (k)
the formula
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456
//f(hl-i)Fg(h_lk) dm(hy) /f ho+1) Fe (hy 'k) dm(hy) dmg (k)
K G

= //f(hl /Fg hi'k) VEe(hy k) dm g (k) dm(hy) f(hei) dm(hsy)
GG

(€ ¢
=(mh, Feoomp, Fe) o,

- / / F(ha e (b3 hy) dm(hy ) F(a D) dm(hy)
GG

- / / F(ha D) (b3 ho) dm(hy ) F(aD) dm(hy)
GG

— [ £xoFam.
G
where we used the fact that

e(9) = 9e(971) = delg™")

is real-valued (see Lemma [3.18). Since ¢¢ = ¢_, by Lemma [1.53] the lemma
follows. (|

PROOF OF ISOMETRY FORMULA IN THEOREM [0.59] Let f € C2°(H). Apply-
ing the hyperbolic Fourier inversion formula (Theorem[3.51]) to f and Fubini’s
theorem, we see that

112000 = /f () dvol(z)

1 ~~hyp _ ﬂ_ -
:ﬁ///f (k,€)Xooe (k™ +2)€ tanh (ZF) dm (k) dEf (2) dvol(2)

HR K

—m%//fhyp(k’g) Xoo.e(k71+2) f(2) dvol(z)dm (k)€ tanh (%2 )dE
R K H

=7 (k)
||f*’” €)|[3,, € tanh(Z5) d¢
167r He 2755

Applying Lemma [0.62] we can also write this in the form

191 =5 [ [ 17700 dmictiig rann(z) e

[0,00) K
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It remains to show that this formula not only holds for all f € C2°(H) but
also for f € C,(H).

For this we let (B,,) be a decreasing sequence of compact neighbourhoods
of I € SLy(R) that form a basis of neighbourhoods of I. Using compactness
of K and continuity of conjugation, we may also suppose that B,, is invariant
under conjugation by all £ € K, meaning that

B, ={khk™' |k € K,h € B,}.
Let (¢,) be an approximate identity in C2°(G) as in Proposition [[43]
with supp,, C B,, for all n > 1. Replacing 1,, by the function
SLy(R) 3 g —> /K ¥y, (Lgl™") dmy (€)
if necessary, we may also suppose that

U (kgk™") = ¥ (9) (9.50)
for all k € K, g € SLy(R), and n € N.
Now let f € C,(H) and define

fo=fx1y € CZ(G)
for n € N. Note that by continuity of f we have

fn— fasn— oo

(9.51)
supp f,, € (supp f)B; for n € N.

We claim that f,, is again right K-invariant, and so can be thought of as
a function on H. To see this, let g € SLy(R), let k& € K, and combine ([@.50)
with the substitution h = hk~! to see that

ﬁxgk)=<f*¢%(gk)==/gf(h)¢n0f“gk)dnwh)

=, (kh=1g)

= [ £k 0 (g dmE)
G —~—

—f(R)
=f(g) = ful9):

For the smooth functions f,, € C°(H), we already established the isom-
etry formula. Moreover, (@51 shows that f, — f as n — oo in L2(H) by

dominated convergence. Together, these show that f:yp| K xR, considered as
an element of H&'*" = L*(K x [0,00), 1) forms a Cauchy sequence, which
will have an L? limit F with

Page: 457  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



458 9 Unitary Representations of SL(2)

. ~hyp
nlgrgoﬂfn | K x[0,00) 1 22 (K x [0,00),1)

11 2 (i xR, )

= nlgTolo an”L?(H,vol) = Hf”L?(H,vol)-

~h,
This implies that along a subsequence f,, yp| K xRk converges to F', which, to-

gether with (?7?), implies that F' = fhyp and hence the isometry formula

~~hyp

I1f

|k x0,00) | L2 (K x[0,00),1) = 1| L2 (11,v01) -

Exercise 9.63. Show that f € C.(H) implies that f*myg = f.

It follows from the now established isometry formula for the L?-norms

of f € C.,(H) and fhyp|KX[07OO) and Lemma [0.48) that the hyperbolic Fourier
transform can be extended uniquely to an equivariant isometry from L?(H)
into Hy"*". Moreover, the image V is then a closed 7/-invariant subspace
of HyY". This brings up the question of whether such subspaces can be
classified. We answer this in a slightly more general case in the following
proposition.

Proposition 9.64 (Invariant subspaces). Let p be a o-finite measure
on [0,00) and define H;'*" as in Definition 038, Then, for any closed m/°-
invariant subspace V C H;'", there exists a measurable set Sy, C [0,00), that
may be thought of as the ‘support’ of the subspace, so that

V={FeN "|F(§ =0 for p-almost every & € [0,00)NSy}.  (9.52)
Exercise 9.65. Let p be as above, and let V C H;V*" be a closed subspace. Show that a
measurable subset Sy, C [0, co) satisfying (@.52)) is uniquely determined up to a null set by
this property, assuming it exists.

Before starting the formal proof, we outline the structure of the argument.

For simplicity, we write 7 = 7¢ and H, = H}"".
We will show, in turn, the following statements.

(a) The operator T, = my5(£2) from Corollary [0.12 is given by
Tr =M 42 (9.53)
where M_;q42 is the multiplication operator defined by

M a2 (F)(h, &) = —=€*F(h, €)

for all (h,&) € SLy(R) x [0,00) and F' in the domain

Dut o= {Fetel [ [ I@FOP dmi®ane) < oo},
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(b) We define
fO: [0,00) B 5 — (1 +§2)71

and obtain from the above that M = (I — T,)~'. We claim that this
multiplication operator My commutes with the centralizer C(m) of .
(c) Using the functional calculus of M f,» Wwe will prove that all multiplication
operators My for f € L§7([0,00)) commute with C().
(d) Applying this to the orthogonal projection operator Py, of a m-invariant
subspace V C H,, we then obtain that V has L;°([0,00))Y C V, which
will allow us to conclude the proof.

We now discuss these four steps in detail.

PROOF THAT T, = my({2) = Mjq2 AS CLAIMED IN (a). Let T > 0 and assume
that f is a function in L?2([0,00)) with f(§) = 0 for p-almost every £ > T.
For an integer n € 2Z we now define

for (h, &) € SLy(R) x [0,00), where F ,, € H¢"" is as defined in Lemma [0.33]
By [@20), we have that Fy,(h) depends smoothly on h € SLy(R) for any
value of £ € [0,00). Moreover, for a fixed n and for £ € [0,7T] the deriva-
tives are uniformly bounded. Applying the mean value theorem, dominated
convergence, and (@.21]), it follows that

n+14i¢

_ 1+i
: n—+ +1§F

ﬂ-g(a)Fn(hug) = Fn+2(h7§) + f n72(h’7§)' (954)
As in the proof of Lemma [0.33] we can now use Proposition [0.13] to conclude
that the first summand is equal to 75(r*) F,, and second is equal to my(r ™) F,,.
Using the fact that k, ™, r~ span sl,(C), it follows that F,, is a smooth vector
for m, and using the formula for 2 in ([@.I3]), we also obtain

T‘—B(Q)Fn(hﬂ 5) = _§2Fn(h7 6)

for (h,&) € SLy(R) x [0, 00). Equivalently, the closed self-adjoint operator T
satisfies ([@53)) for the function F,, as above.

We now extend ([@.53) to other functions F' € H,.. To begin with, we may
vary n € 27Z over a finite set (using different functions f,, € L?([0,00)) with
support in [0, 7T]). Note that M_;4> is bounded on

Hecr ={F €H, | F(-,£) =0 for p-almost every £ € (T, 00)},

and these finite sums are precisely the K-finite vectors in H, <p. Hence, it
follows by continuity of M_;42 and closedness of T, that ([@53]) also holds for
all 'e Hy <r.

Next let F' € Dys _, and define

42

FgT = ]l[O,T]F S Hﬂ-’gT

Page: 459  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



460 9 Unitary Representations of SL(2)

so that
To(Fer) = M 2 (Fer).
For T'— oo we have Fp — F and M_;q2(F¢p) — M_;q2(F) by dominated
convergence. Since T} is a closed operator, we see that (@53) holds for all
functions F' € D M_ - Equivalently, we have M_,32 C T,.. It is easy to see
that M_;42 is a self-adjoint (and, depending on supp u, possibly unbounded)
operator. By Corollary [9.12] the same is true for 7. For two self-adjoint op-
erators, the inclusion M_;32 C T actually implies equality of the operators.
Indeed, for v € Dy, , and w € Dy , we have
—id T
<M7idzvvw> = <Tﬂ'vaw> = <vaTﬂ'w>'
This shows that
S5V +—— <M id2v,w>

Dy

id2
is a bounded linear function, which implies that w belongs to the domain
of M*, o = M_j42, and M_;q2w = T, w.

To summarize, we have shown that T, = M_;42 as claimed in (a). O

PROOF THAT M; COMMUTES WITH C(m) AS CLAIMED IN (b). We de-
fine fo(€) = (1 +£2)~" for £ € [0,00), and first show that (a) implies that
My =(I-T,)"
Indeed,
I =T, = Mqyia2)

is injective on its domain, maps onto H,, and has M; as its (bounded)
inverse operator. We now show that M commutes with every equivariant
bounded operator B: H, — H,. For this, we first note that B maps every
smooth vector v to a smooth vector Bv, and we have

m5(£2)Bv = Brg(02)v.

If now v € Dy, then there exists a sequence of smooth vectors (vn)
with v, — v and 75 (£2)v,, — Trv asn — co. However, this implies Bv,, — Bv
and 75(2)Bv, — BT.v as n — oo, and hence also T, B O BT,. Us-
ing My = (I —T,)"', we now obtain the claim. Indeed, let v € H,
and (I — T,)"'v = w so that v = (I — T,)w. Then Bv = (I — T,)Bw,
which implies that

(I -T,)'Bv=Bw=B(I-T,) v
as claimed in (b). O

PROOF THAT M; COMMUTES WITH C(m) AS CLAIMED IN (c). Since
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-1
(I-T,) "= Mfo

is already realized as a multiplication operator and f is injective, the follow-
ing are now relatively easy claims to prove. The measurable functional calcu-
lus for My (see [24, Sec. 12.6]) gives rise to other multiplication operators.
By the injectivity of f;, every multiplication operator M for f € Lg°([0,00))
can be obtained from the measurable functional calculus of My . Together
with the previous claim and the properties of the measurable functional cal-
culus (see [24) Prop. 12.68]), this implies that every equivariant bounded
operator B: H, — H, commutes with M for f € L3°([0,00)). O

CONCLUSION OF THE PROOF OF PROPOSITION [0.64] AS OUTLINED IN (d).
Now let V C H, be a closed m-invariant subspace, and let B = P, be the
orthogonal projection onto V. By invariance of V, the projection is equivariant
and, by (c) above, we have M,V C V for all f € L;°([0,00)).

Now let F' € V and define

Sp={£€10,00) | F(:,§) # 0}
Using invariance of V under K, we can split I into a sum of K-eigenfunctions

as
F=)F,

ne2Z

satisfying F,, € V,, for all n € 2Z, and

Sp=J Sk,

ne27

Since H, contains (up to scalars) only one K-eigenfunction of weight n € 27
(namely Fy ,, in (@.20)) there exists some f,, € L2([0,00)) such that

for (h,&) € SLy(R) x [0,00). In particular,

Sk, ={§ € [0,00) [ fn(&) # 0}

Using MV CV for all f € Lj°([0,00)), the fact that F,, € V, and dominated
convergence, it follows that the function

SLy(R) x [0,00) 3 (h, &) — f(§) F¢n(h)

belongs to V for any f € L2([0,00)) with {¢ | f(§) # 0} € Sg . For T > 0
we define

Sn,T - SFn n [O,T]
By (@54) and the argument directly following it, we see that my(r™)
bounded operators on

are
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{F' € H, <r | F has K-weight n}.

Since V is invariant under 75 (r*) (where it is defined) it follows that the
function
SL(R) x [0,00) 3 (h, ) — f(§) Fem(h)

belongs to V for any f € L2([0,00)) with {£ | f(£) # 0} € Sk, where m,n
lie in 27 are arbitrary. Varying m,n € 2Z and the functions f € L2 ([0, 0)),
we can write any F € H, with { | F(-,£) # 0} C S as a convergent sum
of elements of V and obtain F' € V.

Since V is separable, we can find a dense set {F(;) | k& € N} of vectors,
apply the above argument to each F{;) and obtain the same statement for

B= U Br,,, ={§ € [0,00) | there exists a k € N with F3)(-,§) # 0}.
keN

This proves the proposition. (|

Exercise 9.66. Let 1 be a o-finite measure on [0,00) as in Proposition [0.64] Show that
the centralizer of w#¢ is given by all multiplication operators My with f € Lg°([0,00)).

The following finishes our discussions of the hyperbolic Fourier transform.

CONCLUDING THE PROOF OF THEOREM [0.59] Let u be the measure on [0, o)
defined by g-&tanh&d€. By the first part of the proof on p. 56, we know
that
~hyp
CH)> fr—f  eH™

is an equivariant isometry between the Koopman representation 7' and the
integral 7#° of the even principal series representation. Hence it can be ex-
tended to an equivariant isometry from L?(H) to a closed m*°-invariant
subspace V C H;'*". By Proposition [0.64, this subspace can be defined
by a measurable subset Sy, C [0,00) and the formula ([@.52). We show
that Sy, = [0,00) (up to null sets) by finding a sequence (f,,) in C.(H),
so that for every £ € [0, 00) there exists some n € N with f:yp(-, &) #0.

In fact we let (f,,) be a sequence of spherical functions in C,(H) with

/ frdvol=1
H

for all n € N, so that supp f,, is a shrinking neighbourhood of i € H. For
every £ € [0,00) it now follows that

A~

A (k) = /H Fo(2)Xoog (2) dvol(z) — 1

as n — oo and for all K € K by K-invariance of f,, and continuity of the
function z = x o ¢(2) = S(z)z 28,

Page: 462  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



9.5 The Complementary Series Representation 463

Hence we have S), = [0,00) (up to null sets), which gives V = H; "
by ([@52]), and Theorem 0.5 follows. O

9.5 The Complementary Series Representation

We recall from Section that for £ € R the principal series representa-
tion 7&° is constructed from the unitary character X¢ defined by
Xe(au,) = e

for a,u, € B. Moreover, ¢ then turned out to be an irreducible unitary
representation with Casimir eigenvalue o e.. = —£2. According to the proof
of Theorem[0.22lin Section@.2.5] there could (and, according to the statement
of the theorem, there should) be another type v* of even irreducible unitary
representation with Casimir eigenvalues ... = s? for s € (0,1) that we have

not yet seen. To construct v* we try to mimic the construction of 75 in
Definition 0.301 while attempting to ‘replace i by s’.

Definition 9.67 (Complementary series representation). For s € (0,1)
we define the non-unitary character x5y on B = {asu, | t,z € R} by

X(s) (a’tum) = e
for a;u, € B. The complementary series representation v* of G = SLy(R)

is initially defined as the left-regular representation on the space Vg of those
functions f: G — C with the following properties:

(1) f is smooth, and
(2) f is even, and f(gb) = x(s)(b)_lAB(b)%f(g) for all g € G and b € B.

The main difference between this and the construction of the principal
series representation is, of course, that we are using here non-unitary char-
acters, which means that the L?-norm on K will not be preserved under
the left-regular representation (as was the case for the principal series rep-
resentation). Instead, we will have to define a new norm and inner product
on V,.

Theorem 9.68 (Complementary series representations). Let s € (0,1).
The regular representation on the completion Hy of Vs defines a non-
tempered irreducible unitary representation v° with Casimir eigenvalue s2,

called the complementary series representation.
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9.5.1 The Space and its Inner Product

In the following, let M = {£I} be the centre of SLy(R). We will always
identify functions on K /M with even functions on K.

Lemma 9.69 (Smooth functions on K/M). Let s € (0,1). Then V, is iso-
morphic to C®(K/M). In fact every element f € V, is uniquely determined
by its restriction f|x € C(K/M) and every even smooth function fr on K
can be extended via

flkayu,) = fr(k)e D! (9.55)

for kayu, € KAU to an element of V. In particular, for every n € 2Z the
function Fy ,, defined by

F, o (kyasuy) = e b=+t (9.56)
for kyau, € KAU belongs to Vs and is a K-eigenfunction with K-weight n.

PROOF. We note that Definition [0.67((2) implies that any function f € V, is
uniquely determined by f|x. Clearly the map

D: K x AxU 3 (ky,a,u,) — g = kyayu, € SLy(R)

is smooth, and hence f|x € C®°(K/M) for all f € V,. The inverse of & is
also smooth, since it maps g € SLy(R) first to the polar coordinates (¢, )
of gey, and then to k; € K, aje, € A, and agérkllg = u, € U. This
shows that (@.55) defines a smooth function on G for any fr € C*(K/M).
Moreover, g = ka,u, € KAU and b= a, u, € B = AU implies that

f(gb) = f(katthUue*%Ow-i-mo)
= fy(k)e~(sTD(E+t0)
_ f-K(k)ef(erl)tefstioeft0

= flkayu,)x(s) () AR(b)2,

which shows that f € V,, as claimed in the lemma.
Applying the above to the character x_, on K for some n € 2Z defines
the function Fy ,, € V in ([@.56). By definition,

(7139 (Fs,n)) (kw) = Fs,n (ke_lkw) = eim(d)ie) = einer,n(kw)

for all kg, ky, € K. By the first part of the proof, this shows that Fy ,, has K-
weight n for v*. O

Definition 9.70 (The inner product on V). For s € (0,1) we define

Page: 464  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40
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/ f1(kg, ) f2 kez)

Sln 91 — 02)|1 s

(fi, f2)v d6, do, (9.57)

for fl’ f2 S Vs-

For now, ([@.57) simply falls from the sky. We will, however, give additional
meaning to it after we have established the fundamental properties of this
inner product.

Lemma 9.71 (The inner product on V,). For any s € (0,1), the
form (Q.51) defines an inner product on V.

We note that the proof of this lemma will require both s > 0 and 1—s > 0.

PrROOF OF LEMMA [@.711 We note that R 5 6 — |sinf| has period m. This
gives us

1 /’* /’* o, do, / / 6, do,
w2 Jo Jo Isin(0; —0)["~> — 72 | sin(6; — 92)|1 s

R/Zm R/Zw
= l / 7(19 < o0
T | sin @|1—¢

R/Zm

since | sinf| < |0] as @ — 0 and s > 0 implies that fo gi=s < o0o. Therefore, the
function (04, 6,) — W lies in L1([0, 71]?), and the integral in (@57
converges for all f;, fy €

Sesqui-linearity of (-,-)y, follows directly from the definition in (0.57).
Thus it remains to show that (f, f),, > 0 for all f € V,>{0}. The Fourier

expansion of f|g allows us to write

f=ZcF

ne22z

for some sequence of coefficients (c,) € ¢'(2Z). Using sesqui-linearity, we

obtain
<f7f>Vs: Z <Fsman >

m,n€27

We claim that m,n € 2Z with m # n implies that (F ,,, F )y = 0 and
that (F ,,, F )y, > 0 for all n € 2Z. Together, these show that (f Dv.
forall f eV \{0}

Suppose first that m,n € 2Z with m # n. Then

Page: 465  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



466 9 Unitary Representations of SL(2)

71m91+m92
» P _ dé, do
< 8,m> S7n>vs 7T2 / / |Sllfl 91 — 6‘2 |1 s e

el (n(03+4)—m(01+1)) 40 4o
o2 / / | sin(6y — 64)|1—* e
R/Zm R/Zw

= ei(nim)d) <Fs,m7 Fs,n>Vs

by using the substitutions §; = 6} + 1 and 6, = 65 + 1) for some ¢ € R. This
implies that (F ,,, F; )y, = 0 for m # n.
For n € 2Z, we define

I, =n(F,,,F BT 49,46
< s,mytsn / / |sm91—92 |1 s 1 2
]R/er R/Zm
ein@
= ——df.
/ | sin |1
R/Z~
Note that

o efmﬁ
R/Zx | SN O[PS

via the substitution 8’ = —0. Thus

In:/ cos(nf) a0,
o (

sin )=

and so we wish to show that I,, > 0 for all n € 2Z. Since

T 1
Iy = ——df0 >0
0 /0 (sinf)1—s -

and I_, = I, for all n € 27Z, it remains to show that I, > 0 for all n € 2N.
For I, we have, using integration by parts,

12:/ cos 20(sin #)*~1 d6
0

_ |:Sllfl 20 (sin 9)5—1:| _ / sin 20 (s — 1)(8111 9) COS 0de
2 0 0 2

= [cos f(sin 9)5]3 +(1- s)/ cos? 9(51n9)571 dé
—— 0

:(1_5)/ 71“20529( n6)*~do
0

1—s
=3 (Io + 1),
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where the boundary terms vanish since s > 0. We now solve this equation
for I, to obtain
1-s
I, = I, >0
2 <1 + s> 0
since s < 1.

For a general n € 2N, we again use integration by parts to see that

I, :/ cos(nf)(sin §)*~* do
0

_ [M(smefl} _/ Sl 1) (sin )2 cos 0.d0
0 0

n n

=0

_ (1-29) / sm(n.t?) cost9(sin€>s_1 0.
n 0 sin 0

We again wish to relate I,, to earlier values of the sequence, and hence use
the fact that n € 2N to calculate that

sin(nf) cosf 1 (el"? — e=in9) (el 4 ~i0)
5 (¢ — e 19)

%(ei(n71)9+ei(n73)e+. ) ._'_efi(nfB)e+efi(n71)0)(ei0+efi0)
_ % (eine 4228 | geitn=20 | e—me)

= cos(nf) + 2cos ((n — 2)0) + - - - + 2 cos(20) + 1.

sin 6

Putting this into the above formula for I,, gives

1—
L= —= (L + 20 5+ + 2L+ 1),

which may be solved for I, to give the recursion formula

1-s

Using the fact that s < 1, this implies once more that I, > 0 by induction
on n € 2N. ]

Definition 9.72 (The space H,,)). Let s € (0,1). We define #, to be the
completion of V, with respect to the norm induced by (-, v, -
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9.5.2 Unitarity of the Complementary Series

PROOF OF UNITARITY IN THEOREM Recall from Example [[.6] that the
group SL,(R) acts on v € S! via gov = ”g—lngv for g € SLy(R), and that
the Radon-Nikodym derivative for the normalized length measure m on S!
satisfies

dg.m 1 -
9 (4) = g0l . (9.59)

Also recall that we used this set-up on p. 2] to discuss the principal series
representation 7¢ on He = L*(K) = L2 (S1).
For uy,uy € R2{(0,0)} we define the function
D(ul,uz) = | det(uq, us)|,

and note that D(r uy, rous) = |r1||ra|D(uy, uy) for all i, 7y € R*. Moreover,
we also have

D(g ™ ur, 9~ 'ug) = [det(g " (ur,uz))| = D(uy, up) (9.59)

for g € SLy(R), by multiplicativity of the determinant. To understand the
connection between D(-,-) and (-, -)y,_, we let 6;,0, € [0,7), set

cos 6
_ J
Y, kei‘ @1 (sin 9j>

for j = 1,2 and calculate

- cosfy cosby\| | .
D(vg,, ve,) = ‘det <sin91 sin92>‘ = |sin(6; — 05)|. (9.60)

Because of these formulas, it will be convenient to identify ky € K with

cosf
Vg = kgel = (sm@) S Sl

for 6 € [0, 27). In this notation, and since f € V, is even, we may use (0.60)
to express the norm in the form

/ / D 1,v9k?—) dm(vs, ) dm(vy, ),

2

where m denotes the normalized arc length measure on S*.
Fix some f € V, and g € SLy(R). Then, by definition, we have
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ko ) f(g7 ke,
i, = [ [ L TR ) e, )

1—
0017002) 5
St§t

Let us write g_lkej = kwj Ay, Uy, for j = 1,2 for the Iwasawa decomposition
of these products, so that 1;, t;, and x; are functions of vy, € St for j =1,2.
Then

971?}% = gilkgjel = kwj a e = etfv¢j,

in particular
g™ v, Il = llay,eq]| = €', (9.61)

and

9 v, = [lg™ g, |79 g, = vy, (9.62)

for j = 1,2. Combining the definition of V, with ([O.61]), we obtain
_ —ti(s+1) o —1 —(s+1)
Pl k) = Flg, ) = €5 £y ) = gy, 7D £y, )
for f € V,. Using ([@59) and ([@62]), we also have
D(vs, ,vs,) = D(g™"vg,, 9™ " vg,) = g™ vg, llllg™ g, | D(vy, , vy, )-

For the norm of ~; f, this leads to

g~ g, =D £y lg =g, | =+ D Fog)
eI / / ; : 2 ) dun(vp. dm(v,)
Tl 1900 1= Tlg—op, [="Duy. 0y, ) = o JAm (s,

P T | v |-
=[] A a2, ot (o,
D”wl’ 2

Stst

Flhy V)
=[] A 4y mivn, g, (by (@79)
181 1!’1’1)11’2

However, by ([@.62)) this double integral now has the form

//F(g’l-ve1 .9~ " +vp,) dg.m(vp,) dg.m(vg,)

Sist
- / / F(va, vp,) dm (v, ) dimf(ug, ).
Stst

Therefore the last expression for ||y f||3, turns into || f||3; . This shows that v}
is unitary on V,, and that it extends by continuity to a unitary operator
on Hy.
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Finally, we verify the continuity of the complementary series representa-
tion ~°. To see this, let f;, fo € V, and note that

/ Jilg™ k@ ) f2(ke,)

1 s

</7gf17 f2 dm(v(,l) dm(vez)

Uel ) U92

depends continuously on g € SLy(R) by dominated convergence. This implies
continuity of g + ~;f by simply expanding ||v5f — v, f ||$, into a sum of
inner products. Hence Lemma [[.T1] gives continuity of the unitary represen-
tation ~°. (|

9.5.3 Irreducibility of the Complementary Series

Lemma 9.73 (Casimir eigenvalue). Let s €
tary series representation, the Casimir element ~y
on V. Moreover,

). For the complemen-

0,1
(£2) is multiplication by s>

(
5

1
75(r+)Fsyn = #Fs,n+2 and
s/ _ -n+1+s
’78(1‘ )Fs,n = st,n72

for alln € 2Z.

PrOOF. We reuse the calculation in the proof of Lemma [9 In fact we
proved ([@.27)) by calculating a pointwise derivative, and this part of the argu-
ment would apply for any £ € C. Using £ = —is replaces i by s, and ([@.21))
takes the form

s n+1l+s -n+1+s

Vo) Fy p = ————F nio D)

F,,_ 9.63
2 s,n—2 ( )

for n € 2Z (see Exercise below). We recall that a = r™ + r~ and apply
Proposition [@.I3] for 4*. From this the formulas for v3(r™)F ,, in the lemma
follow.

We now apply {2 in the form (@I3) and obtain

75(9)}? 76 (41‘ or + (116 + lk)02) s,m
= (_n +1+ 8)75(21‘ )Fs,n72 + ’78(]16 + ik)ost,n
= (_n +1+ S)(TL -1+ S)Fs,n + (1 - n)2Fs,n = Sst,n

for all n € 2Z. Using Fourier series for a smooth function on K/M, this
extends to all smooth f € V. O
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9.5 The Complementary Series Representation 471

Exercise 9.74. Prove ([@.63) as a partial derivative within H ).

PROOF OF IRREDUCIBILITY IN THEOREM [0.68 Let s € (0,1). We recall
that )V, contains the orthogonal basis vectors Fy, for n € 2Z of H.
Hence the completion H ) has, for every n € 2Z, a one-dimensional weight
space spanned by Fj, and no eigenvector for odd weights. Moreover, by
Lemma [@.73] the Casimir operator acts by multiplication by s2. This is all
one needs to know in order to obtain the irreducibility of v° using arguments
we have used many times before.

Indeed, if V C H(, is a non-trivial closed vy*-invariant subspace, then
as K is compact and abelian there must exist a K-eigenvector F' € V. By
the above, F' is a multiple of F, = for some n, € 2Z. Using the raising
and lowering operators and the fact that they do not map F to zero

s,ng

(by Corollary or Lemma [0.73) we obtain from the fact that F, , €V

that Fy ,, 1o € V also. Iterating we see that ) contains Fj ,, € V for a117n0€ 27
and hence V = H . O

9.5.4 Decay and Integrability Properties

The following shows, in particular, the remaining claim in Theorem [9.68 that
the complementary series is not tempered. However, the precise information
regarding the decay properties of the matrix coefficients of Fj , € H ) will
be useful in the next section.

Lemma 9.75 (Matrix coefficient of F,,). Let s € (0,1). The matriz
coefficient ¢ gy = cp}s , U8 bi-K -invariant, satisfies the asymptotics
bs)(9) =5 lgllis’

for g € SLy(R), and belongs to LP(G) if and only if p > 1—35 Moreover, ¢y
converges for s /1, uniformly on compact subsets of G, to the constant
Sfunction 1.

PROOF. As F,, has K-weight 0, it is clear that ¢ (9) = (v5Fs 0, Fs) is

bi- K-invariant. For that reason it suffices to consider g = a; for ¢ > 0 in the
proof of the asymptotics of ¢,. For the matrix coefficient, this gives
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¢(s)(at) = <7atFS >
sOat kel FSO(k )
= dé, do
7T2// |sin(6; — 65)|1—* 1
1 oL 1
= p /Fso(at kel) / |81n(91 — 92)|175 d92 d6‘1, (964)
0 0
C

s

where the inner integral contributes a constant C, only depending on s (be-
cause we may use the substitution ¢» = 6, — 0, for 65). As in the proof of
Proposition 839 we apply the Iwasawa decomposition to a; Yy = kyag g
for varying ky € K, which determines k, € K, a; € A, and u,, € U. For ¢,
this gives

e®'0 = ||kyay uz e1]]* = |lag 'kger||* = e7* cos® 6 + * sin” 6.

Using the definition of F; ; in Lemma [9.69, we have

—(s+1)
F,o(a; 'kg) = —(s+1)t (\/e 2t cos? 6 + et sin 9) (9.65)

We note that this implies that F§ o(a; 1I€91) is unchanged if we replace 6,
by 7 — 6. Hence we may also replace the outer normalized integral over [0, 7]
in ([@.64) by the normalized integral over [0, 7], which gives

s

/ F,o(a; 'kq)do. (9.66)
0

20,

¢(s) (at) =

To study the asymptotics of the matrix coefficient ¢(s) of F g, we first
note that ([@.65) implies that

Fy o(a; k) = max (™| cos ] e'| sinf]) """

We now replace Fs)o(aflkgl) in the integral ([@.66) by this maximum. The

latter is given by efsin®#;, unless 6, is very close to 0—specifically, un-
less tan §; < e~2¢. Therefore
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arctane 2t %
_ _ —(s+1) o —(s+1)
B(s)(ar) = / (™ cos19) do + / (e smeﬁ) do
0 = arctane—2t =

_ _ 1.2
=, et arctane 2 4 e~ 5+t _—_g=s
—s

arctane—2¢
_ 1 _
=, e(s+l)te 2t+_e (s—i—l)teZst
S

s—1)t s—1)t

1
=, els7Dt 4 ol =, o ,

s
which gives the claimed asymptotic.

Now let p > 0. Using the asymptotics and the decomposition of the Haar
measure in (811]), we obtain

b(s)(9)" dm(g /(b (s)(ay)? sinh 2t dt.
SL,(R) 0

Since we are only interested in whether this integral converges, we restrict
the integral to [1,00), use the estimate sinh 2t < e’ for ¢ € [1,00), and the
asymptotics for ¢,(a;) to see that

o0

/ ¢(s)(a;)P sinh 2t dt = / ets=1pe2t g,
1

1

Notice that the exponent
ts—1p+2t=(2—-(1—s)p)t

of the integrand has a negative coefficient if and only if p > and that
this characterizes finiteness of the integral.

It remains to prove the final claim in the lemma concerning the behaviour
of ¢(5) as s 1. For this, first note that C, as in (0.64) depends continuously

on s € (0,1), and that

15’

K

— [ — = o=
7w ) |sinf|1—s ™
0

0

for s /1 by dominated convergence. Next note that F, (a; 'kg) as in (.65)
also makes sense for s € [1,1] and depends contmuously on

(0,5,t) € 0,Z] x [1,1] x R.
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On restricting ¢ to a compact interval I, uniform continuity implies that the
function ¢(,)(a;) as defined in (0.66) makes sense and depends continuously
on (s,t) € [+,1] x I. Therefore by uniform continuity again and (I65) we
have that ¢,)(a;) converges to the function

%
20, 1
ot ¢(1)(at) T e=2t cos2 0 + e2t sin? @
0

uniformly on I as s /* 1. Now note that

1 o 1 1

i (arctan (e2t tan 9)) = e = ,
1+ettan?6  cos20  e—2tcos26 + e2tsin® 0

de

which together with C| =1 gives

b1y (a;) = %bli/n% [arctan(e*' tan 9)]2 =1

as required. (I

9.5.5 A Sobolev Space of the Projective Line*

Recall that the real projective line P*(R) = R2~{0}/~ is defined as the
quotient space of R*~{0} modulo the equivalence relation u; ~ uy if u;
and u, are scalar multiples of each other. Note that P*(R) = S'/~ can
also be obtained from the circle by identifying opposite points. Moreover, we
may also identify the equivalence class [kgeq].. € PYH(R) for some ky € K
with kgM € K/M. Consequently functions on P*(R) correspond to even
functions on K. In this sense, Lemma shows that V, can be identified
with C°(P!(R)). For the completion 4 of V, this leads to the following
result.

Proposition 9.76 (A Sobolev space). Let s € (0,1). The norm on V, is
equivalent to the L?-Sobolev norm with —5 derivatives. Hence H,) is the L%
Sobolev space W~ 22(P*(R)) with —% derivatives.

PROOF. We recall that the L-Sobolev space W~ 2%(T) with —% derivatives
is defined as the completion of C'*°(T) with respect to the norm defined by

1F12 52 = lealPln|™*

ne”z

for f =3, cz CnXn- In the case of PY(R) = S'/~ = K/M = T/(3 + Z),
we simply restrict to even functions and n € 2Z. Due to the orthogonality
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relations satisfied by Fy,, with respect to (-, )y and () 55 = (,")),-5.
for n € 27, the proposition is equivalent to the statement that
0= < | Fenll}, < vl 5.2 = I~ (9.67)

for all n € 2Z. For this, recall that ||[Fy _, |5, = [|F} .|}, for all n € N. Hence

to prove (L.67) it suffices to calculate the asymptotics of ||F; ,,[|3, as n — oo,
which will follow by combining Corollary @14 Lemma [0.73] and Stirling’s
formula for the gamma function.

Let n € Z and apply Lemma [0.73 to Fj ,,, to obtain

R 2n+1+s
’Ya(r+)F572n = 7FS,2H+2' (968)

2
On the other hand, Corollary gives
175 Foznll® = (20 + 1) = %) || Fy 201 (9.69)

Together, we obtain the recursion formula

4 S
1Fs onsall = mlha(r*)Fs)%H2 (by (@5R))
(2n+1)% — s?
= anrig sz el (by ([@59))
2ntl—s 2 _ Nt 1_55 2
n+1+ S” s,2n|| n+ 1J2rs || s,2n||

for the norms.
Now recall the Gamma function

F(;E)Z/ t" et dt
0

for > 0, and that integration by parts shows that I'(x + 1) = zI'(z). We
define ¢ = ¢, > 0 by the formula

ri+12)
HFS, ”2 = 25 ¢,
T+
and prove by induction on n € N that
L(n+-3°)

1Fs 2nll* = (9.70)

——F C.
I'(n+ 12)

Indeed the definition of ¢ is the start of the induction, and the recursion
formula gives the inductive step

Page: 475  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



476 9 Unitary Representations of SL(2)

2_”4’% 2 _ (”"‘%)F(”"'lgs)
||Fs,2n+2|| - n_'_%”Fs,?nH - (n—i—%)f’(n—i—%)c
_ g1+ 52)
C I'(n+1+ 42

for n € N.
Next we recall Stirling’s formula for the gamma function, which states that

ro~ % (2

where as usual ~ means that the ratio of the left-hand and right-hand side
converges to 1 as © — oo (see Section [B.2). We will also write &~ to mean
that the ratio converges to a positive constant depending on s € (0, 1). Using
Stirling’s formula on (@.70) gives

1—s

_ n+
F(n+ 175) i 1ts (n+12s) Pl
HFS2nH2: 2 Len~ - - s €
s F(n—l— 1-55) n+ 1;5 n+142rs)n+ ;o
—_———— |7
~1

Taking the square root gives the desired asymptotic in (@.67) for || F} o, |y,
as n — o0o. ]

9.6 Spectral Gap, Decay, and Integrability Exponents

—

Using the complete description of SLy(R), and in particular the complemen-
tary series representation, we can upgrade the results concerning integrability
and decay exponents (p, and k., respectively) from Section B7l Moreover,
we will relate these to the notion of spectral gap defined in Section [£.2.7] and,
in addition, to the following quantity.

Definition 9.77 (Complementary series parameter). Let 7 be a uni-

tary representation of SL,(R). Then the complementary series parameter of «
is defined by
s =sup{s €[0,1)]| s=0or v < 7}

Theorem 9.78. Let w be a unitary representation of SLy(R). Then
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2
min (1,:‘?/71.) = m =1- Sr. (971)

For k < min(1, k) and any g € G we have
(v, w)| <, Nolllwlllglg (9.72)
for any K -eigenvectors v,w € H,, and
(v, w)| <, S) S(w)llgllg (9.73)

for any C'-smooth vectors v, w € H,.. Moreover, k, >0, p, < 0o, and s, < 1
are all equivalent to m having spectral gap.

We note that, even for the proof of the first equality concerning «, and p,,
knowledge about the complementary series will be useful. We again write G
fOI' SL2 (R)

ProOOF oF ([@.72)—(@.73) AND THAT min (1,k,) = m Suppose that 7 is
a unitary representation of SLy(R). Comparing the definition of integrability
and decay exponents in Definitions [7.23 and B43] we may assume that 7 has
no fixed vectors. Suppose first that p, < 2. Then, by definition, 7 is almost
square integrable, and hence tempered by Theorem [R5 and satisfies (@.72)
for all K < 1 by Theorem B4l Hence £, > 1 and min (1,k,) =1 = m,
as claimed.

We suppose now that p, > 2. By Lemmal8.45 we have p,, < % With p, >

2 we obtain from this that x, < 1, and hence
2 2

in(l,k )=k < — = —— .
min(l, r,) =k < p.  max(2,p,)

(9.74)

To prove the opposite inequality, suppose that p > 0 is such that 7 is p-
integrable. By definition, this means that there exists a dense set of vec-
tors V C H, so that o], € LP(G) for all v,w € V. Let € > 0, fix a posi-
tive 5 € (% — &, %), and note that § € (0,1) since p > p, > 2. We claim that
this makes the inner tensor product 7 ® 7° tempered.

Assuming the claim for now, we let v,w € H, be K-eigenvectors and
let F; be the spherical function as in Lemma Then both v ® Fs
and w ® F5 are also K-eigenvectors. Therefore temperedness of 7 ® +* and
Theorem[8.412), together with the estimate for the Harish-Chandra spherical
function in Theorem B3] give

|(mgv,w)| bz (9) = ‘<(7T ®7%)yv ® Fyo,w ® Fx)
< lv® Fsollllw ® Fspllllgllast™

<eg Ivllllwlllglzs*
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478 9 Unitary Representations of SL(2)

for all g € G, where ¢(3) is the matrix coefficient of F5 . Together with the
lower bound for ¢z in Lemma [0.75, we obtain after dividing by ¢ the
estimate

(v, w)| <oz o]l gllE"e.

Recalling the assumption s € ( —¢, %) we also obtain

2
P

—242¢
[(mgv; w)| <pe [olllwllgllug

for all K-eigenvectors v,w € H,. By Proposition this upgrades auto-
matically to all C1-smooth vectors v,w € H, if we replace the norm of v, w
by the degree-one Sobolev norms of v,w (and multiply the implicit con-
stant by an absolute constant). Hence xk = % — 2¢ is a decay exponent for 7
satisfying ([@.72)) and (@73). Recalling that ¢ > 0 and p > 0 with 7 be-
ing p-integrable were arbitrary, we see that the claim implies that «, > %.
Together with ([@.74), this gives the desired equality.

Turning to the claim that 7 ® ~*° is tempered, notice first that the linear
hull <7§(G)F;10> of the G-orbit of F is dense in H ) by irreducibility of
the complementary series representation. Therefore (V) ®y, <’}/EF‘§10> is dense
in H, ® H ) and, by sesquilinearity of matrix coefficients, it suffices to con-
sider the matrix coefficient ¢ of v ® 751 F;pand w® 752 F; . This gives

¢(Q) = <7TgU7 ’LU> </7_;]§g1 FE,O? 7§2F§,0> = (pg,w(g))‘gngl ¢(§) (g)

2
By assumption, ¢j ,, € LP(G) and, by Lemma @.75] ¢ € L' % since 3 < %
implies 2= < —27. Using (B.)), this implies that ¢ belongs to L4(G) for

1-2
p

2
pl_% 2p

= = :2

q

)

which proves the claim. ([

Corollary 9.79. Let s € (0,1). Then the complementary series v° has almost
decay exponent

K/,Ys:]._s.

PROOF. Applying the already established first part of Theorem [0.78 to ~*
and the vector F, ; € H,, we obtain the upper bound in

lgllis" <s 1666 (9] <o N9ll5S (9.75)

for all g € G and any x < min(1, s,:). The lower bound in ([@.75) comes
from Lemma [0.75] Together we obtain s —1 < —k or, equivalently, k <1 —s
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by letting g — oo. Since the choice of x < min(1, x.,-) was arbitrary, this
gives kys <1 —s< 1.

By Lemma (.75 ¢(,) = <p']; , belongs to LP(G) for all p > 2. By Ex-
ercise 844 and irreducibility of 4(*), this implies that v* is p-integrable for
all p > % and so

2
P S 1—s

Together with the first part of Theorem [0.78] again, we obtain from this

Kas = — >=21—38
ol e J

and hence the corollary. O

CONCLUDING THE PROOF OF THEOREM [0.78. We start by proving the
inequality min(1,x,) < 1 — s,. For this we suppose that v* < x for
some s € (0,1) and £ < min(1, ). By the first part of the theorem, we know
that x satisfies (@72) for all K-eigenvectors v,w € H,. Using Lemma [R42
just as in the proof of (1) => (2) in Theorem B4T] on p.B67] it follows that
is also a decay exponent for v*. By Corollary @. 79 this implies £ < K.ys = 1—s5.
As k <min(l,k,) and s € (0,1) with v* < 7 were arbitrary, we obtain

min(l,k,) <1 —s,. (9.76)

For this, we also note that ([@.70) holds trivially if there is no complementary
series v* weakly contained in m, since in this case s, = 0.

Note that if s, = 1 then ([@76]) shows that s, = 0 and so there is equality
in @.70). If s, = 0 (that is, if no complementary series are weakly contained
in ) then 7 is tempered and so k, = 1. This follows, for example, from the
argument in Corollary but also from the discussion below. So we now
suppose that s, € [0,1) and claim that there exists a countable set S C (0, s,
(with S = if s, = 0) so that

T=< o (9.77)

Let x € (0,1 — s,) so that K < 1 — s for all s € S. By Corollary [0.79 this
shows that x is a decay exponent for «* for all s € S. In fact, we have

| (v, w) | < Joll[[wllllgllas (9.78)

for all s € S and K-eigenfunctions v,w € Hyy. As k£ < 1 — s, < 1 the
estimate (Q.78) holds similarly for A. This allows us to prove the same es-
timate for A ® @, ¢ 7*. Indeed, let v,w € L*(G) ® @, g H (s be two K-
eigenfunctions, and let us write vy, w, € L?(G) for the components of w, w
corresponding to A, and v, w, € H(,) for the components corresponding
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480 9 Unitary Representations of SL(2)
to s € S. Then

|<<>\ ® 6]9%) (g)v,w>| = [(gtor wo)| + 3 |10, )]

seS sES

< <||U0||||w0|| + ||vs||||ws||> l9ll%s-

ses

Applying the Cauchy-Schwarz in the Hilbert space C!¥I*1 we may estimate
the parenthesis on the right by the product

\/||Uo||2 + IIUSIIQ\/Ilwoll2 + 3 lwll? = [[ollljwl]l-

seS seS

Using (@.71), applying Lemma 842 and using the argument for (1) = (2)
in the proof of Theorem BA41] on p. BG7 we obtain

[(mgv,w)| < lvllllwllllgllus

for any K-eigenvectors v,w € H, (without changing the implicit constant),
which once more implies (0.73) for C'-smooth vectors. We therefore see that
any k < 1—s, is a decay exponent, which gives k, > 1—s, for the supremum,
and hence equality in ([@.76]).

To prove the claim (@.71) let v € H, be a unit vector, @ C G a com-
pact set, and € > 0. Applying Proposition we can find finitely many

irreducible representations m; < m and vectors v; € H, for j = 1,...,n
J J g

so that >0 [|v;]|> = 1 and ¢fis equal to >0, @y’ on Q up to O(e).
In Theorem we found all irreducible representations of G = SLy(R),
and by Table (see Theorem B23] Theorem B30 and Theorem 03T)) we
have 7; < A or m; = ~° for some s € (0,s,]. In the former case we may
apply the definition of weak containment 7; < A and replace gagj by a sum
of matrix coefficients for the regular representation. In other words, we may
assume instead that 7; = A or 7; = 7* for some s € (0, 5,].

We now vary v within a dense countable subset of the unit sphere in H,,
set Q = Bl'lus and e = L for n € N. This way we obtain a subset S C (0, s,]
that is at most countable so that (@77) holds by the definition of weak
containment in Definition (.11

The argument above completes the proof of ([O.71]) except for a tiny detail
that we have intentionally kept hidden under the rug until now. To prove
that k € (0,1 — s,) is a decay exponent for 7, we used the estimate (.78
but did not discuss the dependency of the implicit multiplicative constant on s
in S. (Note that Corollary makes no claim concerning this.) Assuming
that we can choose the implicit constant so that it does not depend on s € S
but only on k and s,, the above argument applies as explained.
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To see that ([@.78)) holds with an implicit constant that only depends on &
and s, we will review the proof of Corollary[0.79 So let s € S. By Lemmal[9.75]
we have that |¢(s)| belongs to LP(G) if and only if p > 2, which implies

that v* is p-integrable for p > 2= by Exercise 844 Note that k < 1 — s,

— -5, K

and s < s, imply 1—38 < % < %, which allows us to fix some p € ( 2 2)
so that v*® is p-integrable for all s € S. Since p < % we may also fix some §

in (n, %) . By the first part of the proof of Theorem [3.78 we have that v ®~*
is tempered. which gives

(g, 63 (9)] < ol s

for any K-eigenvectors v, w € H,. Dividing by ’qﬁ(;) (g)’ =z ||g||§H_S1 we obtain

[(vv, w)] <ze Iollllwlllgllast.

As § > k we may set € = § — k and obtain ([O.78) with an implicit constant
that only depends on x and s,.

Finally we note that £, > 0 (and so, equivalently, p, < oo or s, < 1)
implies that 7 has spectral gap by Proposition[Z.25l Assume for the converse
that x, = 0 and so, equivalently, that s, = 1. However, this means by
definition that there exists a sequence s,, /! 1 with v*» < 7. By the definition
of weak containment and Lemma this shows that 15 < 7. Using (for
example) Proposition and the condition (<,,) in Theorem E.30, this
shows that 7 cannot have spectral gap. (I

Exercise 9.80. Suppose the unitary representation m of SLy(R) is a countable direct sum
of irreducible representations. Define

s® = sup{s €[0,1) | s = 0 or 4° is one of the summands of 7}.

Show that in this case Theorem 78 also holds for s& instead of s,,.

9.7 Compact Quotients of SL(2)

We will study in this section the Koopman representation on compact quo-
tients X = I'\SLy(R) by uniform lattices.

9.7.1 Effective Decay of Matrix Coefficients

Corollary 9.81. Let I' < SLy(R) be a uniform lattice and X = I'\SLy(R).
Then the Koopman representation ©% of SLo(R) has effective decay of matrix
coefficients.
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PRrROOF. By Proposition E:28 the Koopman representation 7% has spectral
gap. By Theorem [0.78 this implies that 7% also has effective decay of matrix
coefficients. O

We note that the above result also holds more generally for finite volume
quotients X = I'\SLy(R) by any lattice I' < SLy(R). Proving this requires a
different argument, for example using an analysis of the so-called Eisenstein
series and the cuspidal spectrum. We will not pursue this further here.

9.7.2 Complete Decomposability

The following result is special to compact quotients.

Theorem 9.82. Let I' < SLy(R) be a uniform lattice and X = I'\SLy(R).
Then the Koopman representation % is a countable direct sum of irreducible
unitary representations.

PRrOOF. For the proof it will be useful to first refine part of Proposition [4.28]
Indeed we claim that for ¢ € C2°(G) the convolution operator (1))
maps L2(X) into C*°(X).

To see the claim, let v € C*(X) and h = exp(tm) for some t € R
and m € sly(R). For f € L*(X) we than have

F(h) /w f(ahg) dmglg) = [ 0(9)f(g) dme(s).

G

Using this together with ([@I6) we have for ¢ € [—1, 1]N{0} that

}H@mwmmmm—mwmowmwmmﬂ
mc(mmww )H

<7 Cutom = 9) = 290 Ajmz

with the implicit constant depending on supp ¥, m € sly(R), and X only.
However, as ¥ € C2°(G) the final supremum norm converges to 0 as t — oo.
This implies that the derivative of m,(¢))f in the direction of m is equal
to m, (Ag(m)v) f. Tterating this statement shows that ,(¢)f € C*(X) as
claimed.

We now show that any non-trivial invariant subspace ¥V C L?(X) con-
tains an irreducible closed subspace. For this let f; € V be a unit vector and
choose from a suitable approximate identity (¢,,) an element @ € C(G)

satisfying «» > 0, ¥* = ¢, [y = 1 and |7 (¥)fo — foll < 1. This
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shows that m,(¢)|y # 0. By Proposition and invariance of V, we have
that 7, (¢)|y: V — V is a compact self-adjoint operator. Let p # 0 be an
eigenvalue of 7, (¢)|,, and V,, its associated finite-dimensional eigenspace. By
the above claim we have that V,, = 7, (¢)V,, € C*°(X). In particular, my({2)
is defined on V,,. For f € V,, we also have

T mo(82)f = mo()m, () f = mo()pf = pmy(£2) f,

which shows that my(£2)V,, € V,,. Therefore the restriction of my({2) to the
finite-dimensional subspace V), has a smooth eigenfunction g € V,, C V.

Next we decompose g = > ., g, into a sum of K-eigenfunctions and
choose n € Z so that g,, # 0. Note that

F=g,= (7TX|K)* Xn)geV
as V is invariant, and that
1 27

2m
/ e 10 (ﬂ',iig) (z)do = p e Yg(xky)db
0 T Jo

1

T

F(z)

can be defined by a parameter integral for x € X. As g is smooth we may dif-
ferentiate under the integral sign, which when applied to the central Casimir
element §2 shows that F' € V is also an eigenfunction for 7 (£2).

To summarise, we have shown that any closed invariant subspace V con-
tains a non-zero K-eigenvector with K-weight n € Z so that F' is also an
eigenvector for 7 (£2) and eigenvalue A € R. By Corollary this implies
that the restriction of 7% to the cyclic subspace (F),x C V is irreducible.

The theorem now follows from a simple application of Zorn’s lemma. Let

C ={S| S is a set of pairwise orthogonal irreducible subspaces of L?(X)}

ordered by inclusion. It is straightforward to see that any linearly ordered
chain in C has an upper bound, namely the union of the chain. Hence there
exists a maximal element in C. That is, there exists a maximal set S, of
pairwise orthogonal subspaces in L?(X). As L?(X) is separable, S is at most
countable. Let W be the direct sum of the subspaces in Sy and let V = W-+.
If V # 0 we can apply the above argument to find an irreducible subspace
of V, which contradicts maximality of Sy. Hence V = 0 and W = L?(X)
is a direct sum of the irreducible subspaces contained in S. Note that each
irreducible subspace satisfies that the space of K-invariant vectors is at most
one-dimensional. As L*(X)® = L?(X/K) = L?(I"'\H) is infinite-dimensional,
it follows that |Sy| = oo. O
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9.7.3 The First Non-trivial Eigenvalue

We conclude our excursion into hyperbolic surfaces by establishing a link be-
tween effective decay of matrix coefficients and the first non-trivial eigenvalue
for the Laplace-Beltrami operator on the surface. Following the choices made
in Section B.3 concerning H we define the Laplace-Beltrami operator Ay,
on H by

Anypf(2) = y2 (02 f(2) + 05 f(2))

for f € C°(H) and z € H. It can be verified directly that the action of an
element g € SLy(R) satisfies

(Ahypf) °g= Ahyp(f o g)

for f € C°(H) (see Exercise [1.85)). This also shows that A, descends to
a well-defined operator on C°°(I'\H for any discrete subgroup I" < SL,(R)
(which we will also obtain in Lemma [0.84] by a different argument). To avoid
technicalities concerning cone points of I'\H we will assume in the following
that I'/{£I} is torsion-free, which implies in particular that no v € I" other
than +1I has a fixed point in H. Indeed, if -z = z for some z € H we find
some g € SLy(R) with z = g-i. This gives g~ !vgi = i and hence g~lvg
generates a discrete subgroup of Stabgy,,g)(i) = SO5(R), and so must be a
torsion element.

For a compact surface M = I'\H defined by a uniform lattice I < SLy(R)
with no non-central torsion elements the Laplace-Beltrami operator Ay,,,, has
a satisfying spectral theory. Indeed, there exists a sequence of eigenvalues

)\0:O<)\1<A2§
with A\, — oo for n — oo, and a sequence of eigenfunctions

fO:]lMuflvf%'" ECOO(M)

so that
Ahypfn = _)‘nfn

for all n € Nj.

The first non-trivial eigenvalue A; > 0 measures in a sense the amount of
connectivity of the surface M. For us it is of interest because of the following
result.

Corollary 9.83 (First eigenvalue and almost decay exponent). Let I’
be a torsion-free uniform lattice in SLy(R), let X = I'\SLy(R), and let

M=r\H~X/K.

Then the Koopman representation % has almost decay exponent
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1 if A 2= i, and
F;/ﬂ' = .
Tl -vI=ay i < L

For the proof we first need to establish a link between Ay, and the Casimir
operator
Q:]].@+aO2+dO2_k02

considered so often in this chapter.

Lemma 9.84. Let I', X, and M be as in Corollary @83, Let f € C°(M),
which we may identify with a smooth K -invariant function on X. Then

PRrROOF. We identify f € C°°(M) with the smooth functions H 3> z — f(I'z)
and SLy(R) > g — f(I'g-). In order to prove the lemma, we have to first
calculate 73 (a) f and 7 (d) f as functions of g € SLy(R).

By definition we have

5 (2)f(9) = Oili=0f (g9a;+1) (9.79)

for all g € SLy(R) as a;, = exp(ta). To calculate ([@.79) we use the chain
rule for differentiation, while always expressing total derivatives using the
standard basis of R?. Hence the total derivative of f at z = gi = o +iy € H
is simply

(0:£(2),0,f(2)) -

1
Next we write g = u,, <y2 ;) kg for some ky € K and apply (8X) for the
y 2

1

2

Mobius transformation corresponding to u,, <y 1 ) , and kg respectively,
y 2

to see that their derivatives are the matrices representing multiplication by

the complex numbers 1, y, and m = e~ 2% respectively. Finally we

note that the total derivative of a,+i = e?!i at t = 0 is simply 2i, which we
identify with 2e5. Putting these together, we obtain

(5 (@)f) (9) = (0.£(2),0,4()) -y (f e 2233) 2e;

= 2y (sin(26)9, f () + cos(260)9, f(z))
where g = u,, <y2 1) kg and z = g-i.
y 2

For 7 (d)(f) we only have to change the last step of the calculation.
Indeed a simple calculation reveals that
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cosht sinht D) o

t=0 \ \sinht cosht -

and so we simply have to replace 2e4 as above by 2e;. This gives

5 (d)f(g) = 2y (cos(20)0, f(2) — sin(260)9, f(2)) .

Fix some z5 € H. As I < SLy(R) is discrete and has no non-central torsion
elements, it follows that there exists some r > 0 so that

d d
< td)ei) = —
& | (@A) ) = &

:BYz) 32— T2zeM

is injective. We let O = BE(z,) and choose some F € C°(0O). Using the
chart map ¥ we may also consider F' as a function on M. We now calculate

(r3 () f, F) = (5 (Lg +a°2 +d°> —k*?) f, F)
= <f7F> - <7r§(a)f,7r§(a)F> - <7T§((d)f,7T5{(d)F>

Using our preparations above for f and F we have that 7 (a)f7{ (a)F is

equal to
2 (sin(29)8w £(2) + cos(20)d, f(z))2y (sin(29)8wm n cos(zo)aym).

Next we use the fact that m = %dﬁ dvol = %dﬁy—lz dx dy. Integrating over 6,
we see that (73 (a) f, 75 (a)F) is equal to

2/(6If(x+iy)8mF(:C+iy)+8yf(:v+iy)8yF(:c+iy)>dx dy.
0

Finally, we use the fact that ' € C.(O) and apply integration by parts
along = and along y separately, which leads to

—2/(8§f(x+iy)F(a:+iy) —|—8§f(a:—|—iy) F(I—I—iy))dxdy
%)

_ / (Anypf) Fdvol(z).

o)
The expression <7T§ (d)f, 7 (d)F> gives the same result, which shows that
(73 (D, F) = (f + 4], F).

As F € C°(0) was arbitrary, we see that m (£2)f is equal to f + 44, f
on the image of O. Varying 2, € H proves the lemma. O

PrROOF OF COROLLARY [0.83l By Theorem [0.82] we have
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é v, (9.80)

Jj=0

L2(X)

1%

for countably many irreducible subspaces V; < L?(X). We may assume
that V, = C1, which is the only trivial representation (by transitivity of
the action of SLy(R) on X). For j > 1 and a non-spherical V; we apply
Corollary to see that the restriction of 7% to V; is tempered and has
decay exponent 1 — ¢ for all € > 0.

Suppose now j > 1 and V; is spherical, and let f € V; be a non-zero K-
invariant function. Let a; be the eigenvalue of 7T§(.Q)|Vj so X () f = oy f.
By Lemma this shows that f is also an eigenfunction of A,; that
is, Apyp(f) = =X, f and, moreover,

a; =1—4\, <1-4)\;. (9.81)

If now A\, > %, then a; < 0 for all j € N. However, this implies by The-
orem that V; is isomorphic to a principal series representation and is
tempered with almost decay exponent 1. Hence in this case all direct sum-
mands of ([@80) with j > 1 are tempered.

Suppose now that A < %. If V; is isomorphic to the complementary series
representation %, then (@8] shows that

Hence the complementary series parameter satisfies

SpX < \/ 1 _4)\1

On the other hand the eigenfunction for the first non-trivial eigenvalue gen-
erates an irreducible representation by Corollary [0.23] which must be a com-
plementary series representation for parameter /1 — 4\;. Therefore

SpX = 1/ 1 —4A1

Theorem @78 and Exercise [0.80 show that 7% has almost decay exponent

Hﬂle_\/l_é‘:)\l.

O

Exercise 9.85. Prove that (Any, f) 0 g = Anyp(f o g) for f € C°(H) and g € SLy(R).
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