
Chapter 9

Unitary Representations of SL(2)

In this chapter we will again focus our attention on SL2(R) and its unitary
representations. For this, we recall some of our previous discussions:

• We already classified all finite-dimensional representations of SL2(R) in
Section 6.1. This result, and even more so the method of proof, will be
of interest here.
• In Section 8.3 we recalled the geometric significance of SL2(R) ∼= SU1,1(R)
by connecting it to the hyperbolic plane H ∼= D.
• In Section 8.4 we already found our first two types of non-trivial irre-
ducible unitary representations of SL2(R), namely the discrete series and
the mock discrete series representations.
• In Section 8.5 we studied the regular representation of SL2(R).
• This allowed us to characterize temperedness for SL2(R) in terms of in-
tegrability and decay of matrix coefficients in Section 8.6.

We will extend these results here, to obtain a complete description of ŜL2(R).
Moreover, we will decompose natural unitary representations into irreducible
representations.(18) In particular, we will study the Koopman representation
of SL2(R) on L2(H), and see that the ‘hyperbolic Fourier transform’ is inti-
mately related to the principal series representations of SL2(R). Finally, the
complementary series representation will allow a better understanding of (the
lack of) spectral gap, decay rates, and integrability exponents for SL2(R).

9.1 The Universal Enveloping Algebra and Smooth
Vectors

We recall that the Casimir operator for SU2(R) in Proposition 7.21 and Corol-
lary 7.22 commutes with SU2(R). Because of the connection between SU2(R)
and SL2(R) developed in Section 6.1.2, it stands to reason that SL2(R) should
also possess a Casimir operator. However, the Casimir operator of SL2(R)
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388 9 Unitary Representations of SL(2)

will have ‘mixed signature’, and will not arise from an application of Propo-
sition 7.21.

After developing the necessary abstract machinery in this section, it will
also be relatively straightforward to define the raising and lowering operators
for any unitary representation of SL2(R), which will lead to the description

of ŜL2(R) in Section 9.2.

9.1.1 The Universal Enveloping Algebra

We briefly introduce the algebra E containing the Lie algebra g of a Lie
group G as well as higher-order terms like the Casimir elements. We refer to
Knapp [44, Ch. 3] for a more careful introduction to this concept.

Definition 9.1 (The algebra E). The universal enveloping algebra E of
a Lie algebra g is the linear hull of all formal multi-linear associative non-
commuting products b1 ◦b2 ◦ · · · ◦bn for n ∈ N0 and b1, . . . ,bn ∈ g modulo
the ideal generated by the expressions a ◦ b− b ◦ a − [a,b] for a,b ∈ g. By
also allowing the empty product 1E (corresponding to n = 0) the algebra E

is also unital. We will write b◦n = b ◦ b ◦ · · · ◦ b for powers of b ∈ E in the
algebra E for all n ∈ N, and define b◦0 to be 1E for all b ∈ E.

At first sight this definition might look very much like abstract nonsense.
However, as we will see, we should think of E as the algebra of all partial
differential operators that can be obtained by composition from the first order
differential operators that correspond to elements of g.

Because of its definition, E is not a graded algebra (that is, there is no
good definition of homogeneous degree in E), since the generators of the ideal
in its definition have terms of different degree. However, it can be written as
an increasing union

E =

∞⋃

d=0

E6d,

where E60 = C1E, E61 = E60 +g, and E6d is the subspace of E generated
by all products b1 ◦ b2 ◦ · · · ◦ bn with n 6 d and b1, . . . ,bn ∈ g. We say
that e ∈ E has degree d ∈ N if e ∈ E6drE6d−1, and has degree 0 if e ∈ E60.

We note that the algebra E is enveloping in the sense that it contains
the Lie algebra g, and that it is universal in the sense that any Lie algebra
representation of g (sending Lie brackets to Lie brackets as in (6.7)) can be
extended to an algebra representation of E (sending products to products).
This functorial property holds essentially by definition of E.

However, let us start by extending the adjoint representation to E. We
define Adg(1E) = 1E,

Adg(b1 ◦ · · · ◦ bn) = (Adg b1) ◦ · · · ◦ (Adg bn)
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9.1 The Universal Enveloping Algebra and Smooth Vectors 389

for all g ∈ G, n ∈ N, and b1, . . . ,bn ∈ g and extend Adg linearly to all of E.
For this we need to point out that

Adg(a ◦ b− b ◦ a− [a,b]) = (Adg a)◦(Adg b)−(Adg b)◦(Adg a)
−Adg([a,b])

= (Adg a)◦(Adg b)−(Adg b)◦(Adg a)
− [Adg(a),Adg(b)]

for g ∈ G and a,b ∈ g. Hence the adjoint action of G on the algebra of formal
products sends the ideal appearing in Definition 9.1 to itself, and we obtain
a well-defined representation of G on E and, by restriction. also on E6d for
all d ∈ N0.

By the discussion in Section 6.1.3, we may also take the derivative of
the adjoint representation of G on E (or, said more carefully, on E6d for
all d ∈ N0) to obtain a representation of g on E. We will again call this
representation the adjoint representation, and denote it by

ad: g −→ End(E)

c 7−→ adc .

In fact, for n ∈ N, b1, . . . ,bn, c ∈ g the adjoint representation satisfies

adc(b1 ◦ · · · ◦ bn) =
d

dt

∣∣∣∣
t=0

(
Adexp(tc) b1

)
◦ · · · ◦

(
Adexp(tc) bn

)

= (adc b1) ◦ b2 ◦ · · · ◦ bn + · · ·+ b1 ◦ b2 ◦ · · · ◦ (adc bn). (9.1)

This generalized product rule follows, for example, by restricting to E6d for
some d > n, applying the approximation formula

Adexp(tc)(bj) = bj + t adc(bj) + O(t2)

for t → 0 and j ∈ {1, . . . , n}, using multi-linearity to expand the product
above, and letting t go to zero.

We note that substituting the relation

adc(bj) = [c,bj ] = c ◦ bj − bj ◦ c

for j = 1, . . . , n into (9.1) gives the telescoping sum

adc(b1◦ · · · ◦bn) = (c◦b1◦b2◦ · · · ◦bn − b1◦c◦b2 ◦ · · · ◦bn)
+ (b1◦c◦b2 ◦ · · · ◦bn − b1◦b2◦c ◦ · · · ◦bn)
+ · · ·
+ (b1◦b2◦ · · · ◦c◦ bn − b1◦b2 ◦ · · · ◦bn◦c)

= c◦b1 ◦ · · · ◦bn − b1◦ · · · ◦bn◦ c,
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390 9 Unitary Representations of SL(2)

which by linearity shows that

adc(e) = c ◦ e− e ◦ c (9.2)

for c ∈ g and e ∈ E.
To get a better feeling for E, we describe how to obtain a basis for it. For

this, suppose that b1, . . . ,bn ∈ g form a basis of the Lie algebra g. Then, by
the Poincaré–Birkhoff–Witt Theorem (see Knapp [44, Th. 3.8]) the products

b
◦k1
1 ◦ · · · ◦ b◦kn

n (9.3)

for (k1, . . . , kn) ∈ Nn0 form a basis of E. We will not need or prove this in
detail, but wish to indicate briefly why this should be true.

Firstly, because of the assumed multi-linearity of the products appearing
in Definition 9.1, it is clear that E is the linear hull of 1E, b1,. . . ,bn, and all
non-commuting products of b1,. . . ,bn in any order and multiplicity. However,
using the ideal appearing in Definition 9.1 we may swap two basis elements
in such a product, possibly at the cost of adding a term of lower degree. This
allows us to order the basis elements in a product so that they are of the form
in (9.3). Using this and an induction on the degree, we arrive at the statement
that E is the linear hull of products as in (9.3) for (k1, . . . , kn) ∈ Nn0 . In a
way the ideal appearing in Definition 9.1 precisely allows us to do this re-
ordering of arbitrary products of basis elements to transform them to the
shape of (9.3), but does not allow anything else. This suggests the second
half of the Poincaré–Birkhoff–Witt Theorem, namely the statement that the
products in (9.3) are all linearly independent within E.

9.1.2 The Casimir Element for sl2(R)

As it is our goal in this chapter to describe the unitary dual ŜL2(R), and the
notion of universal enveloping algebra is meant to be a tool for that goal, it is
only natural that we want to study the universal enveloping algebra E of the
Lie algebra sl2(R). This will, in particular, reveal that E has some interesting
central elements.

Hence we let g = sl2(R). We will use the basis elements a, e, f as in (6.2).
These form an sl2-triple as they satisfy the relations [a, e] = 2e, [a, f ] = −2f ,
and [e, f ] = a by (6.3). In addition to these, we will also use the Lie algebra
elements

d = e+ f =

(
0 1
0 0

)
+

(
0 0
1 0

)
=

(
0 1
1 0

)
∈ sl2(R)

and
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9.1 The Universal Enveloping Algebra and Smooth Vectors 391

k = −e+ f =

(
0 −1
0 0

)
+

(
0 0
1 0

)
=

(
0 −1
1 0

)
∈ sl2(R).

We will define the central element Ω of the universal enveloping algebra E

of sl2(R) directly below. However, we first wish to explain an abstract ar-
gument (relying on the Poincaré–Birkhoff–Witt Theorem and the theory of
finite-dimensional representations of sl2(R) in Section 6.1) showing that such
a central element of degree two has to exist.

For this, note first that by the Poincaré–Birkhoff–Witt Theorem E62 has
the 10 elements

1E, a, e, f , a
◦2, a ◦ e, a ◦ f , e◦2, e ◦ f , f◦2

as a basis. To understand E62 as a finite-dimensional representation for the
Lie algebra sl2(R), we have to find its highest weight vectors. Clearly 1E

is a highest weight vector corresponding to weight 0 and spanning a trivial
sub-representation. Next we note that e is a highest weight vector (since we
know that ada(e) = 2e and ade(e) = 0). Also note that e generates the
sub-representation g ⊆ E62. Moreover, e◦2 is another highest weight vector,
since

ada(e ◦ e) = ada(e) ◦ e+ e ◦ ada(e) = 4e ◦ e

and

ade(e ◦ e) = ade(e) ◦ e+ e ◦ ade(e) = 0.

Since e◦2 has weight 4, it generates a 5-dimensional irreducible subspace V5
inside E62. Together we see that the sub-representationsC1E, g, and V5 found
so far have dimension 1, 3, and 5 respectively. As E62 has dimension 10 we
see that there exists a one-dimensional invariant complement CΩ to

C1E ⊕ g⊕ V5 = E61⊕V5,

on which sl2(R) acts trivially. This shows the existence of an element Ω of
degree 2 with adb(Ω) = 0 for all b ∈ sl2(R). By (9.2) we may also write this
as

b ◦Ω = Ω ◦ b
for all b ∈ sl2(R). Since E is generated by 1E and sl2(R) as an algebra, we
find that Ω belongs to the centre of E.

In order to be logically independent of the Poincaré–Birkhoff–Witt The-
orem and, more importantly, to be able to do concrete calculations with Ω,
we now give a direct definition of Ω.

Lemma 9.2 (The Casimir element for sl2(R)). Let g = sl2(R) and
let a, e, f be the sl2-triple from (6.2). Define d = e+ f and k = −e+ f . Then
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Ω = 1E + a◦2 + d◦2 − k◦2 = 1E + a◦2 + 2e ◦ f + 2f ◦ e

is a degree two element in the centre of E.

Proof. We use the definitions of d and k to see that

1E + a◦2 + (e+ f)◦2 − (−e+ f)◦2

= 1E + a◦2 + e◦2 + e ◦ f + f ◦ e+ f◦2 −
(
e◦2 − e ◦ f − f ◦ e+ f◦2

)

= 1E + a◦2 + 2e ◦ f + 2f ◦ e.

Hence the two expressions in the lemma define the same element Ω. Next we
note that adb(1E) = 0 for all b ∈ g. Hence we obtain, by the product rule
in (9.1), that

ada(Ω) = ada
(
a◦2 + 2e ◦ f + 2f ◦ e

)

= 2(ada e) ◦ f + 2e ◦ (ada f) + 2(ada f) ◦ e+ 2f ◦ ada(e)
= 2(2e) ◦ f + 2e ◦ (−2f) + 2(−2f) ◦ e+ 2f ◦ (2e) = 0

and

ade(Ω) = ade
(
a◦2 + 2e ◦ f + 2f ◦ e

)

= ade(a) ◦ a+ a ◦ ade(a) + 2e ◦ (ade f) + 2(ade f) ◦ e
= −2e ◦ a− 2a ◦ e+ 2e ◦ a+ 2a ◦ e = 0.

The calculation adf (Ω) = 0 is similar, but also follows from the properties
of finite-dimensional representations of sl2(R) in Section 6.1.4 applied to ad
on E62: Since ada(Ω) = ade(Ω) = 0 it follows that Ω ∈ E62 is a highest
weight vector with weight zero, and so generates the trivial representation
of sl2(R).

Applying (9.2) and using the fact that E is generated by 1E and sl2(R) as
an algebra, this implies (as discussed just before the lemma) that Ω belongs
to the centre of E.

It remains to prove that Ω has degree two. Assume the opposite, so
that Ω ∈ E61. Since E61 = 1E ⊕ g and g has no centre, this would im-
ply that Ω = α1E for some α ∈ C. To derive a contradiction from this, we
apply the universal property of E: Any Lie algebra representation ρ of sl2(R)
on a real vector space V can be extended to an algebra representation of E.
Indeed, we may simply define ρ by ρ(1E) = I, composition as in

ρ(b1 ◦ · · · ◦ bn) = ρ(b1) · · · ρ(bn)

for b1, . . . ,bn ∈ g and n ∈ N, and linear extension. For this, note that the
ideal appearing in Definition 9.1 is sent to 0 due to the definition of a Lie
algebra homomorphism (see (6.7)).
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9.1 The Universal Enveloping Algebra and Smooth Vectors 393

We first apply this universal property to the trivial representation ρ on C.
Here ρ(b) = 0 for all b ∈ g, which implies that ρ(Ω) = ρ(1E) = 1. Hence we
see that α = 1.

Next we apply the universal property to the standard representation ρ
on V = C2 and the vector

v =

(
1
0

)
.

In this case
ρ(Ω)v = v + a2v + d2v − k2v,

where a2 = I, d2 = I, k2 = −I are just the matrix squares. This
gives ρ(Ω)v = 4v and hence with α = 4 a contradiction to the previous
calculation. It follows that the central element Ω ∈ E62 is not a multiple
of 1E, does not belong to E61, and hence has degree two as claimed. �

The reader who hopes to find more central elements in E6d for larger
values of d ∈ N, is invited to solve the following exercise.

Essential Exercise 9.3. Let g = sl2(R), and assume the Poincaré–Birkhoff–
Witt Theorem for its universal enveloping algebra.
(a) For every d ∈ N, calculate the weight of e◦d ∈ E6d. Show that all other
eigenvectors of E6d have smaller weight. Conclude that E6d contains an irre-
ducible invariant subspace V2d+1 of dimension (2d+1) that is not contained
in E6d−1.
(b) Calculate the dimension of E63 and E64, analyze the representation ap-
pearing, and show that the centre of E intersected with E64 is the linear hull
of 1, Ω,Ω◦2.
(c) Repeat (b) for all E6d with d ∈ N to see that the centre of E is the linear
hull of 1E and Ω◦n for n ∈ N.

9.1.3 Higher-order Differential Operators

We return to the general case and now show, as promised, that E can be
thought of as the algebra of differential operators arising by composition
from g.

Proposition 9.4 (Differential operators coming from E). Let G be a
Lie group with Lie algebra g and let π be a unitary representation of G. Then
the representation of g via π∂ on smooth vectors extends to a representation
of the universal enveloping algebra E of g on smooth vectors in such a way
that

π∂(b1 ◦ · · · ◦ bn) = π∂(b1) · · ·π∂(bn) (9.4)

for all n ∈ N and b1, . . . ,bn ∈ g. Furthermore,

πgπ∂(e)πg−1 = π∂
(
Adg(e)

)
(9.5)
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394 9 Unitary Representations of SL(2)

for all e ∈ E and g ∈ G.

Proof. Let v ∈ Hπ be smooth. Recall that by Lemma 7.3 the vec-
tor π∂(b)v depends linearly on b ∈ g. This extends to multi-linear dependence
of π∂(b1) · · ·π∂(bn)v on b1, . . . ,bn ∈ g. Therefore π∂ extends from g to the
algebra of formal multi-linear non-commuting products of elements of g as
appearing in Definition 9.1.

However, to see that π∂ extends to E we have to show that π∂ sends the
ideal appearing in Definition 9.1 to zero, or equivalently that

π∂
(
[a,b]

)
v =

(
π∂(a)π∂(b) − π∂(b)π∂(a)

)
v (9.6)

for all a,b ∈ g and all smooth v ∈ Hπ. To see this, we fix a vector w ∈ Hπ
and look at the matrix coefficient ϕ = ϕπw,v. Let us use left-translation by
elements of G to define a vector field λ∂(m) on G for every m ∈ g, as in
Proposition 7.7. Smoothness of v and Lemma 7.18 show that

λ∂(m)ϕ(g) =
d

dt

∣∣∣∣
t=0

ϕπw,v
(
exp(−tm)g

)
=

d

dt

∣∣∣∣
t=0

〈
πexp(−tm)πgw, v

〉

=
d

dt

∣∣∣∣
t=0

〈
πgw, πexp(tm)v

〉

=
〈
πgw, π∂(m)v

〉
= ϕπw,π∂(m)v(g)

exists for all m ∈ g and g ∈ G, which, when iterated, shows that ϕ ∈ C∞(G).
However, for smooth functions on G, the formula

λ∂([a,b])ϕ = λ∂(a)λ∂(b)ϕ− λ∂(b)λ∂(a)ϕ (9.7)

is the definition of the Lie bracket for general Lie groups (see Exercise 9.5).
At g = e, together with the above, this becomes

〈
w, π∂

(
[a,b]

)
v
〉
= λ∂([a,b])ϕ

π
w,v(e)

=
(
λ∂(a)λ∂(b)ϕ

π
w,v − λ∂(b)λ∂(a)ϕπw,v

)
(e)

=
(
λ∂(a)ϕ

π
w,π∂ (b)v

− λ∂(b)ϕπw,π∂(a)v
)
(e)

= 〈w, π∂(a)π∂(b)v〉 − 〈w, π∂(b)π∂(a)v〉 .

As this holds for all w ∈ Hπ , we obtain (9.6).
For g ∈ G and e ∈ g, the identity in (9.5) is simply the chain rule in

Proposition 7.6. Moreover, if e = a1 ◦ a2 ◦ · · · ◦ an ∈ E then we also have

πgπ∂(e)πg−1 = πgπ∂(a1)π∂(a2) · · ·π∂(an)πg−1

= πgπ∂(a1)πg−1πgπ∂(a2)πg−1 · · ·πgπ∂(an)πg−1

= π∂
(
Adg(a1)

)
π∂
(
Adg(a2)

)
· · ·π∂

(
Adg(an)

)

= π∂
(
Adg(a1) ◦ · · · ◦Adg(an)

)
= π∂

(
Adg(e)

)
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9.1 The Universal Enveloping Algebra and Smooth Vectors 395

which, together with linearity, proves (9.5) for e ∈ E. �

Essential Exercise 9.5 (Lie brackets for linear groups). Prove (9.7) for
closed linear groups, where the Lie bracket is defined by (6.1) using matrix
products.

Corollary 9.6 (Adjoint representation). Let G be a Lie group with Lie
algebra g and universal enveloping algebra E. Then there exists a linear anti-
homomorphism

∗ : E −→ E

satisfying a∗ = −a and (e◦f)∗ = f∗◦e∗ for all a ∈ g, and e, f ∈ E. Moreover,
we have

〈π∂(e)u, v〉 = 〈u, π∂(e∗)v〉
for all e ∈ E whenever π is a unitary representation of G and u, v ∈ Hπ are
smooth.

We will refer to ∗ on E as the formal adjoint.

Proof of Corollary 9.6. We define ∗ : g ∋ a 7→ −a ∈ g and extend ∗ to
a linear map from E to E by requiring

(
e1 ◦ e2

)∗
= e∗2 ◦ e∗1 (9.8)

for all e1, e2 ∈ E.
To see that ∗ is well-defined, we verify that the relations appearing in

Definition 9.5 are preserved. For a,b ∈ g we have a∗ = −a, b∗ = −b, and
that [a,b] ∈ g satisfies [a,b]∗ = −[a,b]. Together with (9.8), we obtain that

(
a ◦ b− b ◦ a− [a,b]

)∗
= (−b) ◦ (−a)− (−a) ◦ (−b) + [a,b]

= b ◦ a− a ◦ b− [b, a]

indeed is once more in the ideal appearing in the definition of E.
Now let u, v ∈ Hπ be smooth and a ∈ g. Then

〈π∂(a)u, v〉 = lim
t→0

〈
1
t

(
πexp(ta)u− u

)
, v
〉

= lim
t→0

1
t

(〈
u, πexp(−ta)v

〉
− 〈u, v〉

)

= lim
t→0

〈
u, 1t

(
πexp(−ta)v − v

)〉

= 〈u,−π∂(a)v〉 = 〈u, π∂(a∗)v〉 .

Moreover, if b ∈ g then

〈π∂(a ◦ b)u, v〉=〈π∂(b)u, π∂(a∗)v〉=〈u, π∂(b∗ ◦ a∗)v〉=
〈
u, π∂

(
(a ◦ b)∗

)
v
〉
.

The corollary follows by iterating this, and combining it with sesqui-linearity
of the inner product. �
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9.1.4 Central Elements of the Universal Enveloping Algebra

We have seen in Section 9.1.2 that the universal enveloping algebra E of sl2(R)
has a central element, to which we will apply the following general results.

Essential Exercise 9.7. Let G be a connected closed linear group with Lie
algebra g and universal enveloping algebra E. Suppose that Ω ∈ E is central
in the sense that a ◦ Ω = Ω ◦ a for all a ∈ g (or, equivalently, a ∈ E). Show
that Adg(Ω) = Ω for all g ∈ G.

Proposition 9.8 (Operators coming from the centre of E). Let G be
a closed linear group with Lie algebra g, and let Ω be a central element of
the universal enveloping algebra E of g satisfying Adg(Ω) = Ω for all g ∈ G.
Then, for any unitary representation π of G, the closure of π∂(Ω) (defined
on smooth vectors) is a well-defined closed equivariant operator. If Ω∗ = Ω,
then the closure is a self-adjoint operator. If π is irreducible, then the closure
is multiplication by a scalar αΩ,π ∈ C (respectively αΩ,π ∈ R if Ω∗ = Ω also).

Proof. Let Ω ∈ E be central and let π be a unitary representation as in
the proposition. We define Tπ as the closure of π∂(Ω) acting on smooth
vectors. More formally, we have that v ∈ DTπ

belongs to the domain of Tπ,
and Tπv = w is the image, if there exists a sequence (vn) in Hπ of smooth
vectors with (

vn, π∂(Ω)vn
)
∈ Graph

(
π∂(Ω)

)

converging to (v, w) as n → ∞. To see that this defines a well-defined oper-
ator, we need to show that

(v, w) = lim
n→∞

(
vn, π∂(Ω)vn

)
∈ Graph

(
π∂(Ω)

)

with v = 0 implies that w = 0. To see this, suppose u ∈ Hπ is smooth, then

〈w, u〉 = lim
n→∞

〈π∂(Ω)vn, u〉 = lim
n→∞

〈vn, π∂(Ω∗)u〉 ,

where we applied Corollary 9.6. Since limn→∞ vn = 0 by assumption, we
obtain 〈w, u〉 = 0 for all smooth u ∈ Hπ. Since smooth vectors are dense
by Proposition 7.7, it follows that w = 0. Hence Tπ is a well-defined closed
operator.

Suppose now that v ∈ DTπ
so that, by definition,

(v, Tπv) = lim
n→∞

(vn, π∂(Ω)vn) ∈ Graph(Tπ),

and fix some g ∈ G. Then

πgπ∂(Ω)vn = π∂
(
Adg(Ω)︸ ︷︷ ︸

=Ω

)
πgv = π∂(Ω)πgvn
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by Corollary 9.6 and our assumptions on Ω. Now vn → v and π∂(Ω)vn → Tπv
as n→∞, so πgvn → πgv and

π∂(Ω)πgvn = πgπ∂(Ω)vn −→ πgTπv

as n→∞. Therefore

(
πgv, πgTπv

)
= lim

n→∞

(
πgvn, π∂(Ω)πgvn

)
,

which shows that Tππgv = πgTπv for all g ∈ G and v ∈ DTπ
. In other

words, Tπ is a well-defined closed equivariant operator.
We note that if π is irreducible then Schur’s lemma in the form of Corol-

lary 1.38 implies that Tπ is simply multiplication by some απ,Ω ∈ C. If, in
addition, Ω∗ = Ω and v ∈ Hπ is a smooth unit vector, then

απ,Ω = απ,Ω 〈v, v〉 = 〈π∂(Ω)v, v〉 = 〈v, π∂(Ω∗)v〉 = απ,Ω 〈v, v〉 = απ,Ω

shows that απ,Ω ∈ R. We note that this case suffices (for instance) for the
classification of irreducible unitary representations of SL2(R) in the next
section.

For completeness we now drop the assumption of irreducibility but still
suppose that Ω∗ = Ω , and will show that Tπ is in this case a closed self-
adjoint operator. For this we define the operator

B = P1PGraph(Tπ)
ı1,

where
ı1 : Hπ ∋ v 7−→ (v, 0) ∈ H2

π

is the embedding of Hπ into the first factor, PGraph(Tπ)
is the orthogonal

projection onto the closed subspace Graph(Tπ) ⊆ H2
π and

P1 : H2
π ∋ (v1, v2) 7−→ v1 ∈ Hπ

is the projection onto the first factor.
Since the adjoint of ı1 is P1, it follows that B : Hπ → Hπ is self-adjoint.

Note that if PGraph(Tπ)
(v, 0) = (ṽ, Tπṽ) for some v ∈ Hπ, then Bv = ṽ ∈ DTπ

.

From this and (ṽ, Tπ ṽ)− (v, 0) ∈ Graph(Tπ)
⊥, it follows that

〈Bv, v〉 = 〈ṽ, v〉 = 〈(ṽ, Tπṽ), (v, 0)〉 = 〈(ṽ, Tπ ṽ), (ṽ, Tπṽ)〉 = ‖(ṽ, Tπṽ)‖2H2
π

belongs to [0, ‖v‖2]. Since B is self-adjoint, this proves that the spectrum
of B is contained in [0, 1]. Moreover, suppose now that Bv = ṽ = 0. Recall-
ing that by definition (ṽ, Tπṽ) = (0, 0) is the orthogonal projection of (v, 0)
onto Graph(Tπ), density of the domain of DTπ

⊇ Dπ∂(Ω) now forces v = 0.
This implies that B is injective.
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Recall that Tπ is equivariant by the first part of the proof. Hence Graph(Tπ)
is invariant, and B is also equivariant. We use the measurable functional cal-
culus for B to define

Vn =
(
1( 1

n+1 ,
1
n
]

)
FC
Hπ.

Hence
Hπ =

(
1(0,1]

)
FC
Hπ =

⊕

n∈N

Vn (9.9)

is a decomposition into closed invariant subspaces. Indeed, the measurable
functional calculus also shows that all operators that commute with B (for
example, πg for any g ∈ G) also commute with any operators constructed
by the measurable functional calculus. Since the spectrum of B is contained
in [0, 1], but the kernel of B is trivial, this gives (9.9).

Let πn = π|Vn . Then B|Vn: Vn → Vn has a bounded inverse defined on all
of Vn, which shows that for any ṽ ∈ Vn we have that

(ṽ, Tπ ṽ) = PGraph(Tπ)
(B−1ṽ, 0) ∈ Graph(Tπ)

and
‖(ṽ, Tπ ṽ)‖H2

π
6 ‖B−1ṽ‖ 6 (n+ 1)ṽ. (9.10)

Therefore, Vn ⊆ DTπ
for all n ∈ N.

Let v =
∑
n∈N vn ∈ Hπ be smooth with vn = PVnv ∈ Vn for all n ∈ N,

where PVn: Hπ → Vn is the (equivariant) orthogonal projection. Then the
definition of smoothness implies that vn is smooth for πn for all n ∈ N.
Moreover, for every n ∈ N we have that vn ∈ Vn is smooth for πn if and only
if vn is smooth for π. Using the definition

Graph(Tπ) = Graph
(
π∂(Ω)

)
,

this implies that Tπ|Vn = Tπn . Using (9.10), Ω∗ = Ω, and Corollary 9.6, we
obtain that Tπn is a bounded self-adjoint operator.

We now define the subspace

D=

{ ∞∑

n=1

vn

∣∣∣∣∣ vn ∈ Vn for n ∈ N,
∞∑

n=1

‖vn‖2 <∞, and
∞∑

n=1

‖Tπnvn‖
2 <∞

}
.

For
∑∞

n=1 vn ∈ D and any N ∈ N we have
∑N

n=1 vn ∈ DTπ
and

(
N∑

n=1

vn,
N∑

n=1

Tπnvn

)
∈ Graph(Tπ).

Letting N → ∞, and using the fact that Graph(Tπ) is closed, we obtain
that D ⊆ DTπ

.
Assume now that, on the other hand, v ∈ Graph(Tπ). We may write
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v =
∞∑

n=1

vn

for some vn ∈ Vn for n ∈ N, with
∑∞

n=1 ‖vn‖2 < ∞. Projecting (v, Tπv)
onto Vn ⊕ Vn ⊆ Hπ ⊕Hπ and noting again that the projection of a smooth
vector in Hπ to Vn is a smooth vector in Vn, it follows that

Tπv =
∞∑

n=1

Tπnvn

and hence
∑∞

n=1 ‖Tπnvn‖2 <∞. This shows that D = DTπ
. Since the opera-

tor Tπn: Vn → Vn are bounded and self-adjoint, it is now a standard exercise
(see [24, Ch. 3] and Exercise 9.9) to show that Tπ is a closed self-adjoint
operator. �

Exercise 9.9. Let Hn be a Hilbert space and Tn : Hn → Hn a self-adjoint bounded
operator for all n ∈ N. Then

T

(
∞∑

n=1

vn

)
=

∞∑

n=1

Tnvn

for all

∞∑

n=1

vn ∈
⊕

n>1

Hn with

∞∑

n=1

‖Tnvn‖2 <∞ defines a self-adjoint operator.

9.1.5 Complexification of the Universal Enveloping Algebra

For some of our discussions, the following extension of Definition 9.1 will be
important.

Definition 9.10 (The complexification EC). Let g be a Lie algebra with
universal enveloping algebra E. We define the complexification of E by

EC = E⊗RC.

For a1 + ib1, a2 + ib2 ∈ EC with a1,b1, a2,b2 ∈ E and g ∈ G, we also define
multiplication by

(a1 + ib1) ◦ (a2 + ib2) = a1 ◦ a2 − b1 ◦ b2 + i(a1 ◦ b2 + b1 ◦ a2),

the adjoint operator by

Adg(a1 + ib1) = Adg(a1) + iAdg(b2),

conjugation by
a1 + ib1 = a1 − ib1,
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400 9 Unitary Representations of SL(2)

and the formal adjoint by (a1 + ib1)
∗ = a∗1 − ib∗

1.

We verify that multiplication is actually bilinear over C on EC. To see this,
note first that multiplication is clearly linear over R. Moreover,

(
i(a1 + ib1)

)
◦ (a2 + ib2) = (−b1 + ia1) ◦ (a2 + ib2)

= −b1 ◦ a2 − a1 ◦ b2 + i(−b1 ◦ b2 + a1 ◦ a2)
= i
(
a1 ◦ a2 − b1 ◦ b2 + i(a1 ◦ b2 + b1 ◦ a2)

)

= i
(
(a1 + ib1) ◦ (a2 + ib2)

)
.

Together with linearity over R in the first argument, linearity over C in the
first argument follows. The proof the second argument is identical. Finally,
the proof of conjugate-linearity of conjugation and the formal adjoint on EC

are similar.

Proposition 9.11 (Differentials operators coming from EC). Let G be
a Lie group with Lie algebra g, and let π be a unitary representation of G.
Then the representation of g via π∂ on smooth vectors extends to a complex
representation of the complexification EC of the universal enveloping algebra E

of g on smooth vectors in Hπ satisfying the properties of Proposition 9.4 and
Corollary 9.6.

Proof. For a,b ∈ E, we define π∂(a + ib) = π∂(a) + iπ∂(b). This gives
an extension of the above representation to EC, satisfying linearity over C.
Moreover, if a1, a2,b1,b2 ∈ E, then, by definition of ◦ on EC,

π∂
(
(a1 + ib1) ◦ (a2 + ib2)

)
= π∂

(
a1 ◦ a2 − b1 ◦ b2

)
+ iπ∂

(
a1 ◦ b2 + b1 ◦ a2

)

= π∂(a1)π∂(a2)− π∂(b1)π∂(b2)

+ i
(
π∂(a1)π∂(b2)− π∂(b1)π∂(a2)

)

= π∂(a1 + ib1)π∂(a2 + ib2),

so (9.4) also holds for EC.
The extension of (9.5) follows simply by linearity of both sides over C.

Finally, the complex version of Corollary 9.6 follows from its real counterpart
and sesqui-linearity of the inner product on Hπ. �

To conclude, we wish to emphasize that the operators π∂(e) for

e ∈ gC = g⊗R C ⊆ EC

(or e ∈ EC) do not in general directly correspond to first (or higher order)
partial derivatives, but instead to complex linear combinations of these.

We also note that the complexification EC of the universal enveloping
algebra of sl2(R) reveals that our definition of Ω as in Lemma 9.2 formally
matches the definition of the Casimir operator in Corollary 7.22. Indeed,
there we used the basis vectors
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b1 =

(
i 0
0 −i

)
= ia,b2 =

(
0 i
i 0

)
= id,b3 =

(
0 −1
1 0

)
= k

of su2(R) ⊆ sl2(C) = sl2(R)⊗R C, and hence

Ω = 1E + a◦2 + d◦2 − k◦2 = 1E − b◦2
1 − b◦2

2 − b◦2
3

within the complex universal enveloping algebra EC.

9.2 Raising, Lowering, and the Dual of SL2(R)

We now specialize and extend the material from the previous section in the

case of SL2(R). Our final goal of the section is a description of ŜL2(R), al-
though the concrete construction of the principal and complementary series
representations will be postponed to later sections.

9.2.1 The Casimir Operator

It follows from the discussion in Section 9.1.2 that Proposition 9.8 applies
to unitary representations of SL2(R) as in Corollary 9.12 below (see also
Exercise 9.7). Indeed, the Casimir element Ω = 1E+a◦2+d◦2−k◦2 of sl2(R)
satisfies Ω∗ = Ω by its definition in Lemma 9.2.

Corollary 9.12 (Casimir operator). Let π be a unitary representation
of SL2(R) and let Ω ∈ E be the Casimir element in the centre of the en-
veloping algebra E of sl2(R). Then the closure Tπ of π∂(Ω) is a self-adjoint
equivariant operator. If π is in addition irreducible, then Tπ = απI for
some απ ∈ R.

9.2.2 The Raising and Lowering Operators

We define† the elements r+ = 1
2 (a − id) and r− = 1

2 (a + id) of sl2(C), and
note that r+ = r−. We calculate

adk(a) = [−e+ f , a] = [a, e]− [a, f ] = 2e+ 2f = 2d

and
adk(d) = [−e+ f , e+ f ] = −[e, f ] + [f , e] = −2[e, f ] = −2a,

† It is an unfortunate coincidence that d ∈ sl2(R) multiplied by i ∈ C, giving id, is
notationally close to a familiar ‘identity’ notation, id.

Page: 401 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



402 9 Unitary Representations of SL(2)

which gives
adk(r

+) = d− i(−a) = i(a− id) = 2ir+

and, by conjugation,
adk(r

−) = −2ir−

also. With Adexp(θk) = exp(adθk) for θ ∈ R, this also implies

{
Adkθ (r

+) = e2iθr+

Adkθ (r
−) = e−2iθr−

(9.11)

for all kθ ∈ K.
For a unitary representation π of SL2(R), we will call π∂(r

+) the raising
operator and π∂(r

−) the lowering operator.

Proposition 9.13 (Raising and lowering operators). Let π be a uni-
tary representation of SL2(R). For any smooth K-eigenvector vn ∈ Hπ of
weight n ∈ Z, the vector π∂(r

±)vn has weight n± 2 (but either or both might
be zero).

Proof. Let kθ ∈ K and let vn ∈ Hπ be a smooth vector of K-weight n.
Then the chain rule in Proposition 9.4 and (9.11) imply that

πkθπ∂(r
+)vn = π∂

(
Adkθ (r

+)
)
πkθvn

= π∂
(
e2iθr+

)
einθvn

= ei(n+2)θπ∂(r
+)vn,

and the calculation for π∂(r
−)vn is identical. �

We also wish to relate the elements r± to the Casimir operator in
Lemma 9.2. By definition of r+ and r−, we have

a = r+ + r−,

d = i(r+ − r−),

and

[r+, r−] = 1
4 [a− id, a+ id]

= 1
4 (i[a,d]− i[d, a])

= i
2 [a,d] = −ik (9.12)

since

[a,d] = [a, e+ f ] = 2e− 2f = −2k.

Using the definition of Ω in Lemma 9.2, we now obtain
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Ω = 1E + (r+ + r−) ◦ (r+ + r−)− (r+ − r−) ◦ (r+ − r−)− k◦2

= 1E + (r+ ◦ r+ + r+ ◦ r− + r− ◦ r+ + r− ◦ r−)
− (r+ ◦ r+ − r+ ◦ r− − r− ◦ r+ + r− ◦ r−)− k◦2

= 1E + 2r+ ◦ r− + 2r− ◦ r+ − k◦2.

We can also write this in the form

Ω = 1E + 4r+ ◦ r− − 2[r+, r−]− k◦2.

Using (9.12), this gives

Ω = 4r+ ◦ r− + 1E + 2ik− k◦2
︸ ︷︷ ︸

(1E+ik)◦2

.

Therefore

Ω = 4r+ ◦ r− + (1E + ik)◦2 = 4r− ◦ r+ + (1E − ik)◦2, (9.13)

where the second formula follows from the first by conjugation.

Corollary 9.14 (Norm of raised and lowered vectors). Let π be a uni-
tary representation of SL2(R) so that the closure of π∂(Ω) is multiplication
by απ ∈ R. Then for any smooth K-eigenvector vn ∈ Hπ of weight n ∈ Z, we
have {

‖π∂(r+)vn‖2 = 1
4

(
(n+ 1)2 − απ

)
‖vn‖2

‖π∂(r−)vn‖2 = 1
4

(
(n− 1)2 − απ

)
‖vn‖2.

To make these two formulas more memorable, we note that in both
cases n± 1 is precisely the weight that lies in between the weight n of vn and
the weight n± 2 of the vector π∂(r

±)vn.

Proof of Corollary 9.14. We note that (r+)∗ = −r+ = −r− by Corol-
lary 9.6 and Definition 9.10. Using Proposition 9.11 and the identity (9.13)
in the form

r− ◦ r+ = 1
4

(
Ω − (1E − ik)◦2

)

gives

‖π∂(r+)vn‖2 =
〈
π∂(r

+)vn, π∂(r
+)vn

〉

= −
〈
π∂(r

− ◦ r+)vv, vn
〉

= − 1
4

〈
π∂(Ω − (1E − ik)◦2)vn, vn

〉
.

Since
π∂(1E − ik)vn = vn − iπ∂(k)vn = vn + nvn = (n+ 1)vn,

we obtain
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‖π∂(r+)vn‖2 = − 1
4

(
απ − (n+ 1)2

)
‖vn‖2.

Similarly,

‖π∂(r−)vn‖2 =
〈
π∂(r

−)vn, π∂(r
−)vn

〉

= −
〈
π∂(r

+ ◦ r−)vv, vn
〉

= − 1
4

〈
π∂(Ω − (1E + ik)◦2)vn, vn

〉

= − 1
4

(
απ − (n− 1)2

)
‖vn‖2,

completing the proof. �

We note that the raising and lowering operators will be useful for proving
irreducibility of the principal and complementary series representations in
the next sections. In fact we already used these operators implicitly in the
proofs of irreducibility of the discrete and mock discrete series representations
of SL2(R) ∼= SU1,1(R) in Section 8.4. More importantly, we will use the
more abstract framework above involving the Casimir operator to classify all
irreducible unitary representations of SL2(R). In fact Corollary 9.14 already
implies important restrictions on the Casimir eigenvalue απ: If vn as in the
corollary is non-zero, then we must have

απ 6 (n± 1)2. (9.14)

Applying our above discussion to the irreducible unitary representation of
Section 8.4, we obtain their Casimir eigenvalue.

Corollary 9.15 (Casimir for discrete and mock discrete series). For
every integer n > 2, we have

αδn,+ = αδn,− = (n− 1)2

for the discrete series representations δn,±. Similarly, we have

αδ1,+ = αδ1,− = 0

for the two mock discrete series representations δ1,±.

Proof. Let n > 2 and write e0 for the constant function in An(D) which
has K-weight n by Lemma 8.22. The proof of irreducibility in Theorem 8.23
shows that e0 is smooth (see also Lemma 9.17). By Proposition 9.13 we know
that δn,+∂ (r−)e0 has weight n− 2, and by Corollary 9.14 we have

‖δn,+∂ (r−)e0‖ = 1
4

(
(n− 1)2 − αδn,+

)
‖e0‖.

However, by Theorem 8.23, there is no vector of weight n−2. Hence δn,+∂ (r−)e0
must be trivial, and so

αδn,+ = (n− 1)2,

Page: 404 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



9.2 Raising, Lowering, and the Dual of SL2(R) 405

as claimed. The argument for the mock discrete series representation δ1,+

uses Theorem 8.30, but is otherwise identical.
This implies the same formulas for the contragredient representations δn,−

for n > 2 and for δ1,−. �

Exercise 9.16. Explain the last step in the proof of Corollary 9.15 more carefully.

9.2.3 Smooth K-finite Vectors

For a unitary representation π of SL2(R) and a vector v ∈ Hπ, we say that v
is K-finite if dim〈π(K)v〉 < ∞ (or, equivalently, if v is a finite sum of K-
eigenfunctions).

Because of the discussions above, the following lemma is useful for the
study of general unitary representations of SL2(R).

Lemma 9.17 (Smooth K-finite vectors). Let π be a unitary representa-
tion of SL2(R). Then the subspace of smooth K-finite vectors is dense in Hπ.
Moreover, if for some n ∈ Z the space of K-eigenvectors in Hπ of weight n
is finite-dimensional, then every K-eigenvector of weight n is smooth.

Proof. Let v ∈ Hπ and let ψ ∈ C∞
c (SL2(R)). By Proposition 7.7 we know

that π∗(ψ)v is a smooth vector. Now let n ∈ Z and let χn(kθ) = einθ for kθ
in K be the nth character on K. Recall that

(
π|K

)
∗
(
χn
)
w is a K-eigenvector

of weight n for all w ∈ Hπ. Combining these two with w = π∗(ψ)v, we obtain
using Fubini’s theorem and the substitution h = kθg that

(
π|K

)
∗
(
χn
)
π∗(ψ)v =

∫

K

χn(kθ)πkθ

∫

G

ψ(g)πgv dm(g) dmK(kθ)

=

∫

K

∫

G

χn(kθ)ψ(g)πkθgv︸ ︷︷ ︸
=πhv

dm(g) dmK(kθ)

=

∫

G

∫

K

χn(kθ)ψ(k
−1
θ h) dmK(kθ))

︸ ︷︷ ︸
ψn(h)

πh(v) dm(h)

where

ψn(h) =

∫

K

χn(kθ)ψ(k
−1
θ h) dmK(kθ)

for h ∈ SL2(R). We note that ψn has compact support, with

suppψn ⊆ K suppψ.

Moreover, ψn is also smooth, which follows for instance by considering the
derivatives
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ρ∂(m)ψn = lim
s→0

1

s

(
ρexp(m)ψn − ψn

)

for the right-regular representation and proving that

ρδ(m)ψn =

∫

K

χn(kθ)(ρ∂(m)ψ)(k−1
θ h) dmK(kθ)

for all m ∈ sl2(R). Hence Proposition 7.7 shows that

(
π|K

)
∗
(
χn
)
π∗(ψ)v = π∗(ψn)v

is a smooth vector. The first claim in the lemma now follows from

π∗(ψ)v =
∑

n∈Z

(
π|K

)
∗
(
χn
)
π∗(ψ)v = lim

N→∞

N∑

n=−N
π∗(ψn)v.

Fix some n ∈ Z and suppose now that

Vn = {v ∈ Hπ | v has K-weight n}

is finite-dimensional. Using Proposition 1.49 for a smooth approximate iden-
tity and each vector in a basis of Vn, we can find some ψ ∈ C∞

c (G) such
that π∗(ψ)v is close to v for each of the basis vectors v of Vn. Since (π|K)∗(χn)
is the orthogonal projection onto Vn, it follows that

π∗(ψn)|Vn : Vn −→ Vn

is as close to the identity on Vn as we desire. In particular, we may ensure
that π∗(ψn)(Vn) = Vn, and the final claim of the lemma follows from the first
part of the proof. �

9.2.4 A Differential Equation for Matrix Coefficients

We continue our journey towards the description of ŜL2(R) by examining
matrix coefficients of K-eigenvectors in irreducible unitary representations
of SL2(R). In fact we now show how the Casimir eigenvalue απ for some

unitary representation π ∈ ŜL2(R), and the mere existence of a smooth unit
vector v ∈ Hπ of K-weight n, determines its matrix coefficient ϕπv .

Lemma 9.18 (The differential equation for the matrix coefficient).
Let π be a unitary representation of the group SL2(R). Suppose that v ∈ Hπ
is a smooth K-eigenvector with weight n ∈ Z and Casimir eigenvalue α ∈ R.
Then

ϕπv
(
kθatkψ

)
= ein(θ+ψ)ϕπv (at)
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for all kθatkψ ∈ SL2(R) and the smooth function φ : R→ C defined by

φ(t) = ϕπv (at)

for t ∈ R satisfies the second order linear differential equation

φ′′(t) + 2 cosh(2t)
sinh(2t)φ

′(t) +
(
1− α+ n2

cosh2 t

)
φ(t) = 0

of degree two for all t ∈ Rr{0}. Moreover, φ is real-valued and satisfies

φ(t) = φ(−t)

for all t ∈ R.

The proofs of Lemma 9.18 and the following Proposition 9.19 are rather
elementary, but parts of them may require good motivation by the reader.
To gain this motivation, the reader may at first skip the two proofs in order

to see how these results are used to help us describe ŜL2(R) in Section 9.2.5.

Proof of Lemma 9.18. The first part of the lemma follows simply because v
is a K-eigenvector of weight n. Indeed, we have

ϕπv
(
kθatkψ

)
=
〈
πatπkψv, πk−θv

〉
=
〈
πat(e

inψv), e−inθv
〉
= ein(θ+ψ)ϕπv (at)

for all kθatkψ ∈ SL2(R). We note that

kπ/2atk−π/2 =

(
0 −1
1 0

)(
et 0
0 e−t

)(
0 1
−1 0

)
= a−t,

for all t ∈ R. For φ = ϕπv this implies

φ(−t) = ϕπv (a−t) = ϕπv
(
kπ/2atk−π/2

)
= ϕπv (at) = φ(t)

for all t ∈ R by Lemma 9.18. In other words, φ is an even function on R.
Moreover,

φ(t) = 〈πatv, v〉 = 〈v, πatv〉 = 〈πa−tv, v〉 = φ(−t) = φ(t)

for all t ∈ R, which also shows that φ only takes values in R.
To obtain the differential equation for φ(t) = ϕπv (at) for t ∈ Rr{0},

we will combine the information that v has K-weight n ∈ Z, the assump-
tion π∂(Ω)v = αv, and the formula

Ω = 1E + a◦2 + 2e ◦ f + 2f ◦ e

in Lemma 9.2. For this, recall that v having K-weight n implies π∂(k)v = inv
and π∂(k

◦2)v = −n2v.
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We start by calculating how to express φ′ and φ′′ as matrix coefficients.
Indeed,

φ′(t) = lim
h→0

1

h

(
φ(t + h)− φ(t)

)

= lim
h→0

1

h

〈
πat(πahv − v), v

〉
=
〈
πatπ∂(a)v, v

〉

and, similarly,

φ′′(t) = lim
h→0

1

h

〈
πat
(
πahπ∂(a)v − π∂(a)v

)
, v
〉
=
〈
πatπ∂(a

◦2)v, v
〉

for all t ∈ R.
We note that a◦2 is one of the terms in Ω, but that we do not yet have

an interpretation of the term 2e ◦ f + 2f ◦ e in terms of φ. To obtain such
an interpretation, we use the consequence of v having K-weight n mentioned
above to express −n2φ in three different ways. Indeed, we have

−n2φ(t) = −n2
〈
πatv, v

〉
=
〈
πat(−n

2v), v
〉

=
〈
πatπ∂(k

◦2)v, v
〉
;

−n2φ(t) = −
〈
πat inv, inv

〉
= −

〈
πatπ∂(k)v, π∂(k)v

〉
=
〈
π∂(k)πatπ∂(k)v, v

〉

=
〈
πatπ∂

(
Ada−t(k) ◦ k

)
v, v
〉
;

−n2φ(t) =
〈
πatv,−n

2v
〉
=
〈
πatv, π∂(k

◦2)v
〉
=
〈
π∂(k

◦2)πatv, v
〉

=
〈
πatπ∂

((
Ada−t(k)

)◦2)
v, v
〉

for all t ∈ R. We recall that k = −e+ f and note that

Ada−t(k) = −e
−2te+ e2tf

for all t ∈ R. We put these two formulas into the three expressions above,
expand the resulting parentheses, and obtain from this that

−n2φ(t) =
〈
πatπ∂

(
e◦2 − e ◦ f − f ◦ e+ f◦2

)
v, v
〉

=
〈
πatπ∂

(
e−2te◦2 − e−2te ◦ f − e2tf ◦ e+ e2tf◦2

)
v, v
〉

=
〈
πatπ∂

(
e−4te◦2 − e ◦ f − f ◦ e+ e4tf◦2

)
v, v
〉

for all t ∈ R.
As our aim is to find a formula involving 2e ◦ f + 2f ◦ e, we wish to

rid ourselves of all expressions involving the two terms e◦2 and f◦2. As we
have three formulas for −n2φ, this is an exercise in linear algebra. In fact,
multiplying the first line by 1, the second by −

(
e2t + e−2t

)
, the third by 1,

and taking the sum gives
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−n2φ(t)
(
1−

(
e2t + e−2t

)
+ 1
)
= n2φ(t)

(
e2t − 2 + e−2t

)
= 4n2 sinh2 t φ(t)

on the left-hand side.
On the right-hand side, we use the similarities between the three formulas

and obtain the expression

〈
πatπ∂(mt)v, v

〉
,

where mt is the element of E62 defined by

mt =
(
e◦2 − e ◦ f − f ◦ e+ f◦2

)

−
(
e2t + e−2t

)(
e−2te◦2 − e−2te ◦ f − e2tf ◦ e+ e2tf◦2

)

+
(
e−4te◦2 − e ◦ f − f ◦ e+ e4tf◦2

)
.

Our choice of the three coefficients 1, −
(
e2t + e−2t

)
, and 1 was made so that

the coefficient in front of e◦2 is

1−
(
e2t + e−2t

)
e−2t + e−4t = 1− 1− e−4t + e−4t = 0

and the coefficient in front of f◦2 is

1−
(
e2t + e−2t

)
e2t + e4t = 1− e4t − 1 + e4t = 0

also. Therefore,

mt =
(
−e ◦ f−f ◦ e

)
−
(
e2t+e−2t

)(
−e−2te ◦ f−e2tf ◦ e

)
+
(
−e ◦ f−f ◦ e

)

=
(
−1 + 1 + e−4t − 1

)
e ◦ f +

(
−1 + e4t + 1− 1

)
f ◦ e

=
(
e−4t − 1

)
e ◦ f +

(
e4t − 1

)
f ◦ e.

Using
e4t − 1 = e2t

(
e2t − e−2t

)
= 2e2t sinh(2t),

e−4t − 1 = e−2t
(
e2t − e−2t

)
= −2e−2t sinh(2t),

we also have

mt = −2e−2t sinh(2t)e ◦ f + 2e2t sinh(2t)f ◦ e.

To summarize, we have shown that

4n2 sinh2 t φ(t) =
〈
πatπ∂(mt)v, v

〉

= 2 sinh(2t)
〈
πatπ∂

(
−e−2te ◦ f + e2tf ◦ e

)
v, v
〉
.

Dividing by 2 sinh(2t) = 4 sinh t cosh t, we obtain

n2 sinh t

cosh t
φ(t) =

〈
πatπ∂

(
−e−2te ◦ f + e2tf ◦ e

)
v, v
〉
.
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Next we note that for s1, s2 ∈ R, we have

s1e ◦ f + s2f ◦ e =
s1 + s2

2
(e ◦ f + f ◦ e) + s1 − s2

2
[e, f ]︸︷︷︸
=a

,

which, with the choice s1 = −e−2t and s2 = e2t, gives

n2 sinh t

cosh t
φ(t) =

〈
πatπ∂

(
e2t − e−2t

2
(e ◦ f + f ◦ e)− e2t + e−2t

2
a

)
v, v

〉

=
sinh(2t)

2

〈
πatπ∂(2e ◦ f + 2f ◦ e)v, v

〉
− cosh(2t)φ′(t).

Dividing by sinh(2t)
2 = sinh t cosh t, we also obtain

〈
πatπ∂(2e ◦ f + 2f ◦ e)v, v

〉
=

n2

cosh2 t
φ(t) + 2

cosh(2t)

sinh(2t)
φ′(t).

Using the relations π∂(Ω)v = αv and Ω = 1E + a◦2 + 2e ◦ f + 2f ◦ e, we
finally arrive at the differential equation

αφ(t) =
〈
πat(αv), v

〉

=
〈
πatπ∂(Ω)v, v

〉

= φ(t) + φ′′(t) +
〈
πatπ∂(2e ◦ f + 2f ◦ e)v, v

〉

= φ′′(t) +

(
1 +

n2

cosh2 t

)
φ(t) + 2

cosh(2t)

sinh(2t)
φ′(t),

as in the lemma. �

Proposition 9.19 (Determining the matrix coefficient). Let π be a
unitary representation of SL2(R). Suppose that v ∈ Hπ is a smooth K-
eigenvector of weight n ∈ Z and Casimir eigenvalue α ∈ R. Then the matrix
coefficient ϕπv is uniquely determined by α, n, and ‖v‖.

We would like to apply the uniqueness part of the theorem of Picard–
Lindelöf(19) to the function φ(t) = ϕπv (at) for t ∈ R introduced in Lemma 9.18.
In fact φ(0) = ‖v‖2 and φ′(0) = 0 (see Exercise 9.20) give two initial condi-
tions for the second-order differential equation satisfied by φ. Unfortunately,
applying the Picard–Lindelöf theorem is not straightforward, as the differen-
tial equation is really only defined on the domain Rr{0}.
Exercise 9.20. Show that the function φ defined in Lemma 9.18 satisfies φ′(0) = 0.

Proof of Proposition 9.19. Let π, v, α, n, and φ be as in Lemma 9.18. We
briefly discuss the structure of all real-valued solutions to the second-order
linear differential equation
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y′′ + 2 cosh(2t)
sinh(2t) y

′ +
(
1− α+ n2

cosh2 t

)
y = 0 (9.15)

for t ∈ Rr{0}. Restricting to the connected component (−∞, 0) of Rr{0}, a
corollary of the theorem of Picard–Lindelöf shows that

F = {y : (−∞, 0)→ R | y solves (9.15) for all t ∈ (−∞, 0)}

is a two-dimensional real vector space. In fact this corresponds to the inde-
pendence and sufficiency (to determine the unique solution) of the two initial
conditions y(t0) = y0 and y′(t0) = y′0 for some t0 < 0. By Lemma 9.18 we
have

yv = φ|(−∞,0) ∈ F .

We claim that F contains an element y∞ with

lim
tր0

y′∞(t) = +∞. (9.16)

Assuming the claim for now, we see that yv, y∞ ∈ F are linearly inde-
pendent, and so they form a basis for F . Suppose now that τ and w are an-
other unitary representation and vector as in Lemma 9.18 with the same K-
weight n, the same Casimir eigenvalue α, and the same norm ‖v‖ = ‖w‖.
Then

yw(t) = ϕτw(a−t)

for t ∈ (−∞, 0) defines another element of F . It follows that

yw = svyv + s∞y∞

for some sv, s∞ ∈ R. Recall that ϕπv (at) and ϕτw(at) defining yv and yw are
both even by Lemma 9.18. If s∞ 6= 0 we may use Exercise 9.20 and (9.16) to
obtain the contradiction

0 = lim
tր0
|y′w(t)| = lim

tր0
|svy′v + s∞y

′
∞| =∞.

Hence s∞ = 0, and so

‖w‖2 = lim
tր0

yw(t) = lim
tր0

svyv(t) = sv‖v‖2

shows that sv = 1, and so yw = yv.
Using Lemma 9.18, we see that the claim implies the proposition.
It remains to construct y∞ ∈ F as in the claim. We note that since the

coefficient 2 cosh 2t
sinh 2t of y′ in the differential equation (9.15) goes to infinity in

absolute value as t→∞, it is natural to expect the claim to hold. The follow-
ing elementary proof of the claim precisely relies on this property of (9.15)
and is simply an exercise in real analysis.

To bound the effect of the term involving y in (9.15), we define
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M = max
t∈[−1,0]

∣∣∣∣1− α+
n2

cosh2 t

∣∣∣∣

and choose t0 ∈ [−1, 0) so that

∣∣∣∣
cosh(2t)

sinh(2t)

∣∣∣∣ >M + 1

for all t ∈ [t0, 0). Using the existence part of the theorem of Picard–Lindelöf,
we define y∞ as the solution of (9.15) on (−∞, 0) with the initial value
conditions {

y∞(t0) = 0,

y′∞(t0) = 1.

We note that this gives

y′′∞(t0) = −2
cosh(2t0)

sinh(2t0)
> 0

by (9.15). We will show that

lim
tր0

y∞(t) =∞.

For this, we first define

B =
{
t ∈ [t0, 0) | y′∞ > y∞ > 0

}
,

so that t0 ∈ B. Moreover, since y′∞(t0) > y∞(t0) = 0, there exists some δ0
with [t0, t0 + δ0) ⊆ B and y∞(t0 + δ0) > 0. We also define

s = sup
{
t ∈ [−t0, 0) | [0, t) ⊆ B

}

and note that [t0, s) ⊆ B. Now consider the derivative of y′∞ − y∞, which is
given by

y′′∞(t)− y′∞(t) =

∣∣∣∣2
cosh(2t)

sinh(2t)

∣∣∣∣ y′∞(t)−
(
1− α+

n2

cosh2 t

)
y∞(t)− y′∞(t)

=

(∣∣∣∣2
cosh(2t)

sinh(2t)

∣∣∣∣− 1

)

︸ ︷︷ ︸
>M

y′∞(t)−
(
1− α+

n2

cosh2 t

)

︸ ︷︷ ︸
6M

y∞(t),

where the indicated estimates hold for all t ∈ [t0, 0). For t ∈ [t0, s) we obtain
from our definitions of t0 and of B that

y′′∞(t)− y′∞(t) >My′∞(t)−My∞(t) > 0.
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However, this shows that t 7→ y′∞(t) − y∞(t) is monotone non-decreasing
on [t0, s). Suppose for a moment that s < 0. Then monotonicity of y′∞ − y∞
and of y∞ on [t0, s] imply

{
y′∞(s)− y∞(s) > y′∞(t0)− y∞(t0) = 1 > 0,

y∞(s) > y∞(t0 + δ0) > 0.

However, this also implies the existence of some δ > 0 with [s, s + δ) ⊆ B
and contradicts the definition of s. Therefore we have s = 0.

Equivalently, we have shown that

y′∞(t) > y∞(t) > 0

for all t ∈ [t0, 0). With this we now estimate the growth of y′∞ on [t0, 0).
Indeed,

y′′∞(t) =

∣∣∣∣2
cosh(2t)

sinh(2t)

∣∣∣∣ y′∞(t)−
(
1− α+

n2

cosh2 t

)
y∞(t)

>

∣∣∣∣
cosh(2t)

sinh(2t)

∣∣∣∣ y′∞(t) +My′∞(t)−My∞(t)︸ ︷︷ ︸
>0

> 0

for all t ∈ [t0, 0) implies that y′∞ is monotone non-decreasing.
With y′∞(t0) = 1, this gives y′∞(t) > 1 for all t ∈ [t0, 0), which leads to

y′′∞(t) >

∣∣∣∣
cosh(2t)

sinh(2t)

∣∣∣∣ >
c

|t|

for all t ∈ [t0, 0) and some absolute constant c > 0. Therefore

lim
tր0

y′′∞(t) = lim
tր0

y′∞(t) =∞.

This proves the claim, and hence the proposition. �

9.2.5 The Unitary Dual of SL2(R)

The following corollary to Proposition 9.19 will be our main tool for the

classification of the elements of ŜL2(R).

Corollary 9.21 (Isomorphisms). Let π and τ be irreducible unitary repre-
sentations of SL2(R). Suppose that the Casimir eigenvalues απ = ατ agree,
and that there exists some n ∈ Z such that both Hπ and Hτ contain a K-
eigenvector of weight n. Then π ∼= τ .
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Proof. Let v ∈ Hπ and w ∈ Hτ be K-eigenvectors of weight n. Without
loss of generality, we may assume that ‖v‖ = ‖w‖ = 1. By Proposition 9.19
this implies φπv = φτw. However, Proposition 1.63 now shows that

Hπ = 〈v〉π ∼= 〈w〉τ = Hτ

are isomorphic as unitary representations of SL2(R). �

We are now in a position to completely describe the unitary dual of SL2(R).
Since SL2(R) has the non-trivial centre {±I}, the first distinction we can
make between irreducible unitary representations of SL2(R) is by use of the
central character as in Corollary 1.32. Since the centre of SL2(R) is given

by {±I}, we say that π ∈ ŜL2(R) is even if π−I = I and odd if π−I = −I.
The second distinction is in terms of the ‘infinitesimal character’ obtained by
applying Proposition 9.8 to all central elements of the universal enveloping
algebra E of sl2(R). Actually this centre is generated† by 1E and the Casimir
element Ω of Section 9.2.1. Hence the infinitesimal character is in our case
simply the Casimir eigenvalue απ ∈ R. The third and final distinction is in
terms of which K-weights are present in the representation π.

The following result of Bargmann [2] contains all the possibilities of these
three aspects, and introduces the final two types of irreducible unitary rep-
resentation of SL2(R); these will be studied in detail in Sections 9.3 and 9.5.

We depict ŜL2(R) geometrically in Figure 9.1, where we draw even rep-
resentations on the top half and odd ones on the bottom half. We also

present ŜL2(R) as a list in Table 9.1.

Table 9.1: The different types of irreducible unitary representations and their
main properties.

Notation Name Tempered?
Casimir

eigenvalue
K-weights

δn,±

for n > 2

discrete series
representation

✓ (n− 1)2 ±(n+ 2N0)

δ1,±
mock discrete

series representation
✓ 0 ±(1 + 2N0)

πξ,e

for ξ > 0

even principal
series representation

✓ −ξ2 2Z

πξ,o

for ξ > 0

odd principal
series representation

✓ −ξ2 1 + 2Z

γs

for s ∈ (0, 1)
complementary

series representation
✗ s2 2Z

1 trivial representation ✗ 1 {0}

† We do not have to know this (see Exercise 9.3) if we simply define the infinitesimal
character as the Casimir eigenvalue.
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Theorem 9.22 (Unitary dual of SL2(R)). Suppose that π ∈ ŜL2(R) is
even. Then one of the following four possibilities holds:

• απ = 1 and π = 1 is the trivial representation.
• απ = (n − 1)2 for some n ∈ 2N, and π = δn,± is either the holomor-
phic or the anti-holomorphic discrete series representation with terminal
weight ±n (see Section 8.4).
• απ = −ξ2 6 0 for some ξ ∈ [0,∞) and π = πξ,e is the even principal
series representation for the parameter ξ (see Section 9.3).
• απ = s2 for some s ∈ (0, 1), and π = γs is the complementary series
representation for the parameter s (see Section 9.5).

Suppose that π ∈ ŜL2(R) is odd. Then one of the following three possibilities
holds:

• απ = 0 and π = δ1,± is either the holomorphic or the anti-holomorphic
mock discrete series representations (see Section 8.4).
• απ = (n−1)2 for some n ∈ (2N+1), and π = δn,± is either the holomor-
phic or the anti-holomorphic discrete series representation with terminal
weight ±n (see Section 8.4).
• απ = −ξ2 for some ξ ∈ (0,∞) and π = πξ,o is the odd principal series
representation for the parameter ξ (see Section 9.3).

δ4,−

δ3,−

δ2,−

δ1,−

πξ,o

πξ,e

δ1,+

δ2,+

δ3,+

δ4,+

δ5,+

δ6,+γs
1

even

odd

Fig. 9.1: The graphical representation of ŜL2(R) as a subset of C (with the
representations π0,e, δ1,− , δ1,+ at the origin and both 1 and δ2,+ at 1 ∈ C) also
has the property that απ is the square of the position of π when drawn in C
(except for the artificial small gap between the even and odd representations, and
problems arising from {π0,e, δ1,+, δ1,−} and {δ2,+,1} which should be drawn at
the same point).

Proof of Theorem 9.22. In the following we let π be an irreducible uni-
tary representation of SL2(R). By Corollary 9.12, the closure of π∂(Ω) is
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multiplication by απ for some απ ∈ R. By Lemma 9.17, there also exists a
smooth K-eigenvector v ∈ Hπ with weight n ∈ Z and unit length ‖v‖ = 1.
By Corollary 9.21, we have that (n, απ) uniquely determines π up to isomor-
phism. Hence the question is really which (n, απ) ∈ Z × R are possible (in
general, and within each irreducible representation). As already explained,
Corollary 9.14 gives the constraint

απ 6 (n± 1)2; (9.17)

(see the discussion leading to (9.14), and Figure 9.2).

απ ∈ R

2 2

n ∈ Z

(n
0 −

2, α
π )

(n
0 , α
π )

(n
0 +

2, α
π )

(n
0 +

4, α
π )

Fig. 9.2: The shaded region is the union of the region defined by the two inequal-
ities απ > (n+ 1)2 and απ > (n− 1)2. By (9.17), we know that this region cannot
contain a pair (n, απ) corresponding to a non-zero K-eigenvector for some repre-

sentation π ∈ ŜL2(R). In addition, we see how Proposition 9.13 creates additional
pairs from one pair. We also note that the two parabolas have width 2 precisely
at height απ = 1.

We first go through the list of representations that we have already en-
countered.

• If π = 1G is the trivial representation on C, then v = 1 ∈ C has K-
weight n = 0 and Casimir eigenvalue 1, since π∂(Ω) = π∂(1E) = 1. By
the above, it follows that 1G is characterized by the pair (n = 0, α = 1).
• For the holomorphic discrete series representation δn,+ or the anti-
holomorphic discrete series representation δn,− with n > 2 we have, by
Theorem 8.23, that δn,± contains vectors with K-weights ±(n+2N0) and
only these. Moreover, Corollary 9.15 gives αδn,± = (n− 1)2.
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• This also holds similarly for the mock discrete series representations δ1,±

with K-weights ±(1 + 2N0) and αδ1,± = 0 (see Theorem 8.30 and Corol-
lary 9.15).

We next describe the remaining irreducible unitary representations listed in
the theorem and in Table 9.1.

• Suppose π is an irreducible unitary representation with απ < 0. Now
let vn ∈ Hπ be a smooth K-eigenvector of weight n ∈ Z. Using the
raising and lowering operators in Proposition 9.13, we can define two
other K-eigenvectors π∂(r

±)vn of K-weights n±2. By Corollary 9.14, we
have

‖π∂(r±)vn‖2 = 1
4

(
(n± 1)2 − απ

)
‖vn‖2. (9.18)

Since we assume απ < 0, it follows that (n ± 1)2 − απ > 0 and so
that π contains smooth non-zero K-eigenvalues of K-weights n ± 2. It-
erating this shows that π contains K-eigenvectors with K-weights m for
all m ∈ n+2Z. Suppose next that τ is another irreducible unitary repre-
sentation with ατ = απ. If π and τ are both even (or both odd) irreducible
representations, this, together with the first argument of the proof, im-
plies that π ∼= τ . In other words, if there is an even (or, similarly, an
odd) irreducible unitary representation π with a given απ < 0, then απ
uniquely determines π up to isomorphism. We will show in Section 9.3
that for any ξ > 0 there exists an irreducible unitary representation πξ,e

with απξ,e = −ξ2 and K-weights in 2Z, and an irreducible unitary repre-
sentation πξ,o with απξ,o = −ξ2 and K-weights in 1 + 2Z. These are the
even and odd principal series representations.
• The discussion above almost applies to the case where the Casimir eigen-
value απ = 0. Indeed, if π is an even irreducible unitary representation
with απ = 0, then the K-weight n is even, n± 1 is odd, and hence

(n± 1)2 − απ = (n± 1)2 > 0.

Applying the argument above, it follows that π must contain K-eigen-
vectors for all even K-weights, and that π is uniquely determined up
to isomorphism. We will show in Section 9.3 that the even princi-
pal series representation π0,e is this irreducible unitary representation
with απ0,e = 0. We note that the argument above fails in the odd case
precisely when n = ±1. Moreover, we already found the two odd irre-
ducible unitary representations δ1,± with vanishing Casimir eigenvalue
and with K-weights in ±(1 + 2N0) respectively.
• Suppose now that π is an even irreducible unitary representation with

απ ∈ (0, 1).

We note that
(n± 1)2 − απ > 1− απ > 0
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for all even n ∈ Z. Hence the argument above applies once more, π
contains K-eigenvectors for all even K-weights, and is uniquely deter-
mined up to isomorphism by απ. We will show in Section 9.5 that
this so-called complementary series representation γs for s ∈ (0, 1)
with αγs = s2 ∈ (0, 1) exists.

It remains to show that the cases above give all possible irreducible uni-
tary representations. So let π be an irreducible unitary representation with
Casimir eigenvalue απ and let vn ∈ Hπ be a smooth K-eigenvector of K-
weight n ∈ Z. We will now use Figure 9.2 to repeat and extend the argu-
ment that we used above for the principal series representation. By Propo-
sition 9.13 and Corollary 9.14, the vectors π∂(r

±)vn have K-weight n ± 2
and satisfy (9.18). In particular, this implies that απ 6 (n ± 1)2, or equiva-
lently that (n, απ) does not belong to the ‘forbidden’ shaded region in Fig-
ure 9.2. Moreover, if (n, απ) does not belong to either of the two parabolas
defined by α = (n ± 1)2, then we may replace n by n ± 2 and iterate this
argument to obtain further eigenvectors with different K-weights. If, how-
ever, απ = (n+ 1)2 (or απ = (n− 1)2), then (9.18) shows that π∂(r

+)vn = 0
(or π∂(r

−)vn = 0, respectively).
This argument creates a chain of points (n, απ) avoiding the forbidden

region in Figure 9.2, possibly with end points belonging to either of the
parabolas defined by απ = (n ± 1)2. There are a few possibilities for this
chain of points, as follows.

• απ < 0, and the chain is bi-infinite.
• απ = 0, n is even, and the chain is bi-infinite.
• απ = 0, n is odd, and the chain is one of ±(1 + 2N0)× {0}.
• απ ∈ (0, 1), n is even, and the chain is bi-infinite and jumps over the two
shaded regions that have width less than two at the height απ .
• However, απ ∈ (0, 1] and n is odd is impossible, since the chain starting
on either side would lead to the creation of one of the points (±1, απ)
inside the forbidden region.
• απ = 1 and n even has three such chains, one starting at (2, 1) going
to the right, one starting at (−2, 1) going to the left, and one consisting
of (0, 1) only.
• απ > 1 and n > 0 creates a half-infinite chain going to the right. It cannot
go infinitely far to the left, as the forbidden region has width larger than 4
and the gaps in the chain have size 2. Hence the chain has to stop with a
point on the right parabola. Replacing n by this minimal K-weight, we
see that απ = (n− 1)2 > 1.
• απ > 1 and n < 0 gives rise to a half-infinite chain going to the left.

We leave it to the reader to match the cases above to the irreducible unitary
representations discussed earlier and appearing in Table 9.1, which concludes
the proof. �
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Corollary 9.23. Let π be a unitary representation of SL2(R) and suppose
that v ∈ Hπ is a smooth K-eigenvector of weight n ∈ Z and Casimir eigen-
value α ∈ R. Then the restriction of π to the cyclic subspace 〈v〉π is irre-
ducible, and its type is determined by (n, απ).

Proof. The last part of the proof of Theorem 9.22 shows that every
pair (n, απ) that does not lead via raising and lowering to a pair inside the
forbidden region in Figure 9.2 is achieved by a unit vector w ∈ Hρ for one of
the irreducible representations ρ of SL2(R). By Proposition 9.19 this shows
that ϕπv = ϕρw, which implies 〈v〉π ∼= 〈w〉ρ = Hρ by Proposition 1.63. �

Using the description of ŜL2(R) it is possible to derive similar descriptions
of related groups.

Exercise 9.24. (a) Describe ̂PSL2(R).

(b) Describe GL2(R)o
∧

.

For the following exercise, the reader may have to also use the concrete
properties of the principal and complementary series representations in Sec-
tions 9.3 and 9.5.

Exercise 9.25. Let G = {g ∈ GL2(R) | |det g| = 1}, and note that G = SL2(R)⊔rSL2(R)

where r is the diagonal matrix r =

(
1 0
0 −1

)
with r2 = I.

(a) Show that G has two one-dimensional representations.
(b) Describe how r interacts with K-weights.
(c) Use the (mock) discrete series representation to define for every n ∈ N an irreducible
unitary representation δn,G whose restriction to SL2(R) is equal to δn,+ ⊕ δn,−.
(d) Extend the principal series representation from SL2(R) to G. Twist these by the non-
trivial character to obtain a second non-isomorphic series of representations of G.
(e) Repeat (d) for the complementary series representation.
(f) Show that Ĝ comprises precisely the representations found in (a), (c), (d), and (e).

(g) Describe ĜL2(R).

Exercise 9.26. Let G denote a locally compact σ-compact metric group. Show that

SL2(R)×G
∧

∼= ŜL2(R)× Ĝ

(in a natural sense, as in Proposition 5.21).

9.2.6 (Non-)Spherical Representations

Definition 9.27. We say that a unitary representation π of SL2(R) is spher-
ical if Hπ contains a non-trivial vector invariant under K (equivalently, of K-
weight 0). Otherwise we say that π is non-spherical.

Essential Exercise 9.28. Let π be a unitary representation of SL2(R).
Show that π is non-spherical if
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∫

K

ϕπv (k) dmK(k) = 0 (9.19)

for all v ∈ Hπ.

Corollary 9.29 (Non-spherical representations are tempered). Every
non-spherical unitary representation of SL2(R) is tempered, and so has decay
exponent 1− ε for all ε > 0.

Proof. By Theorems 8.23 and 8.30 the discrete series representations and
mock discrete series representations are tempered. By the discussions in the
next section, the odd principal series representations πξ,o are also tempered
for ξ ∈ Rr{0}. Hence Theorem 9.22 (and Table 9.1), imply that every non-
spherical irreducible unitary representation of SL2(R) is tempered.

Suppose now that ρ is a non-spherical unitary representation of SL2(R). By
Exercise 9.28, being non-spherical is equivalent to the vanishing of the inte-
gral in (9.19). Using the definition of weak containment, it follows that every
irreducible unitary representation of SL2(R) that is weakly contained in ρ
must be non-spherical also. By our discussion above, this shows that every
irreducible unitary representation weakly contained in ρ is tempered. We now
combine the definition of temperedness, the definition of weak containment,
and Proposition 4.36. By the latter, we know that for any unit vector v ∈ Hρ
the matrix coefficient ϕρv can be approximated in the compact-open topol-
ogy by sums of the form

∑n
j=1 ϕ

πj
vj for some irreducible unitary representa-

tions πj ≺ ρ and vectors vj ∈ Hπj for j = 1, . . . , n; since πj ≺ λSL2(R)
we can

approximate ϕ
πj
vj for j = 1, . . . , n by some sum of diagonal matrix coefficients

for the regular representation. Putting these together, we obtain the same
property for ϕρv, which gives ρ ≺ λSL2(R)

. The last claim now follows from
Theorem 8.41. �

9.3 The Principal Series Representations

We will now modify the representation π0 from Section 8.5.2, which will give
rise to the even and odd principal series representations appearing in Theo-
rem 9.22. Along the way we will also explain the connection to Example 1.6.

Definition 9.30 (Principal series representation). For a given ξ ∈ R,
we define the character χξ on

B = {atux | t, x ∈ R}

by
χξ(atux) = eiξt

for all atux ∈ B. The representation πξ of G = SL2(R) is defined by
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(Hξ, πξ) = IndGB(C, χξ),

or, more concretely, by the left-regular representation on the space Hξ of
those functions f : G→ C with the following properties:

(1) f is measurable,

(2) f(gb) = χξ(b)∆B(b)
1
2 f(g) for all g ∈ G and b ∈ B, and

(3) ‖f |K‖L2(K) <∞.

The even principal series representation πξ,e = πξ,even (for frequency param-
eter ξ) is defined as the restriction of πξ to the subspace

Heven
ξ = {f ∈ Hξ | f(−g) = f(g) for all g ∈ G}.

Similarly, the odd principal series representation πξ,o = πξ,odd (for frequency
parameter ξ) is defined as the restriction of πξ to the subspace

Hodd
ξ = {f ∈ Hξ | f(−g) = −f(g) for all g ∈ G}.

Let us summarize the properties of the even and odd principal series rep-
resentations that we will prove in this section.

Theorem 9.31 (Even and odd principal series representations). The
representations πξ, πξ,e, and πξ,o are unitary representations with Casimir
eigenvalue −ξ2 for any ξ ∈ R. The representation πξ,e is irreducible for
any ξ ∈ R and πξ,o is irreducible for all ξ ∈ Rr{0}. Moreover, π−ξ,e is iso-
morphic to πξ,e, and π−ξ,o is isomorphic to πξ,o for all ξ ∈ R, and π0,o is
isomorphic to the sum δ1,+ ⊕ δ1,− of the holomorphic and anti-holomorphic
mock discrete series representations. Finally, all of these representations are
tempered with almost decay exponent 1 and are not discrete series represen-
tations.

Proof of unitarity in Theorem 9.31. Recall from Example 1.6 that SL2(R)
acts on S1 ⊆ R2 via

S1 ∋ v 7−→ g.v =
1

‖gv‖gv

for g ∈ SL2(R) and v ∈ S1, and let m again denote the normalized length
measure so that the Radon–Nikodym derivative is given by

dg∗m

dm
(v) = ‖g−1v‖−2.

Let ξ ∈ R and note that the map

SL2(R)× S1 ∋ (g, v) 7−→ c(g, v) = ‖g−1v‖−1+iξ

satisfies the equation
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c(g1, v)c(g2, g
−1
1
.v) = ‖g−1

1 v‖−1−iξ

∥∥∥∥g−1
2

g−1
1 v

‖g−1
1 v‖

∥∥∥∥
−1−iξ

= ‖(g1g2)−1v‖−1−iξ = c(g1g2, v)

for g1, g2 ∈ SL2(R) and v ∈ S1. By Proposition 1.5 the formula

πS1,ξ
g (f)(v) = ‖g−1v‖−1−iξf(g−1.v)

for g ∈ SL2(R), f ∈ L2
m(S1), and v ∈ S1 defines a unitary representation πS1,ξ

of SL2(R) on L
2
m(S1).

We now show that πξ is πS1,ξ in disguise. In fact, we define for f ∈ L2
m(S1)

the function

U(f) : SL2(R) ∋ g 7−→ U(f)(g) = ‖ge1‖−1−iξf(g.e1).
Then ‖U(f)‖L2(K) = ‖f‖L2

m(S1) since the normalized Haar measure mK is
mapped under the action to the normalized length measure m on S1. More-
over, g ∈ SL2(R) and b = atux ∈ B imply be1 = ete1 and so

U(f)(gb) = ‖gbe1‖−1−iξf(gb.e1)
= e−t−iξt‖ge1‖−1−iξf(g.v)
= χξ(b)∆B(b)

1
2U(f)(g)

by (8.22), which shows that U(f) ∈ Hξ. We note that since f ∈ L2
m(S1)

was arbitrary, this shows in particular that every F ∈ L2(K) has an ex-
tension to an element of Hξ. Moreover, by the Iwasawa decomposition and
Definition 9.30(2) this extension is also uniquely determined.

Finally, we let g0 ∈ SL2(R) and calculate

U(f)(g−1
0 g) = ‖g−1

0 ge1‖−1−iξf(g−1
0 g.e1)

and

U
(
πS1,ξ
g0

f
)
(g) = ‖ge1‖−1−iξ

(
πS1,ξ
g0

f
)
(g.e1)

= ‖ge1‖−1−iξ‖g−1
0 (g.e1)‖−1−iξ

︸ ︷︷ ︸
‖g−1

0 ge1‖−1−iξ

f(g−1
0 g.e1).

Together these show that U : L2
m(S

1) → Hξ is an equivariant isomorphism,
and hence that πξ is a unitary representation.

Since −I belongs to the centre of SL2(R), the subspaces Heven
ξ , Hodd

ξ of Hξ
are closed invariant subspaces. It follows that πξ, πξ,e, πξ,o are well-defined
unitary representations of SL2(R). �

Exercise 9.32. As an alternative, use Corollary 8.36 to show that πξ defines a unitary
representation of SL2(R).
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For the proof of irreducibility, we will use the following lemma.

Lemma 9.33 (Casimir eigenvalue for πξ). Let ξ ∈ R. Then the closure

of πξ∂(Ω) is equal to multiplication by αξ = −ξ2. Moreover, for every n ∈ Z
the extension of χ−n ∈ L2(K) to an element Fξ,n ∈ Hξ has K-weight n, and
is given by

Fξ,n(kψatux) = e−inψ−iξt−t (9.20)

for all kψatux ∈ KAU = G. These functions satisfy

πξ∂(r
+)Fξ,n =

n+ 1 + iξ

2
Fξ,n+2,

πξ∂(r
−)Fξ,n =

−n+ 1 + iξ

2
Fξ,n−2,

and

πξ∂(a)Fξ,n =
n+ 1 + iξ

2
Fξ,n+2 +

−n+ 1 + iξ

2
Fξ,n−2 (9.21)

for all n ∈ Z.

Proof. For any n ∈ Z, we define Fξ,n ∈ Hξ by setting

Fξ,n|K = χ−n ∈ L2(K)

to be the character defined by −n and extending it by the defining properties
of its elements to an element of Hξ. Using the formula ∆B(atux) = e−2t for
all atux ∈ AN = B and the definition of Hξ, this gives (9.20).

To see that Fξ,n has K-weight n, we calculate

πξkψ (Fξ,n)(kθ) = Fξ,n(k
−1
ψ kθ) = einψ−inθ = einψFξ,n(kθ)

for all kψ, kθ ∈ K. Since the characters χ−n for n ∈ Z form an orthonormal
basis of L2(K), it follows that the functions Fξ,n for n ∈ Z form an orthonor-
mal basis of Hξ. We note that each Fξ,n is a smooth function on G, which
implies, by dominated convergence, that it is also a smooth vector for πξ.
Alternatively, the latter also follows from Lemma 9.17.

Next we wish to calculate πξ∂(a)Fξ,n. For t ∈ R we have

exp(ta) =

(
et

e−t

)
,

and

(
πξexp(ta)Fξ,n

)
(kθ) = Fξ,n

(
exp(−ta)kθ

)
= Fξ,n

((
e−t

et

)
kθ

)
.

In order to apply the definition of Fξ,n in (9.20), we need to write the argu-
ment in the form

Page: 423 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



424 9 Unitary Representations of SL(2)

(
e−t

et

)
kθ = kψat0ux0

,

where in fact we are only interested in the angle parameter ψ = ψ(t, θ)
and the diagonal parameter t0 = t0(t, θ) considered as functions in t and θ.
As in the proof of the estimate for the Harish-Chandra spherical function
in Proposition 8.39, we obtain ψ and t0 by using polar co-ordinates in R2.
Indeed,

kψat0ux0
e1 = et0

(
cosψ
sinψ

)
(9.22)

must equal

(
e−t 0
0 et

)
kθe1 =

(
e−t 0
0 et

)(
cos θ
sin θ

)
=

(
e−t cos θ
et sin θ

)
. (9.23)

Therefore
e2t0 = e−2t cos2 θ + e2t sin2 θ.

Since we will later take the partial derivative with respect to t at t = 0, we
calculate from this that

2e2t0
∂

∂t
t0 =

∂

∂t
(e2t0) =

∂

∂t

(
e−2t cos2 θ + e2t sin2 θ

)

= −2e−2t cos2 θ + 2e2t sin2 θ.

For t = 0, this gives, with t0(0, θ) = 0 for all θ ∈ R,

∂

∂t

∣∣∣∣
t=0

(t0) = − cos2 θ + sin2 θ = − cos(2θ) = − 1
2

(
e2θi + e−2θi

)
. (9.24)

For the angle ψ = ψ(θ, t), we obtain from (9.22) and (9.23) that

tanψ =
et sin θ

e−t cos θ
= e2t tan θ,

(1 + tan2 ψ)
∂

∂t
ψ =

∂

∂t
(tanψ) =

∂

∂t

(
e2t tan θ

)
= 2e2t tan θ.

Setting t = 0 and using in addition ψ(0, θ) = θ for all θ ∈ R, we obtain

∂

∂t

∣∣∣∣
t=0

(ψ) =
2 tan θ

1 + tan2 θ
= 2 sin θ cos θ = sin 2θ = 1

2i

(
e2θi − e−2θi

)
. (9.25)

Combining (9.24), (9.25), and using again t0(0, θ) = 0 and ψ(0, θ) = θ for
all θ ∈ R, this gives
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πξ∂(a)Fξ,n(kθ) =
∂

∂t

∣∣∣∣
t=0

(
Fξ,n(kψat0ux0

)
)
=

∂

∂t

∣∣∣∣
t=0

(
e−inψ−iξt0−t0

)

= e−inθ

(
−in

( ∂
∂t

∣∣∣∣
t=0

ψ
)
− (iξ + 1)

( ∂
∂t

∣∣∣∣
t=0

t0

))

= e−inθ

(
−in 1

2i

(
e2θi − e−2θi

)
+ (iξ + 1)

1

2

(
e2θi + e−2θi

))

=

(
n+ 1 + iξ

2

)
e−i(n+2)θ +

(−n+ 1 + iξ

2

)
e−i(n−2)θ

=

(
n+ 1 + iξ

2

)
Fξ,n+2(kθ) +

(−n+ 1 + iξ

2

)
Fξ,n−2(kθ)

for all kθ ∈ K. To summarize, we have shown (9.21).
Recalling that a = r+ + r− and that, by Proposition 9.13, π∂(r

±)Fξ,n has
weight n± 2, we obtain

πξ∂(r
+)Fξ,n =

n+ 1 + iξ

2
Fξ,n+2

and

πξ∂(r
−)Fξ,n =

−n+ 1 + iξ

2
Fξ,n−2,

as claimed in the lemma.
Using the formula for Ω in (9.13) in terms of r+, r−, and k, we obtain

with πξ∂(1E + ik)Fξ,n = (1 − n)Fξ,n that

πξ∂(Ω)Fξ,n = 4πξ∂(r
+ ◦ r−)Fξ,n + πξ∂

(
(1E + ik)◦2

)
Fξ,n

= 2πξ∂(r
+)(−n+ 1+ iξ)Fξ,n−2 + (1− n)2Fξ,n

= (n− 1 + iξ)(−n+ 1 + iξ)Fξ,n + (1− n)2Fξ,n
=
(
−(n− 1)2 − ξ2 + (1− n)2

)
Fξ,n

= −ξ2Fξ,n

for all n ∈ Z. Since the functions Fξ,n for n ∈ Z form an orthonormal basis
of Hξ, the lemma follows. �

Proof of irreducibility claims in Theorem 9.31. For ξ ∈ R let ρ = πξ,e

be the restriction of πξ to

Hρ = Heven
ξ =

〈
Fξ,2n | n ∈ Z

〉
= {f ∈ Hξ | πξ−If = f},

or let ρ = πξ,o be the restriction of πξ to

Hρ = Hodd
ξ =

〈
Fξ,2n+1 | n ∈ Z

〉
= {f ∈ Hξ | πξ−If = −f}.
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Suppose V < Hρ is a non-trivial closed ρ-invariant subspace. Since K =
SO2(R) < SL2(R) is compact and abelian, V contains a K-eigenfunction.

As Hρ is given as the linear hull of orthonormal K-eigenfunctions of dif-
ferent weights, it follows that Fξ,n ∈ V for some n ∈ Z. By Lemma 9.33, this
implies

πξ∂(r
+)Fξ,n =

(
n+ 1 + iξ

2

)
Fξ,n+2 ∈ V

and

πξ∂(r
−)Fξ,n =

(−n+ 1 + iξ

2

)
Fξ,n−2 ∈ V .

If ξ 6= 0, then certainly ±n+1+iξ
2 6= 0, and we obtain Fξ,n+2, Fξ,n−2 ∈ V .

Moreover, in this case we can iterate this argument and obtain

Hρ =
〈
Fξ,n+2k | k ∈ Z

〉
⊆ V 6 Hρ,

which implies that ρ is irreducible.
If ξ = 0 and ρ = π0,e is the even principal series representation,

then the K-weight n of Fξ,n is even, ±n+1
2 is non-zero, and we again

obtain Fξ,n−2, Fξ,n+2 ∈ V . Once more we can iterate this and thus ob-
tain V = Heven

0 , and so deduce that π0,e is irreducible. �

While the above was independent of Section 9.2, for the following step we
are going to use the Bargmann classification (Theorem 9.22).

Proof of isomorphism claims in Theorem 9.31. Let ξ ∈ R. By
Lemma 9.33 the representations πξ,e and πξ,o have Casimir eigenvalue −ξ2.
By the previous part of the proof, we know that these are irreducible with
the exception of π0,o. By Theorem 9.22 there is however only one even irre-
ducible representation with Casimir eigenvalue −ξ2, which gives πξ,e ∼= π−ξ,e.
Similarly, for ξ ∈ Rr{0} we have πξ,o ∼= π−ξ,o.

Let us now discuss π0,o with Casimir eigenvalue 0. By Corollary 9.15
we also have αδ1,+ = αδ1,− = 0. By the construction of π0,o, it contains
all odd K-weights. Let v1 ∈ Hπ0,o be a unit vector with K-weight 1, and
let e0 ∈ Hδ1,+ be the unit vector with K-weight 1 as in Lemma 8.25 (see
also the paragraph after Theorem 8.30). By Proposition 9.19, we conclude

that ϕπ
0,o

v1
= ϕδ

1,+

e0
. However, Proposition 1.63 now implies that the cyclic

representations 〈v1〉π0,o and 〈e0〉δ1,+ = Hδ1,+ are isomorphic. In other words,
we have shown that δ1,+ < π0,o (up to isomorphisms). Using a unit vec-
tor v−1 ∈ Hπ0,o of K-weight −1, we obtain, from the same argument,
that δ1,− < π0,o. Together we have δ1,+ ⊕ δ1,− < π0,o. However, since
in δ1,+ ⊕ δ1,− and π0,o each odd K-weight appears with multiplicity one,
we must have equality. �
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Proof of integrability and decay properties in Theorem 9.31.
Let ξ ∈ R and n ∈ Z. By (9.20) we have |Fξ,n| = F0,0. For m,n ∈ Z this
implies

∣∣〈πξgFξ,m, Fξ,n
〉∣∣ =

∣∣∣∣
∫

K

Fξ,m(g−1k)Fξ,n(k) dmK(k)

∣∣∣∣

6

∫

K

F0,0(g
−1k)F0,0(k) dmK(k) = Ξ(g)

for g ∈ SL2(R). By Proposition 8.39 and Theorem 8.41 we deduce that πξ is
tempered with almost decay exponent at least 1 for any ξ ∈ R.

Also by Proposition 8.39 we have Ξ /∈ L2(SL2(R)), which shows by Theo-
rem 8.2 that π0,e is not a discrete series representation. For the odd represen-
tation recall the isomorphism π0,o ∼= δ1,+ ⊕ δ1,− and that by Theorem 8.30
both δ1,+ and δ1,− are also not discrete series representations.

So suppose now that ξ ∈ Rr{0} and n ∈ Z. Let α = −ξ2 < 0. We recall

that by Lemma 9.18 the function φ(t) = ϕπ
ξ

Fξ,n
(at) satisfies for t > 0 the

second order linear differential equation

φ′′ + f1φ
′ + f0φ = 0, (9.26)

where f1(t) = 2 + O(e−2t) and f0(t) = 1 − α + O(e−2t) for t > 1. Also

recall that φ′(t) =
〈
πξatπ∂(a)Fξ,n, Fξ,n

〉
(essentially by definition; also see

the proof of Lemma 9.18). To see that πξ,e and πξ,o are not discrete series

representations, we will show that ϕπ
ξ

Fξ,n
and ϕπ

ξ

π∂(a)Fξ,n
are not both square

integrable for any n ∈ Z and apply Theorem 8.2. Equivalently, we will show
that φ and φ′ are not both square integrable on [1,∞) with respect to e2t dt
(see (8.11)). We define y(t) = etφ(t), so that

y′(t) = et(φ′(t) + φ(t)),

y′′(t) = et(φ′′(t) + 2φ′(t) + φ(t)),

and we wish to show that y and y′ are not both square integrable on [1,∞)
with respect to dt. The differential equation (9.26) for y therefore takes the
form

y′′ − 2y′ + y︸ ︷︷ ︸
=etφ′′

+f1 (y
′ − y)︸ ︷︷ ︸
etφ′

+f0 y︸︷︷︸
etφ

= 0,

or
y′′ + F1y

′ + F0y = 0

for F1 = f1 − 2 = O(e−2t) and F0 = 1− f1 + f0 = −α+O(e−2t). Finally, we
define z = (y′)2 − αy2 so that

Page: 427 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



428 9 Unitary Representations of SL(2)

z′ = 2y′(y′′ − αy)
= 2y′(−F1y

′ − F0y − αy)
= −2F1(y

′)2 − 2(F0 + α)yy′

= O(e−2t)z, (9.27)

where in the last step we applied the asymptotics for F1 and F0 and bounded
both (y′)2 and 2yy′ by z = y2 + (y′)2. As πξ is tempered, we may use a
multiple of Ξ to bound φ and φ′. By Proposition 8.39 we have Ξ(at)≪ te−t

for t > 1, which gives |y(t)| ≪ t, |y′(t)| ≪ t, and z(t) ≪ t2 for t > 1.
Therefore (9.27) implies that

z(t)− z(t0) =
∫ t

t0

z′(s) ds = O

(∫ t

t0

e−2ss2 ds

)

for t > t0 > 1. However, this implies that limt→∞ z(t) exists. In particular,

S(t0) = sup{z(t) | t > t0} <∞

for all t0 > 1. Note that we have S(t0) > z(t0) > 0 as z(t0) = 0 would
give φ(t0) = φ′(t0) = 0 and contradict the uniqueness of the solution to (9.26)
due to the Picard–Lindelöf theorem. Using (9.27) again, there exists a con-
stant C so that

|z(t)− z(t1)| 6 C

∫ t

t1

e−2s dsS(t0) 6 C
1

2
e−2t1S(t0)

for all t > t1 > t0. Now choose t0 > 1 so that Ce−2t0 6 1
2 , choose t1 > t0 so

that z(t1) >
1
2S(t0). Then

|z(t)− z(t1)| 6
1

4
S(t0) 6

1

2
z(t1)

for t > t1, which implies that limt→∞ z(t) > 1
2z(t1). However, this also implies

that ∫ ∞

1

(
|α|y2 + (y′)2

)
dt =

∫ ∞

1

z dt =∞.

Hence y and y′ are not both square-integrable on [1,∞). As discussed above,
this shows that both πξ,e and πξ,o are not discrete series representations.

Finally, recall from Lemma 8.45 that the integrability exponent pπ of a
unitary representation π of SL2(R) and its almost decay exponent κπ sat-
isfy pπ 6 2

κπ
. The above showed for any principal series representation π

that pπ > 2 and κπ > 1, which implies κπ = 1. �

Exercise 9.34. (a) Analyze the above argument to show that for any ξ ∈ Rr{0} and n ∈ Z
there exists a constant Cξ,n so that
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9.4 Two Koopman Representations of SL2(R) 429

∣∣∣ϕπ
ξ

Fξ,n
(g)
∣∣∣≪ Cξ,n‖g‖−1.

(b) Show that Cξ,n → 0 as ξ → 0, which makes the conclusion in part (a) less interesting.

9.4 Two Koopman Representations of SL2(R)*

We wish to show here how the principal series representations can naturally
occur as components of other unitary representations. Since SL2(R) acts both
on the Euclidean plane R2 and on the hyperbolic plane H, preserving area
measure on the space in each case, this already gives rise to two natural
unitary representations of SL2(R). As we will see, the case of R2 will be
relatively straightforward to analyze. On the other hand, understanding the
case of H will require more work, but we will motivate the formulas arising.

9.4.1 The Koopman Representation on R2

Almost by definition, the group SL2(R) acts continuously on R2, preserving
the two-dimensional Lebesgue measure m = mR2 . Using Proposition 1.3, this
gives rise to a Koopman representation πR2

of SL2(R) on L2
m(R2), where

πR2

g (f)(x) = f(g−1x)

for g ∈ SL2(R), f ∈ L2
m(R

2), and x ∈ R2.
Using polar coordinates

(r, θ) ∈ (0,∞)× [0, 2π)

for R2r{0} with dm = r dr dθ, we make the following definition.

Definition 9.35 (Radial Mellin transform). For a function f ∈ L2
m(R2),

an element h ∈ SL2(R), and a frequency parameter ξ ∈ R, we define the
radial Mellin transform of f at (h, ξ) by

f̂
rad

(h, ξ) =

∫ ∞

0

f(rhe1)r
iξ dr, (9.28)

where

e1 =

(
1
0

)

denotes the first basis vector of R2.

Just as in the case of the usual Fourier transform, the integral in (9.28)
may not make sense as a Lebesgue integral. Thus we also need to discuss the
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meaning of this expression more carefully (which we will do in the proof of
Proposition 9.39). The following lemma, together with the definition of the
principal series representation in Definition 9.30 reveal why (9.28) is really
the right definition.

Lemma 9.36 (Equivariance properties). For f ∈ Cc(R
2) the radial

Mellin transform f̂
rad

(h, ξ) is well-defined and satisfies





π̂R2

g (f)
rad

(h, ξ) = f̂
rad

(g−1h, ξ)

f̂
rad

(hb, ξ) = χξ(b)∆B(b)
1
2 f̂

rad

(h, ξ)

for all (h, ξ) ∈ SL2(R)× R, g ∈ SL2(R), and b ∈ B = AU .

Proof. It is clear that for f ∈ Cc(R2), the domain of integration in 9.28 can
be chosen to be a compact interval, which gives the first claim in the lemma.

Now fix some g, h ∈ SL2(R) and ξ ∈ R. Then

π̂R2

g (f)
rad

(h, ξ) =

∫ ∞

0

(
πR2

g (f)
)
(rhe1)r

iξ dr

=

∫ ∞

0

f(g−1rhe1)r
iξ dr

= f̂
rad

(g−1h, ξ),

as claimed.
For the second claim, we calculate for b = atux ∈ B = AU that

f̂
rad

(hatux, ξ) =

∫ ∞

0

f
(
rh atuxe1︸ ︷︷ ︸

=ete1

)
riξ dr

=

∫ ∞

0

f
(
r̃he1

)(
r̃e−t

)iξ
e−t dr̃

= e−iξte−tf̂
rad

(h, ξ),

where we used the substitution r̃ = etr with dr̃ = et dr. The lemma follows
by recalling that ∆B(atux) = e−2t and χξ(atux) = eiξt for all atux ∈ B. �

In addition to the correct equivariance properties as shown above, the
radial Mellin transform is also isometric in the following sense.

Lemma 9.37 (Isometry). For f ∈ Cc(R2) we have

‖f‖L2(R2) =
∥∥∥f̂

rad|K×R

∥∥∥
L2(K×R)

,

where we equip K × R with the Haar measure dmK dξ = 1
2π dθ dξ.
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Proof. We first note that

‖f‖2L2(R2) =

∫ 2π

0

∫ ∞

0

∣∣f
(
rkθe1

)∣∣2 r dr dθ

=

∫ 2π

0

∫ ∞

0

∣∣rf
(
rkθe1

)∣∣2 dr

r
dθ.

We now define, for θ ∈ [0, 2π), the function Fθ : R→ C by

Fθ(s) = esf
(
eskθe1

)

for all s ∈ R, and note that Fθ corresponds, roughly speaking, to the re-
striction of f to the ray from 0 at angle θ to the positive x-axis. Using
the fact that f has compact support in R2 and is bounded near 0, we see
that Fθ ∈ L1(R) ∩ L2(R) for all θ ∈ R. Using the substitution r = es

with dr
r = ds we see that

‖f‖2L2(R2) =

∫ 2π

0

∫ ∞

−∞
|Fθ(s)|2 ds

︸ ︷︷ ︸
=‖Fθ‖2

L2(R)

dθ.

Next we use the fact that

‖Fθ‖L2(R) = ‖
̂
Fθ‖L2(R),

where

̂
Fθ again denotes the Fourier back transform. Using the definitions and

the substitution r = es with dr = es ds again, we obtain
̂
Fθ(ζ) =

∫ ∞

−∞
Fθ(s)e

2πiζs ds

=

∫ ∞

−∞
esf(eskθe1)e

2πiζs ds

=

∫ ∞

0

f(rkθe1)r
2πiζ dr = f̂

rad

(kθ, 2πζ) (9.29)

for all ζ ∈ R. Together, we obtain

‖f‖2L2(R2) =

∫ 2π

0

‖
̂
Fθ‖2L2(R) dθ

=

∫ 2π

0

∫ ∞

−∞
|f̂ rad

(kθ, 2πζ)| dζ dθ

=
1

2π

∫ 2π

0

∫ ∞

−∞
|f̂ rad

(kθ, ξ)| dξ dθ = ‖f̂
rad|K×R‖2L2(K×R)
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432 9 Unitary Representations of SL(2)

by using the substitution ξ = 2πζ. �

Definition 9.30 and Lemmas 9.36 and 9.37 suggest the following definition.

Definition 9.38 (Integrals of principal series representations). For
any σ-finite measure µ on R, we define the space Hµ of all functions

F : SL2(R)× R→ C

satisfying the following properties:

(1) F is measurable;

(2) F (hb, ξ) = χξ(b)∆B(b)
1
2F (h, ξ) for all h ∈ SL2(R), b ∈ B, ξ ∈ R; and

(3) ‖f |K×R‖L2(K×R,mK×µ) <∞.

The unitary representation†

πµ =

∫

R

πξ dµ(ξ)

is defined by the left regular representation on the first component; that is,

πµg (F )(h, ξ) = F (g−1h, ξ)

for all F ∈ Hµ, g, h ∈ SL2(R), and ξ ∈ R. Moreover, we also define

πµ,e =

∫

R

πξ,e dµ(ξ)

and

πµ,o =

∫

R

πξ,o dµ(ξ)

to be the restrictions of πµ to the subspaces

Heven
µ = {F ∈ Hµ | F (−g, x) = F (g, x) for all g, x}

and
Hodd
µ = {F ∈ Hµ | F (−g, x) = −F (g, x) for all g, x}

respectively.

Proposition 9.39 (Spectral decomposition of πR2

). The Koopman rep-
resentation of SL2(R) on R2 is isomorphic to

πm = πm,e ⊕ πm,o =

∫

R

πξ,e dξ ⊕
∫

R

πξ,o dξ,

where we use the Lebesgue measure µ = m on R.

† We did not discuss the integral of unitary representations, but believe that the notation
is justified in this case.
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Proof. By Lemmas 9.36 and 9.37, the radial Mellin transform

Cc(R
2) ∋ f 7−→ f̂

rad ∈ Hm

is well-defined, equivariant, and an isometry. Hence it extends by the density
of Cc(R2) in L2(R2) to a well-defined, equivariant isometry

L2(R2) ∋ f 7−→ f̂
rad ∈ Hm.

We keep referring to f̂
rad

as the radial Mellin transform of f ∈ L2(R2).
It remains to show that this map is onto. For this, assume that fK ∈ C(K)

and fR ∈ Cc(R). We note that

fK ⊗
̂
fR : K × R −→ C

can be extended using property (2) in Definition 9.38 to an element of Hm.

We claim that fK ⊗
̂
fR = f̂

rad

for some f ∈ Cc(R2). Also recall that the

subspaces C(K) ⊆ L2(K) and

̂

Cc(R) ⊆ L2(R,m) are dense (for the lat-
ter, apply Theorem 2.15). Varying fK and fR, we can then, for example,
approximate any function of the form 1BK

⊗ 1BR
extended to an element

of Hµ, where BK ⊆ K and BR ⊆ R are measurable with finite measures. For
this reason, the claim implies that the image of the radial Mellin transform
(extended to L2(R2)) is indeed all of Hµ.

To prove the claim, we reuse the argument from the proof of Lemma 9.37.
Let fK ∈ C(K) and fR ∈ Cc(R) be as above. We define f ∈ Cc(R2) using
polar coordinates by

f(rkθe1) =
1
2πfK(θ)r−1fR

(
1
2π log r

)
.

For this f , the function Fθ for θ ∈ [0, 2π) appearing in the proof of
Lemma 9.37 becomes

Fθ(s) = esf(eskθe1) =
1
2πfK(θ)fR

(
1
2π s
)

for s ∈ R. Hence by (9.29) and the substitution s̃ = 1
2π s we have

f̂
rad

(kθ, 2πζ) =

̂
Fθ(ζ) =

1
2πfK(θ)

∫

R

fR
(

1
2π s
)
e2πisζ ds

= fK(θ)

∫

R

fR(s̃)e
2πis̃2πζ ds̃ = fK(θ)

̂
fR(2πζ)

for all θ ∈ [0, 2π) and ζ ∈ R. Equivalently, we have f̂
rad

= fK⊗
̂
fR as claimed,

which gives the proposition. �

Exercise 9.40. (a) Show that πµ as in Definition 9.38 is indeed a unitary representation
of SL2(R) for any σ-finite measure µ on R.
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434 9 Unitary Representations of SL(2)

(b) Show that πµ is tempered.

Exercise 9.41. Use Fourier inversion on R to prove a Fourier inversion formula that ex-

presses f ∈ C∞
c (R2) as an integral over values of f̂

rad
.

Exercise 9.42. Is the centralizer of the Koopman representation of SL2(R) on L2(R)
abelian? Prove your claim. Can you identify the centralizer?

9.4.2 Moving a Loudspeaker to Infinity

To better understand the formulas required for the hyperbolic Fourier trans-
form we wish to discuss a physical interpretation of the Fourier transform
on the two planes R2 and H. As this is just meant as a motivation for the
formal definitions coming later, we leave the details of these calculations as
exercises.

To begin with, we imagine a loudspeaker L, which we assume will pro-
duce the desired sound for any given frequency and amplitude. We imagine
the sound wave being represented by a C-valued function fL on the plane,
where |fL|2 represents the energy of the wave, and the argument of fL repre-
sents the phase shift of the wave. We also imagine that there is no energy loss
in the passage of the wave through the medium. This physical interpretation
suggests that |fL(P0)|2 is inversely proportional to the length of the circle
with centre L containing a point P , as illustrated in Figure 9.3.

L

P

Fig. 9.3: The sound waves emanate
from the loudspeaker L and decrease

in loudness. The concentric circles in-
dicate the phase of fL.

L

P

P0

Fig. 9.4: We move the loudspeaker L
upwards, and turn up the volume.

We now fix some origin P0 in the plane, and move the loudspeaker L
further away in some pre-determined direction, say upwards as in Figure 9.4.
This of course means that we do not hear the sound much at P0 if L is already
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9.4 Two Koopman Representations of SL2(R) 435

far away. To get round this problem, we simultaneously turn up the volume
at L so that |fL(P0)|2 = 1. We now wish to move L to infinity and describe
what will happen to fL if we do so. However, to do this we have to distinguish
between the cases of the Euclidean and hyperbolic planes.

Euclidean plane: In the Euclidean plane, the circle of radius r has circum-
ference 2πr. If P0 belongs to a circle of radius r0 (that is, if r0 = ‖P0 − L‖)
and P has distance ‖P − P0‖ to P0, then P belongs to a circle of radius r
with ∆r = r − r0 satisfying |∆r| 6 ‖P − P0‖ (by the triangle inequality).
Hence

|fL(P0)|2 · 2πr0 = |fL(P )|2 · 2πr.
Letting L go to infinity, we have r0 → ∞ and 2πr

2πr0
= r0+∆r

r0
→ 1. Therefore

the limiting sound distribution f will have the property that |f |2 is constant
and equal to 1. Moreover, the concentric circles degenerate to equidistant
parallel lines, so that in the limit we may obtain in this way the function

f(x, y) = eiξy

for P = (x, y) ∈ R2, where ξ represents the frequency of the wave. Allowing
different frequencies and different directions along which L is moved, one
obtains in this way any character χ(ξ1,ξ2)

for (ξ1, ξ2) ∈ R2, which we may
think of as the elementary waves on R2.

This suggests the following interpretation for the Fourier transform of a
function on R2. Given f , we first test the correlation of f against all ele-
mentary waves. Next we imagine infinitely many loudspeakers at infinity in
all directions using various frequencies with well-chosen amplitudes. Fourier
inversion now tells us that these then create the prescribed sound distribu-
tion f by superposition of the so-created (and correctly amplified) elementary
waves.

Exercise 9.43. (a) For a given frequency ξ ∈ R and two points P0, L ∈ R2, calculate the

function fL representing a wave of frequency ξ emanating from L with fL(P0) = 1.
(b) Calculate the limit f of fL as L = (0, y)→∞.

Hyperbolic plane: To get some intuition for the hyperbolic Fourier trans-
form, we repeat the above discussion on H, which will lead to the functions
that will take over the role of characters in the more formal discussions of
the following sections.

We again imagine the loudspeaker L moving to infinity along the upward
oriented geodesic and consider equidistant concentric circles with centre L,
as in Figure 9.5. We note that in the limit we obtain circles (in the Eu-
clidean sense, within C ⊇ D) touching the boundary. These are not hyperbolic
geodesics; instead these curves are called horocycles.

To understand the limit function f of the sound distribution fL for L
going to the boundary, we need to calculate the circumference of a circle of
radius R. To simplify matters, we let the centre be 0 ∈ D as in Lemma 8.15.
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L

L

P P

P0P0

DD

∆r b(P )

Fig. 9.5: A calculation reveals that any Möbius transformation z 7→ αz+β
γz+δ

on C
maps lines and circles to lines and circles. With this, it is straightforward to verify
that concentric hyperbolic circles with centre L appear in the disk model of the
hyperbolic plane as circles, with L appearing closer to the circle near the boundary.
If L is moved to the boundary, these circles degenerate to circles touching the
boundary.

By (8.12) the Euclidean radius of this circle is given by ρ = tanh
(
R
2

)
. Hence

the circumference can be calculated using the path

[0, 2π] ∋ θ 7−→ ρeiθ,

which, by definition of the Riemannian metric in (8.6), gives

∫ 2π

0

2

(1− ρ2)ρ dθ =
4π tanh

(
R
2

)
(
1− tanh2

(
R
2

)) = 4π

sinh(R2 )

cosh(R2 )
· cosh2

(
R
2

)
(
cosh2

(
R
2

)
− sinh2

(
R
2

))

= 4π sinh
(
R
2

)
cosh

(
R
2

)
= 2π sinhR.

We let L go to infinity along the Northward geodesic, so that

r0 = d(P0, L)→∞.

For a third point P ∈ d, we let r = d(P,L). We also define the ‘relative
distance’ from L compared to P0 by setting it equal to

∆r = d(P,L)− d(P0, L) = r − r0,

see also Figure 9.5. Note that ∆r = r − r0 satisfies |∆r| 6 d(P, P0).
With sinhR ∼ eR as R→∞, and

|fL(P0)|22π sinh r0 = |fL(P )|22π sinh r,

we obtain
|fL(P )|2
|fL(P0)|2

=
sinh r0

sinh(r0 +∆r)
∼ e−∆r
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as r0 → ∞. Since we normalize the loudness of L along the way to
have |fL(P0)|2 = 1, we expect that the limit sound wave satisfies

|f(P )| = e−
1
2 b(P )

for the limiting function b of ∆r. Putting the phase with frequency ξ into the
discussions, we expect that functions of the form†

f(P ) = e(−
1
2+

i
2 ξ)b(P )

are the relevant elementary waves on the hyperbolic plane. This is indeed the
case, so we will have to define the so-called Busemann function b(P ) more
carefully (we also refer to Busemann’s monograph [7]).

By varying both the frequency and the position of the loudspeakers on the
boundary of the hyperbolic plane, we again expect that any sound distribu-
tion on the plane can be produced as a superposition of elementary waves.

Exercise 9.44. Repeat (a) and (b) from Exercise 9.43 for H.

9.4.3 The Busemann Function

In the upper half-plane model H, the desired function takes a particularly
easy form. Indeed, if we move the loudspeaker L simply up to the point ∞
in ∂H, then the concentric circles degenerate to horizontal lines near i, as in
Figure 9.6.

ii

Fig. 9.6: On the left we see that the concentric circles with centre L = yi for
large y are almost horizontal Euclidean lines. On moving y to ∞, these become
horizontal Euclidean lines or horizontal horocycles in the hyperbolic plane H.

Definition 9.45 (Busemann function for∞ ∈ ∂H). The Busemann func-
tion on H with respect to ∞ ∈ ∂H (and origin i ∈ H) is defined for z ∈ H
by

bH∞(z) = − logℑ(z).
† As earlier, we normalize the meaning of frequency in the following discussions to simplify
some of the formulas arising.
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We note that the point ∞ ∈ ∂H should be thought of as being the point
‘at infinity’ that is higher up than any z ∈ H. Roughly speaking, bH∞(z)
is comparing the distance of z and of i to ∞ (both of which are of course
infinite). More precisely, bH∞(z) measures the hyperbolic distance between the
horizontal horocycle at z = x + iy ∈ H and the horizontal horocycle at our
designated origin i, given by

d(iy, i) =

∣∣∣∣
∫ y

1

dy

y

∣∣∣∣ = | log y|.

We should think of bH∞(z) as an oriented relative distance, since bH∞(z) > 0
means that z is further from ∞ than i is, while bH∞(z) < 0 means that i is
further away from ∞.

Using the discussion of Section 9.4.2 as in Figure 9.7, we are now led to
the following definition.

Definition 9.46 (Hyperbolic wave). We define the hyperbolic wave func-
tion coming from ∞ with frequency ξ ∈ R (normalized for the origin i ∈ H)
to be

χ∞,ξ(z) = e(−
1
2+

i
2 ξ)b

H
∞(z) = ℑ(z) 1

2− i
2 ξ

for all z ∈ H.

i

yi

Fig. 9.7: We think of a hyperbolic wave coming from∞ with horizontal horocycles
being the wave fronts. Since an interval of Euclidean length 1 of the horizontal
horocycle with vertical coordinate y ∈ (0,∞) has hyperbolic length 1

y
, the energy

of the wave spreads over a larger region as it spreads down and so its intensity
decreases, as in Definition 9.46.

We note that by definition of Möbius transformations in (8.3) and the
description of ∆B in (8.22) we have

χ∞,ξ(b
−1.z) = ℑ(e−2t(z − x)

) 1
2− i

2 ξ

= e−t(1−iξ)ℑ(z) 1
2− i

2 ξ = ∆B(b)
1
2χξ(b)χ∞,ξ(z)

(9.30)
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for all b = uxat ∈ B and z ∈ H. These formulas suggest a possible link
between the hyperbolic wave of frequency ξ and the principal series repre-
sentation πξ corresponding to the frequency parameter ξ (see Section 9.3),
which we will explain after defining the hyperbolic Fourier transform.

We also note that the identifications

B ∋ b = uxat 7−→ bK ∈ SL2(R)/K 7−→ z = b.i = x+ e2ti ∈ H

are measure-preserving by our choice of the Haar measure mB on B in Sec-
tion 8.3.5 and the normalizationmK(K) = 1. We will also simply write m for
the Haar measure m = mB ×mK on SL2(R) = BK, and will write

∫
G
· dm

for integration over G = SL2(R).

9.4.4 The Hyperbolic Fourier Transform

We recall from Section 8.3.1 that the action of SL2(R) on H by Möbius
transformations preserves the hyperbolic area measure defined by

dvol =
dxdy

y2
.

By Proposition 1.3 this gives rise to a Koopman unitary representation
of SL2(R) on L2(H) defined by

(
πH
g (f)

)
(z) = f(g−1.z)

for g ∈ SL2(R), f ∈ L2(H), and z ∈ H. We note that πH
−I = I since

(−I).z =
−1z + 0

0z − 1
= z

for all z ∈ H, so that πH is an even representation. We also recall that we
may use H ∼= SL2(R)/K to identify L2(H) with the subspace of L2(SL2(R))
consisting of all right K-invariant functions. Under this identification, πH

becomes the restriction of the left regular representation λSL2(R) to this sub-
space. In particular, πH is tempered, and has uniform decay exponent 1 by
Theorem 8.31.

In analogy to the definition of the radial Mellin transform in Defini-
tion 9.35, and motivated by the discussions in Sections 9.4.2 and 9.4.3, we
are led to the following definition.

Definition 9.47 (Hyperbolic Fourier transform). We define the hyper-
bolic Fourier transform of f at (h, ξ) for f ∈ L2

vol(H), h ∈ SL2(R), and a
frequency parameter ξ ∈ R, by
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f̂
hyp

(h, ξ) =

∫

H

f(h.z)χ∞,ξ(z) dvol(z)=

∞∫

0

∞∫

−∞

f(h.(x+ iy))y
1
2+

i
2 ξ

dxdy

y2
.

As with the (radial) Fourier transform, this may not be a well-defined
Lebesgue integral but, as we will see, can be defined for almost every (h, ξ) by
an isometric extension of the transform on Cc(H). We note that the measure-
preserving substitution w = h.z in the definition implies that

f̂
hyp

(h, ξ) =

∫

H

f(w)χ∞,ξ(h−1.w) dvol(w). (9.31)

Hence we will think of f̂
hyp

(h, ξ) as the correlation of f with the hyperbolic
wave function H ∋ w 7→ χ∞,ξ(h

−1.w) which we think of as ‘coming from h.∞
normalized for the point h.i’.
Lemma 9.48 (Equivariance properties). For f ∈ Cc(H) the hyperbolic

Fourier transform f̂
hyp

is well-defined and satisfies

πH
g f
∧

hyp

(h, ξ) = f̂
hyp

(g−1h, ξ)

and

f̂
hyp

(hb, ξ) = χξ(b)∆B(b)
1
2 f̂

hyp

(h, ξ)

for all g ∈ SL2(R), (h, ξ) ∈ SL2(R)× R and b ∈ B = AU .

In other words, the lemma says that for any ξ ∈ R the map

Cc(H) ∋ f 7−→ f̂
hyp

(·, ξ) ∈ Heven
ξ

is equivariant between the Koopman representation and the principal series
representation πξ,e.

Proof of Lemma 9.48. For g, h ∈ SL2(R) and ξ ∈ R we have

πH
g (f)
∧

hyp

(h, ξ) =

∫

H

(
πH
g f
)
(h.z)χ∞,ξ(z) dvol(z)

=

∫

H

f(g−1h.z)χ∞,ξ(z) dvol(z)

= f̂
hyp

(g−1h, ξ).

Moreover, for b = uxat ∈ B we also have
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f̂
hyp

(hb, ξ) =

∫

H

f
(
h.(b.z))χ∞,ξ(z) dvol(z)

=

∫

H

f(h.w)χ∞,ξ(b−1.w) dvol(w)

= ∆B(b)
1
2χξ(b)

∫

H

f(h.w)χ∞,ξ(w) dvol(w)

by using the measure-preserving substitution w = b.z and (9.30), which
proves the lemma. �

We wish to explain Lemma 9.48 in another, more convenient, way using
convolutions. For this, we let g = kb ∈ KB = SL2(R) with b = uxat ∈ B and
obtain

χ∞,ξ(g
−1.i) = χ∞,ξ(b

−1.i) = e−t+itξ = Fξ(b) = Fξ(g)

where Fξ = Fξ,0 ∈ Heven
ξ is defined in (9.20). We also identify χ∞,ξ with the

right K-invariant function

χ∞,ξ : SL2(R) ∋ g 7−→ χ∞,ξ(g.i).
Recalling that SL2(R) is unimodular, we can use the involution of Sec-
tion 1.4.1 to put the above into the form

χ∗
∞,ξ = Fξ. (9.32)

The identification between functions on H with right SO2(R)-invariant
functions on SL2(R) allows us to use convolutions in L1(SL2(R)) as discussed
in Section 1.4.1 for functions on H. We will however also use convolutions of
functions in Cc(SL2(R)) and C(SL2(R)), giving rise to functions in C(SL2(R))
(see Exercise 1.46).

Lemma 9.49 (Convolution formula). For a function f ∈ Cc(H) we have

f̂
hyp

(h, ξ) = f ∗ Fξ(h) =
∫

G

f(g.i)Fξ(g
−1h) dmG(g)

for all (h, ξ) ∈ SL2(R)× R.

We note that Lemma 9.49 implies both claims of Lemma 9.48. In-
deed, f ∗ Fξ ∈ Hξ since Fξ ∈ Hξ and Hξ is defined by a formula using
the right regular representation restricted to B, which commutes with the
left convolution. Similarly, the equivariance under the Koopman representa-
tion (or, equivalently, under the left regular representation) also follows from
the properties of convolutions.

Proof of Lemma 9.49. For a function f ∈ Cc(H) and (h, ξ) ∈ SL2(R)× R
we have
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f̂
hyp

(h, ξ) =

∫

H

f(w)χ∞,ξ(h
−1.w) dvol(w) (by (9.31))

=

∫

G

f(g.i)χ∗
∞,ξ(g

−1h) dm(g)

=

∫

G

f(g.i)Fξ(g−1h) dm(g) = f ∗ Fξ(h), (by (9.32))

where we also extended integration from w = g.i ∈ H to g ∈ SL2(R) us-
ing mK(K) = 1. �

Lemma 9.50 (Rapid decay of transform). For any function f ∈ C∞
c (H),

we have ∥∥R ∋ ξ 7−→ ξℓf̂
hyp

(I, ξ)
∥∥
∞ <∞

for any ℓ ∈ N0.

Proof. We first recall that for F ∈ C∞
c (R) we have

‖R ∋ ξ 7−→ ξℓ
̂
F (ξ)‖∞ ≪ℓ ‖F (ℓ)‖1 (9.33)

by partial integration and induction on ℓ (see, for example, [24, Prop. 9.43]).

To apply this, we rewrite the definition of f̂
hyp

using the substitution y = e2t

with dy
y = 2dt, which gives

f̂
hyp

(I, ξ) =

∫

H

f(z)χ∞,ξ(z)
dxdy

y2

=

∫ ∞

0

∫ ∞

−∞
f(x+ iy) dx y−

1
2 y

i
2 ξ

dy

y

=

∫ ∞

−∞

∫ ∞

−∞
f
(
x+ ie2t

)
dx 2e−t

︸ ︷︷ ︸
=F (t)

eitξ dt = F̂
(

1
2π ξ
)
.

Differentiation under the integral sign shows that the function F ∈ Cc(R) is
indeed smooth, so that (9.33) proves the lemma. �

9.4.5 The Hyperbolic Fourier Inversion Formula

As explained at the end of Section 9.4.2, we expect to be able to write a given
function on H as a superposition of elementary waves z 7→ χ∞,ξ(k

−1.z) of
various frequencies ξ emanating from the boundary points k.∞ ∈ ∂H. For this

the hyperbolic Fourier transform f̂
hyp

(k, ξ) for a pair (k, ξ) ∈ K × R should
be related to the desired volume at k.∞ ∈ ∂H for frequency ξ. Assuming
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smoothness and compact support of the original function ensures that the
desired integral representation converges.

Theorem 9.51 (Hyperbolic Fourier inversion). Let f ∈ C∞
c (H). Then

f(z) =
1

16π

∫

R

∫

K

f̂
hyp

(k, ξ)χ∞,ξ(k
−1
.z) dmK(k)ξ tanh

πξ

2
dξ

for all z ∈ H.

The proof will rely on some elementary integral manipulations, Fourier
inversion on R (applied in a surprising way), and a contour integration to
determine the correct volume amplification factor ξ tanh

(
πξ
2

)
for ξ ∈ R. To

reduce the complexity of the problem, we first consider a special class of
functions.

Definition 9.52 (Spherical functions). A function f : H → C is called
spherical if f(k.z) = f(z) for all k ∈ K and z ∈ H.

We note that due to the equivariance property in Lemma 9.48 the hyper-
bolic Fourier transform of a spherical function is again invariant under K.
Because of this, for a spherical function f we will also use the simplified
notation

f̂
hyp

(ξ) =

∫

H

f(z)χ∞,ξ(z) dvol(z)

satisfying

f̂
hyp

(k, ξ) =

∫

H

f(k.z)χ∞,ξ(z) dvol(z) = f̂
hyp

(ξ) (9.34)

for all (k, ξ) ∈ K × R by Definitions 9.47 and 9.52 above. Recall that

Lemma 9.48 also shows that the function f̂
hyp

(·, ξ) belongs to Heven
ξ . With

this, (9.34) becomes

f̂
hyp

(·, ξ) = f̂
hyp

(ξ)Fξ(·), (9.35)

where Fξ is the extension of 1K to an element of Heven
ξ (the case n = 0

in (9.20)).
The following lemma gives another connection between the hyperbolic

Fourier transform and πξ, or more precisely its matrix coefficient φξ = ϕπ
ξ

Fξ
.

Lemma 9.53 (Matrix coefficient giving symmetry). Let f ∈ Cc(H) be
a spherical function. Then

f̂
hyp

(ξ) =

∫

H

fφξ dvol(z) (9.36)

for all ξ ∈ R. Moreover, we have φξ = φ−ξ and

f̂
hyp

(ξ) = f̂
hyp

(−ξ)
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for all ξ ∈ R.

Proof. Using (9.34), the normalized Haar measure mK on K, the convolu-
tion formula in Lemma 9.49, and Fubini’s theorem we have

f̂
hyp

(ξ) =

∫

K

f̂
hyp

(k, ξ) dmK(k)

=

∫

K

∫

G

f(g.i)Fξ(g−1k) dmG(g) dmK(k)

=

∫

G

f(g.i)
∫

K

Fξ(g
−1k)Fξ(k) dmK(k)

︸ ︷︷ ︸
=〈πξgFξ,Fξ〉=φξ(g)

dmG(g),

which proves (9.36).
Finally, by Theorem 9.31, πξ,e and π−ξ,e are unitarily isomorphic. Since

the vector F±ξ ∈ Heven
±ξ is, up to scalar multiples, the unique K-fixed vector

and both have unit length, it follows that

φ−ξ = ϕπ
−ξ,e

F−ξ
= ϕπ

ξ,e

Fξ
= φξ.

Together with (9.36), this gives the lemma. Alternatively, one may also apply
Proposition 9.19 and Lemma 9.33. �

We note that we are going to use the assumption that f ∈ C∞
c (H) is

spherical to reduce the number of free variables in the proof of the Fourier
inversion formula. In fact, f is spherical if and only if it can be written as

f(z) = Fd
(
dhyp(z, i)

)

for z ∈ H, where Fd : [0,∞) → C is a function, and dhyp denotes the hyper-
bolic metric on H (see Lemma 8.16). This follows from the transitivity of the
action of K on every circle with centre i.

In terms of the upcoming integral substitutions, it is better to consider
instead of dhyp(z, i) the closely related expression

r(z) = cosh2
(
1
2dhyp(z, i)

)
= 1

2 cosh
(
dhyp(z, i)

)
+ 1

2 (9.37)

for z ∈ H, where we have used the identity

cosh2 t =

(
et + e−t

2

)2

=
1

2
cosh(2t) +

1

2

for t = 1
2dhyp(z, i). Once more every spherical function f : H → C can be

written in the form
f(z) = F (r(z))

for all z ∈ H and for some function F : [1,∞)→ C.
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Lemma 9.54 (Inversion at i for spherical functions). For a spherical
function f ∈ C∞

c (H) we have

f(i) =
1

16π2

∫

R

f̂
hyp

(ξ)ξ

∫

R

sin ξt

sinh t
dt dξ.

Proof. As explained above, for the given spherical function f ∈ C∞
c (H)

there exists a continuous function F ∈ Cc([1,∞)) with f(z) = F (r(z)) for
all z ∈ H. In fact we can define F by restricting f to {yi | y > 0} and an
appropriate coordinate change. Indeed, if y = e2t, then dhyp(e

2ti, i) = 2|t|
and r(z) = cosh2 t, which leads to the definition

F (r) = f
(
ie2 arcosh

√
r
)

for r ∈ [1,∞). Equivalently, we have F (cosh2 t) = f(ie2t) for t ∈ R, and,
since f is spherical, more generally, F (r(z)) = f(z) for all z ∈ H.

Using the formula for dhyp(·, ·) in Lemma 8.16 we also have, for r(z) as
in (9.37),

r(z) =
1

2

(
1 +
‖z − i‖2

2y

)
+

1

2

=
1

2

(
1 +

x2

2y
+

(y − 1)2

2y

)
+

1

2

=
1

2

(
1 +

x2

2y
+
y + y−1

2
− 1

)
+

1

2
=

1

2
+
y + y−1

4
+
x2

4y
.

Below we will also use the coordinates (x, t) ∈ R2 for z = x+ ie2t ∈ H, which
gives

r(z) =
1

2
+

e2t + e−2t

4
+

1

4
x2e−2t = cosh2 t+

1

4
x2e−2t.

For our functions f and F , this gives

F
(
cosh2 t+ 1

4x
2e−2t

)
= f(x+ ie2t)

for x, t ∈ R.
We now use this identity in the formula for the hyperbolic Fourier trans-

form, and obtain

f̂
hyp

(ξ) =

∫

H

f(x+ iy)y
1
2+

1
2 iξ

dxdy

y2

=

∫

R

∫

R

F
(
cosh2 t+ 1

4x
2e−2t

)
et+iξte−4t dx 2e2t dt

= 2

∫

R

∫

R

F
(
cosh2 t+ 1

4x
2e−2t

)
dx e−teiξt dt
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by using y = e2t and dy = 2e2t dt. We now set u = 1
2e

−tx with 2 du = e−t dx
to arrive at

f̂
hyp

(ξ) = 4

∫

R

eiξt
∫

R

F
(
cosh2 t+ u2

)
du dt. (9.38)

We use the inner integral to define the function

Φ(s) =

∫

R

F
(
s+ u2

)
du

for s ∈ [1,∞) and the composition

Ψ(t) = Φ(cosh2 t) =

∫

R

F
(
cosh2 t+ u2

)
du

for t ∈ R. We note that Φ ∈ Cc([1,∞)) and Ψ ∈ Cc(R).
With the function Ψ to hand, we realize that f̂

hyp

is essentially the Fourier
transform of Ψ . More precisely, we may reformulate (9.38) as

f̂
hyp

(ξ) = 4

̂
Ψ

(
1

2π
ξ

)
(9.39)

for all ξ ∈ R.
By Lemma 9.50, we know that f̂

hyp

decays rapidly. Hence we may apply
Fourier inversion on R, and the substitution ξ = 2πζ to obtain from (9.39)
that

Ψ(t)=

∫

R

̂
Ψ(ζ)e−2πiζt dζ=

1

2π

∫

R

̂
Ψ

(
1

2π
ξ

)
e−iξt dξ=

1

8π

∫

R

f̂
hyp

(ξ)e−iξt dξ

for all t ∈ R. By Lemma 9.53 we have f̂
hyp

(ξ) = f̂
hyp

(−ξ), which turns the
above into

Φ(cosh2 t) = Ψ(t) =
1

8π

∫

R

f̂
hyp

(ξ) cos(ξt) dξ

Using the rapid decay of f̂
hyp

in Lemma 9.50 again, we may differentiate
under the integral to obtain

Ψ ′(t) = − 1

8π

∫

R

f̂
hyp

(ξ)ξ sin(ξt) dξ (9.40)

for t ∈ R. Using the chain rule for Ψ(t) = Φ(cosh2 t), we also have

Ψ ′(t) = Φ′(cosh2 t)2 cosh t sinh t

for t ∈ Rr{0}. We divide this by 2 sinh t to obtain, with (9.40),

Φ′(cosh2 t) cosh t =
Ψ ′(t)

2 sinh t
= − 1

16π

∫

R

f̂
hyp

(ξ)ξ
sin ξt

sinh t
dξ (9.41)
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for t ∈ Rr{0}.
Moreover, note that

lim
t→0

sin ξt

sinh t
= ξ

and ∣∣∣∣
sin ξt

sinh t

∣∣∣∣ =
∣∣∣∣
sin ξt

t

∣∣∣∣
t

sinh t
6 |ξ| t

sinh t
6 |ξ| (9.42)

by the mean-value theorem applied to the function R ∋ t 7→ sin ξt. To-
gether with Lemma 9.50, this shows that Φ′ extends continuously from (1,∞)
to [1,∞). It follows from the mean value theorem for Φ that Φ also has a one-
sided derivative as s = 1.

The Fourier inversion formulas above allow us to obtain the value

Φ(1) = Ψ(0) =

∫

R

F (1 + u2) du

from the hyperbolic Fourier transform, but we wish instead to obtain the
value F (1) = f(i) of the integrand F in the definition of Φ. To obtain this,
we rely on some stunning but elementary integration trickery. In fact, we
claim that one can recover F from Φ by the formula

F (s) = − 1

π

∫

R

Φ′(s+ v2) dv (9.43)

for all s > 1.
To see this, note first that f ∈ C∞

c (H) implies that F |(1,∞) is smooth, that

Φ′(s) =

∫

R

F ′(s+ u2) du

and

Φ′(s+ v2) =

∫

R

F ′(s+ u2 + v2) du

for all s > 1 and v ∈ R. Integrating the latter over v ∈ R, we obtain

∫

R

Φ′(s+ v2) dv =

∫

R2

F ′(s+ u2 + v2) du dv︸ ︷︷ ︸
R dR dθ

= 2π

∫ ∞

0

F ′(s+R2)R dR

= π

∫ ∞

0

F ′(s+ ρ) dρ,

where we used polar coordinates (R, θ) for (u, v) ∈ R2 and the substitu-
tion ρ = R2. For the latter integral we may now apply the fundamental
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theorem of calculus. Since F ∈ Cc([1,∞)), this takes the form

∫ ∞

0

F ′(s+ ρ) dρ = −F (s)

for all s > 1, which proves the claim in (9.43) for s > 1. Since F and Φ′ both
lie in Cc([1,∞)), this extends by continuity to s = 1.

We now set s = 1 in (9.43), substitute v = sinh t with dv = cosh t dt, and
combine the resulting integral with (9.41), which leads to

F (1) = − 1

π

∫

R

Φ′(1 + v2︸ ︷︷ ︸
=cosh2 t

) dv

= − 1

π

∫

R

Φ′(cosh2 t) cosh t dt

=
1

16π2

∫

R

(∫

R

f̂
hyp

(ξ)ξ
sin ξt

sinh t
dξ

)
dt.

Recall that by Lemma 9.48 we have

∣∣∣f̂
hyp

(ξ)
∣∣∣≪f

1

(1 + ξ2)2
.

Together with (9.42), we obtain

∣∣∣∣f̂
hyp

(ξ)ξ
sin ξt

sinh t

∣∣∣∣ 6
ξ2

(1 + ξ2)2
t

sinh t
,

which is easily seen to be integrable over R2. This implies that the integrand
above lies in L1(R2). Hence we may apply Fubini’s theorem and obtain, with

f(i) = F (1) =
1

16π2

∫

R

f̂
hyp

(ξ)ξ

∫

R

sin ξt

sinh t
dt dξ,

the lemma. �

Lemma 9.54 explains why the following result is of interest to us.

Lemma 9.55 (Volume factor). For ξ ∈ R we have

∫

R

sin ξt

sinh t
dt = π tanh

(
πξ

2

)
. (9.44)

Proof. To prove (9.44), we will apply the Cauchy integral formula to the
meromorphic function f defined by

f(z) =
eiξz

sinh z
. (9.45)
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We start with some elementary observations about the function f . For the
point z = x + iy with x, y ∈ R we may apply the reverse triangle inequality
to see that

| sinh z| =
∣∣∣∣
exeiy − e−xe−iy

2

∣∣∣∣ >
ex − e−x

2
= sinhx.

By symmetry, this gives
| sinh z| > | sinhx|, (9.46)

which implies that f(x + iy) defined in (9.45) decays rapidly for |x| → ∞
as long as |y| is bounded. The estimate (9.46) also shows that sinh(x + iy)
can only vanish when x = 0. Since sinh(iy) = i sin y for y ∈ R, we see that f
has poles precisely at the points in Zπi. At 0 the residue of f is given by 1.
Finally, we have

sinh(z + πi) =
ez+πi + e−z−πi

2
= − sinh z

for z ∈ C, which implies that

f(z + πi) =
eiξ(z+πi)

− sinh z
= −e−ξπf(z) (9.47)

for z ∈ Cr(Zπi).
We now integrate f over the closed path

γ = γbottom ⊔ γright ⊔ γtop ⊔ γtop ⊔ γleft

indicated in Figure 9.8.

−R
0

γbottom
R

γright

R + πi

γtop

πi−R+ πi

γleft

Fig. 9.8: The closed path γ = γR,ε consists of four pieces. The first path γbottom
goes from −R to R but avoids the pole at 0 (but including it inside the contour)
by following a semi-circle of radius ε around 0. The paths γright, γtop, and γleft
go as indicated via R+ πi and −R+ πi back to −R, again avoiding the pole at πi
(but leaving it outside the contour).

The description of the poles of f given above now implies that
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∮

γ

f(z) dz = 2πi

independent of R > 1 and ε ∈ (0, 1). The decay properties of f discussed
above also imply that

lim
R→∞

∮

γright

f(z) dz = lim
R→∞

∮

γleft

f(z) dz = 0.

Moreover, we defined the paths γbottom and γtop so that γbottom+ πi is equal
to γtop except for the orientation, which is reversed. Together with (9.47) this
gives ∮

γtop

f(z) dz = −
∮

γbottom

f(z + πi) dz = e−ξπ
∮

γbottom

f(z) dz

again independently of R and ε. Putting this together, we obtain

2πi = lim
R→∞

∮

γ

f(z) dz

= lim
R→∞

(
1 + e−ξπ

) ∮

γbottom

f(z) dz

=
(
1 + e−ξπ

)



−ε∫

−∞

eiξt

sinh t
dt+

∞∫

ε

eiξt

sinh t
dt+

∮

γε

f(z) dz


, (9.48)

where γε : [π, 2π] ∋ t 7→ εeit is the semi-circular path appearing in γbottom.
To understand the asymptotics of

∮

γε

f(z) dz

as ε decreases to 0, we note that f(z) = 1
z + h(z) for a function h that is

holomorphic at 0. By continuity of h, we have

lim
εց0

∮

γε

h(z) dz = 0,

so we only have to calculate

∮

γε

1

z
dz =

2π∫

π

1

εeit
εieit dt = πi.
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We now take the imaginary part in (9.48) and let ε decrease to 0, which gives

2π=
(
1 + e−ξπ

)



∞∫

−∞

sin ξt

sinh t
dt+ π


=

(
1 + e−ξπ

) ∞∫

−∞

sin ξt

sinh t
dt+π+e−ξππ.

Solving this equation for the integral gives

∞∫

−∞

sin ξt

sinh t
dt =

1− e−ξπ

1 + e−ξπ
π =

eξπ/2 − e−ξπ/2

eξπ/2 + e−ξπ/2
π,

and hence the lemma. �

Having obtained the hyperbolic Fourier inversion formula at i and for
spherical functions in the last two lemmas, we are now in a position to prove
the general case.

Proof of Theorem 9.51. Let f ∈ C∞
c (H). Combining Lemmas 9.54

and 9.55, we see that if f ∈ C∞
c (H) is spherical, then

f(i) =
1

16π

∫

R

f̂
hyp

(ξ)ξ tanh

(
πξ

2

)
dξ.

To use this for a general f ∈ C∞
c (H), we define

fsph(z) =

∫

K

f(k.z) dmK(k).

Since k.i = i for all k ∈ K, and we may differentiate under the integral sign,
it follows that fsph ∈ C∞

c (H) has fsph(i) = f(i). Applying Lemma 9.55 to this
spherical function, we obtain

f(i) = fsph(i) =
1

16π

∫

R

f̂
hyp

sph (ξ)ξ tanh

(
πξ

2

)
dξ. (9.49)

Using Fubini’s theorem and the definition of the hyperbolic Fourier transform,
we also have

f̂
hyp

sph
(ξ) =

∫

H

fsph(z)χ∞,ξ(z) dvol(z)

=

∫

K

∫

H

f(k.z)χ∞,ξ(z) dvol(z) dmK(k)

=

∫

K

f̂
hyp

(k, ξ) dmK(k).

Putting this into (9.49), we obtain
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f(i) =
1

16π

∫

R

∫

K

f̂
hyp

(k, ξ)ξ tanh

(
πξ

2

)
dmK(k) dξ.

Now let h ∈ SL2(R) be arbitrary and define f̃ = πH
h f . Applying the previous

formula to f̃ and the equivariance claim in Lemma 9.48, we obtain

f(h−1.i) = (πH
h f
)
(i) =

1

16π

∫

R

∫

K

π̂H
h f

hyp

(k, ξ)ξ tanh(πξ2 ) dmK(k) dξ

=
1

16π

∫

R

∫

K

f̂
hyp

(h−1k, ξ) dmK(k)ξ tanh(πξ2 ) dξ.

Next we note that
∫

K

f̂
hyp

(h−1k, ξ) dmK(k) =
〈
πξ,eh f̂

hyp

(·, ξ), Fξ
〉
Hξ

=
〈
f̂

hyp

(·, ξ), πξ,eh−1Fξ

〉
Hξ

=

∫

K

f̂
hyp

(k, ξ)Fξ(hk) dmK(k)

=

∫

K

f̂
hyp

(k, ξ)χ∞,ξ(k
−1h−1.i) dmK(k)

by (9.32). Combining this with the above, and setting h−1.i = z, we obtain

f(z) =
1

16π

∫

R

∫

K

f̂
hyp

(k, ξ)χ∞,ξ(k
−1.z) dmK(k)ξ tanh

(
πξ
2

)
dξ,

which gives the theorem. �

9.4.6 The Hyperbolic Fourier Transform in the Disc Model

We recall from Section 8.3.3 that the action of SL2(R) on H is conjugated to
the action of SU1,1(R) on D by the map

Φ : C ∋ w 7−→
(
1 i
i 1

)
.w =

w + i

iw + 1
∈ C

with Φ(D) = H, Φ(0) = i being our choice of origin in H, and Φ(i) = ∞.
Using this, we can move the Busemann function to D.

Definition 9.56 (Busemann function for i ∈ ∂D). The Busemann func-
tion on D with respect to i ∈ ∂D (and origin 0 ∈ D) is defined by

bDi (w) = bH∞(Φ(w)) = − log

(
1− |w|2
|w − i|2

)
.
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We now verify that the two formulas in Definition 9.56 above are in fact
equivalent. Indeed, for w = x+ iy we have

ℑΦ(w) = ℑ w + i

iw + 1
= ℑ (x+ iy + i)(−ix− y + 1)

(ix− y + 1)(−ix− y + 1)

= ℑ−ix
2 − iy2 + iy − iy + i

x2 + (y − 1)2
=

1− x2 − y2
x2 + (y − 1)2

=
1− |w|2
|w − i|2

as claimed.
Next we recall that

kθ =

(
e−iθ

eiθ

)
∈ K < SU1,1(R)

rotates D so that our origin 0 ∈ D is fixed, and kθ.i = e−2iθi. This suggests
the following more general definitions.

Definition 9.57 (Busemann functions and hyperbolic waves on D).
The Busemann function on D with respect to p ∈ ∂D (and origin 0 ∈ D) is
defined by

bDp (w) = − log

(
1− |w|2
|w − p|2

)
.

Moreover, the hyperbolic wave coming from p and with frequency ξ ∈ R
(normalized for the origin 0 ∈ D) is defined by the function

χp,ξ(w) = e(−
1
2+

i
2 ξ)b

D
p(w) =

(
1− |w|2
|w − p|2

) 1
2− i

2 ξ

.

We imagine that the hyperbolic wave χp,ξ(w) is the sound produced by a
loudspeaker at p ∈ ∂D using frequency ξ ∈ R. The following reformulation
of Theorem 9.51 establishes our goal to obtain any function f ∈ C∞

c (D) as
a superposition of such waves using loudspeakers at any point p ∈ ∂D, and
using all possible frequencies ξ ∈ R.

Theorem 9.58 (Fourier inversion on d). Let f ∈ C∞
c (d) and define the

abbreviation

〈f, χp,ξ〉 =
∫

d

fχp,ξ dvol

for p ∈ ∂d and ξ ∈ R. Then

f(z) =
1

16π

∫

R

∫

∂d

〈f, χp,ξ〉χp,ξ(z) dp ξ tanh
(
πξ
2

)
dξ

for all z ∈ d, where dp denotes the normalized Lebesgue measure on ∂d.
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9.4.7 The Unitary Isomorphism

We now show that the hyperbolic Fourier transform is in fact a unitary
isomorphism between the Koopman representation πH and an integral of all
even principal series representations as in Definition 9.38.

Theorem 9.59 (Unitary isomorphism). The hyperbolic Fourier trans-
form satisfies the identity

‖f‖2L2(H) =
1
8π

∫

[0,∞)

∥∥f̂ hyp

(·, ξ)
∥∥2
Hξ
ξ tanh(πξ2 ) dξ

for every f ∈ Cc(H). Moreover, it extends to an equivariant unitary isomor-
phism between πH and

πµ,e =

∫

[0,∞)

πξ,e dµ(ξ),

where
dµ(ξ) = 1

8π ξ tanh(
πξ
2 ) dξ,

and dξ denotes the Lebesgue measure on [0,∞).

The proof of the theorem above will be split into two parts. We start the
proof of the isometric property on p. 456, and surjectivity will be established
on p. 462. We start with some preparatorymaterial for the isometric property.

We note that the left regular representation and right convolutions com-

mute, and that f̂
hyp

(·, ξ) belongs to the irreducible space Heven
ξ for any func-

tions f ∈ Cc(H) and ξ ∈ R (see Lemma 9.48 and Theorem 9.31). Together
with the equivariance properties of the hyperbolic Fourier transform, we

might expect for a spherical function ψ ∈ Cc(H) that f̂ ∗ ψ hyp

(·, ξ) to be

a multiple of f̂
hyp

(·, ξ) by Schur’s lemma (Theorem 1.29). We refer to Fig-
ure 9.9 for the geometric meaning of f ∗ ψ for spherical ψ.

Lemma 9.60 (Right convolution by spherical functions). Assume
that f ∈ Cc(H) and ψ ∈ C(H). Then f ∗ψ is again right K-invariant and so
can be considered a function in C(H).

Exercise 9.61. Show that if ψ ∈ Cc(H) is spherical, then

f̂ ∗ ψ hyp
(h, ξ) = ψ̂

hyp
(ξ)f̂

hyp
(h, ξ)

for all (h, ξ) ∈ SL2(R)× R.

Proof of Lemma 9.60. By definition of convolution and the identification
of right K-invariant functions on SL2(R) and functions on H, we have
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ψ

z
supp f ∗ ψ

Fig. 9.9: Suppose ψ is the normalized characteristic function of a ball around the
point i ∈ H (or a continuous approximation of it). The geometric meaning of the
value f ∗ ψ(z) is, in this case, that the ball is moved to z ∈ H and f is averaged
over it. This creates a blurred-out version of f with support in a neighbourhood
(drawn in light grey) of the original support (drawn in dark grey).

f ∗ ψ(g) =
∫

G

f(h.i)ψ(h−1g.i) dm(h)

for g ∈ SL2(R). It follows that f ∗ ψ is also right K-invariant. This, together
with Exercise 1.46, gives the first part of the lemma. We note that we may
now also write

f ∗ ψ(z) =
∫

G

f(h.i)ψ(h−1.z) dm(h)

by using z = g.i ∈ H as the argument instead of g ∈ SL2(R). �

Lemma 9.62 (Symmetry on Cc(H)). Let f ∈ Cc(H) and ξ ∈ R. Then
∫

K

∣∣f̂ hyp

(k, ξ)
∣∣2 dmK(k) =

∫

H

f ∗ φξf dvol =
∫

K

∣∣f̂ hyp

(k,−ξ)
∣∣2 dmK(k).

Proof. By Lemma 9.49 we have the convolution formula f̂
hyp

(·, ξ) = f ∗Fξ.
Combining this with Fubini’s theorem, we obtain for

∫
K
|f̂ hyp

(k, ξ)|2 dmK(k)
the formula
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∫∫

K G

f(h1.i)Fξ(h−1
1 k) dm(h1)

∫

G

f(h2.i)Fξ(h−1
2 k) dm(h2) dmK(k)

=

∫∫

GG

f(h1.i)
∫

K

Fξ(h
−1
1 k)Fξ(h

−1
2 k) dmK(k)

︸ ︷︷ ︸
=〈πξ

h1
Fξ,π

ξ
h2
Fξ〉Hξ

dm(h1)f(h2.i) dm(h2)

=

∫∫

GG

f(h1.i)φξ(h−1
2 h1) dm(h1)f(h2.i) dm(h2)

=

∫∫

GG

f(h1.i)φξ(h−1
1 h2) dm(h1)f(h2.i) dm(h2)

=

∫

G

f ∗ φξf dm,

where we used the fact that

φξ(g) = φξ(g
−1) = φξ(g

−1)

is real-valued (see Lemma 9.18). Since φξ = φ−ξ by Lemma 9.53, the lemma
follows. �

Proof of isometry formula in Theorem 9.59. Let f ∈ C∞
c (H). Apply-

ing the hyperbolic Fourier inversion formula (Theorem 9.51) to f and Fubini’s
theorem, we see that

‖f‖2L2(H)=

∫

H

f(z)f(z) dvol(z)

=
1

16π

∫∫∫

HRK

f̂
hyp

(k, ξ)χ∞,ξ(k
−1.z)ξ tanh(πξ2 ) dmK(k) dξf(z) dvol(z)

=
1

16π

∫∫

RK

f̂
hyp

(k, ξ)

∫

H

χ∞,ξ(k
−1.z)f(z) dvol(z)

︸ ︷︷ ︸
=f̂

hyp
(k,ξ)

dmK(k)ξ tanh(πξ2 )dξ

=
1

16π

∫

R

‖f̂ hyp

(·, ξ)‖2Hξ
ξ tanh(πξ2 ) dξ.

Applying Lemma 9.62, we can also write this in the form

‖f‖2L2(H) =
1

8π

∫

[0,∞)

∫

K

∣∣∣f̂
hyp

(k, ξ)
∣∣∣
2

dmK(k)ξ tanh(πξ2 ) dξ.
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It remains to show that this formula not only holds for all f ∈ C∞
c (H) but

also for f ∈ Cc(H).
For this we let (Bn) be a decreasing sequence of compact neighbourhoods

of I ∈ SL2(R) that form a basis of neighbourhoods of I. Using compactness
of K and continuity of conjugation, we may also suppose that Bn is invariant
under conjugation by all k ∈ K, meaning that

Bn = {khk−1 | k ∈ K,h ∈ Bn}.

Let (ψn) be an approximate identity in C∞
c (G) as in Proposition 1.43,

with suppψn ⊆ Bn for all n > 1. Replacing ψn by the function

SL2(R) ∋ g 7−→
∫

K

ψn
(
ℓgℓ−1

)
dmK(ℓ)

if necessary, we may also suppose that

ψn
(
kgk−1

)
= ψn(g) (9.50)

for all k ∈ K, g ∈ SL2(R), and n ∈ N.
Now let f ∈ Cc(H) and define

fn = f ∗ ψn ∈ C∞
c (G)

for n ∈ N. Note that by continuity of f we have

fn → f as n→∞;

supp fn ⊆ (supp f)B1 for n ∈ N.
(9.51)

We claim that fn is again right K-invariant, and so can be thought of as
a function on H. To see this, let g ∈ SL2(R), let k ∈ K, and combine (9.50)

with the substitution h̃ = hk−1 to see that

fn(gk) = f ∗ ψn(gk) =
∫

G

f(h)ψn(h
−1gk)︸ ︷︷ ︸

=ψn(kh
−1g)

dm(h)

=

∫

G

f(h̃k)︸ ︷︷ ︸
=f(h̃)

ψn(h̃
−1g) dm(h̃)

= f ∗ ψ(g) = fn(g).

For the smooth functions fn ∈ C∞
c (H), we already established the isom-

etry formula. Moreover, (9.51) shows that fn → f as n → ∞ in L2(H) by

dominated convergence. Together, these show that f̂
hyp

n |K×R, considered as
an element of Heven

µ
∼= L2(K × [0,∞), µ) forms a Cauchy sequence, which

will have an L2 limit F with
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‖F‖L2(K×R,µ) = lim
n→∞

‖f̂ hyp

n |K×[0,∞)‖L2(K×[0,∞),µ)

= lim
n→∞

‖fn‖L2(H,vol) = ‖f‖L2(H,vol).

This implies that along a subsequence f̂
hyp

n |K×R converges to F , which, to-

gether with (??), implies that F = f̂
hyp

and hence the isometry formula

‖f̂ hyp|K×[0,∞)‖L2(K×[0,∞),µ) = ‖f‖L2(H,vol).

�

Exercise 9.63. Show that f ∈ Cc(H) implies that f ∗mK = f .

It follows from the now established isometry formula for the L2-norms

of f ∈ Cc(H) and f̂
hyp|K×[0,∞) and Lemma 9.48 that the hyperbolic Fourier

transform can be extended uniquely to an equivariant isometry from L2(H)
into Heven

µ . Moreover, the image V is then a closed πµ-invariant subspace
of Heven

µ . This brings up the question of whether such subspaces can be
classified. We answer this in a slightly more general case in the following
proposition.

Proposition 9.64 (Invariant subspaces). Let µ be a σ-finite measure
on [0,∞) and define Heven

µ as in Definition 9.38. Then, for any closed πµ,e-
invariant subspace V ⊆ Heven

µ , there exists a measurable set SV ⊆ [0,∞), that
may be thought of as the ‘support’ of the subspace, so that

V =
{
F ∈ Heven

µ | F (·, ξ) = 0 for µ-almost every ξ ∈ [0,∞)rSV
}
. (9.52)

Exercise 9.65. Let µ be as above, and let V ⊆ Heven
µ be a closed subspace. Show that a

measurable subset SV ⊆ [0,∞) satisfying (9.52) is uniquely determined up to a null set by
this property, assuming it exists.

Before starting the formal proof, we outline the structure of the argument.
For simplicity, we write π = πµ,e and Hπ = Heven

µ .
We will show, in turn, the following statements.

(a) The operator Tπ = π∂(Ω) from Corollary 9.12 is given by

Tπ =M−id2 (9.53)

where M−id2 is the multiplication operator defined by

M−id2(F )(h, ξ) = −ξ2F (h, ξ)

for all (h, ξ) ∈ SL2(R)× [0,∞) and F in the domain

DM−id2
=
{
F ∈ Hπ |

∫ ∞

0

∫

K

|ξ2F (k, ξ)|2 dmK(k) dµ(ξ) <∞
}
.
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(b) We define
f0 : [0,∞) ∋ ξ 7−→ (1 + ξ2)−1

and obtain from the above that Mf0
= (I − Tπ)−1. We claim that this

multiplication operator Mf0
commutes with the centralizer C(π) of π.

(c) Using the functional calculus ofMf0
, we will prove that all multiplication

operators Mf for f ∈ L∞
µ ([0,∞)) commute with C(π).

(d) Applying this to the orthogonal projection operator PV of a π-invariant
subspace V ⊆ Hπ, we then obtain that V has L∞

µ ([0,∞))V ⊆ V , which
will allow us to conclude the proof.

We now discuss these four steps in detail.

Proof that Tπ = π∂(Ω) =Mid2 as claimed in (a). Let T > 0 and assume
that f is a function in L2

µ([0,∞)) with f(ξ) = 0 for µ-almost every ξ > T .
For an integer n ∈ 2Z we now define

Fn(h, ξ) = f(ξ)Fξ,n(h)

for (h, ξ) ∈ SL2(R)× [0,∞), where Fξ,n ∈ Heven
ξ is as defined in Lemma 9.33.

By (9.20), we have that Fξ,n(h) depends smoothly on h ∈ SL2(R) for any
value of ξ ∈ [0,∞). Moreover, for a fixed n and for ξ ∈ [0, T ] the deriva-
tives are uniformly bounded. Applying the mean value theorem, dominated
convergence, and (9.21), it follows that

πξ∂(a)Fn(h, ξ) =
n+ 1 + iξ

2
Fn+2(h, ξ) +

−n+ 1 + iξ

2
Fn−2(h, ξ). (9.54)

As in the proof of Lemma 9.33, we can now use Proposition 9.13 to conclude
that the first summand is equal to π∂(r

+)Fn and second is equal to π∂(r
−)Fn.

Using the fact that k, r+, r− span sl2(C), it follows that Fn is a smooth vector
for π, and using the formula for Ω in (9.13), we also obtain

π∂(Ω)Fn(h, ξ) = −ξ2Fn(h, ξ)

for (h, ξ) ∈ SL2(R)× [0,∞). Equivalently, the closed self-adjoint operator Tπ
satisfies (9.53) for the function Fn as above.

We now extend (9.53) to other functions F ∈ Hπ . To begin with, we may
vary n ∈ 2Z over a finite set (using different functions fn ∈ L2

µ([0,∞)) with
support in [0, T ]). Note that M−id2 is bounded on

Hπ,6T =
{
F ∈ Hπ | F (·, ξ) = 0 for µ-almost every ξ ∈ (T,∞)

}
,

and these finite sums are precisely the K-finite vectors in Hπ,6T . Hence, it
follows by continuity ofM−id2 and closedness of Tπ that (9.53) also holds for
all F ∈ Hπ,6T .

Next let F ∈ DM−id2
and define

F6T = 1[0,T ]F ∈ Hπ,6T
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460 9 Unitary Representations of SL(2)

so that
Tπ(F6T ) =M−id2(F6T ).

For T →∞ we have F6T → F and M−id2(F6T )→M−id2(F ) by dominated
convergence. Since Tπ is a closed operator, we see that (9.53) holds for all
functions F ∈ DM−id2

. Equivalently, we have M−id2 ⊆ Tπ. It is easy to see

that M−id2 is a self-adjoint (and, depending on suppµ, possibly unbounded)
operator. By Corollary 9.12 the same is true for Tπ. For two self-adjoint op-
erators, the inclusion M−id2 ⊆ Tπ actually implies equality of the operators.
Indeed, for v ∈ DM−id2

and w ∈ DTπ
, we have

〈M−id2v, w〉 = 〈Tπv, w〉 = 〈v, Tπw〉.

This shows that
DM−id2

∋ v 7−→ 〈M−id2v, w〉
is a bounded linear function, which implies that w belongs to the domain
of M∗

−id2 =M−id2 , and M−id2w = Tπw.
To summarize, we have shown that Tπ =M−id2 as claimed in (a). �

Proof that Mf0
commutes with C(π) as claimed in (b). We de-

fine f0(ξ) = (1 + ξ2)−1 for ξ ∈ [0,∞), and first show that (a) implies that

Mf0
= (I − Tπ)−1.

Indeed,
I − Tπ =M(1+id2)

is injective on its domain, maps onto Hπ, and has Mf0
as its (bounded)

inverse operator. We now show that Mf0
commutes with every equivariant

bounded operator B : Hπ → Hπ . For this, we first note that B maps every
smooth vector v to a smooth vector Bv, and we have

π∂(Ω)Bv = Bπ∂(Ω)v.

If now v ∈ DTπ
, then there exists a sequence of smooth vectors (vn)

with vn → v and π∂(Ω)vn → Tπv as n→∞. However, this implies Bvn → Bv
and π∂(Ω)Bvn → BTπv as n → ∞, and hence also TπB ⊇ BTπ. Us-
ing Mf0

= (I − Tπ)
−1, we now obtain the claim. Indeed, let v ∈ Hπ

and (I − Tπ)
−1v = w so that v = (I − Tπ)w. Then Bv = (I − Tπ)Bw,

which implies that

(I − Tπ)−1Bv = Bw = B(I − Tπ)−1v

as claimed in (b). �

Proof that Mf commutes with C(π) as claimed in (c). Since
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9.4 Two Koopman Representations of SL2(R) 461

(I − Tπ)−1 =Mf0

is already realized as a multiplication operator and f0 is injective, the follow-
ing are now relatively easy claims to prove. The measurable functional calcu-
lus for Mf0

(see [24, Sec. 12.6]) gives rise to other multiplication operators.
By the injectivity of f0, every multiplication operatorMf for f ∈ L∞

µ ([0,∞))
can be obtained from the measurable functional calculus of Mf0

. Together
with the previous claim and the properties of the measurable functional cal-
culus (see [24, Prop. 12.68]), this implies that every equivariant bounded
operator B : Hπ → Hπ commutes with Mf for f ∈ L∞

µ ([0,∞)). �

Conclusion of the proof of Proposition 9.64, as outlined in (d).
Now let V ⊆ Hπ be a closed π-invariant subspace, and let B = PV be the
orthogonal projection onto V . By invariance of V , the projection is equivariant
and, by (c) above, we have MfV ⊆ V for all f ∈ L∞

µ ([0,∞)).
Now let F ∈ V and define

SF = {ξ ∈ [0,∞) | F (·, ξ) 6= 0}.

Using invariance of V under K, we can split F into a sum of K-eigenfunctions
as

F =
∑

n∈2Z

Fn

satisfying Fn ∈ Vn for all n ∈ 2Z, and

SF =
⋃

n∈2Z

SFn .

Since Hξ contains (up to scalars) only one K-eigenfunction of weight n ∈ 2Z
(namely Fξ,n in (9.20)) there exists some fn ∈ L2

µ([0,∞)) such that

Fn(h, ξ) = fn(ξ)Fξ,n(h)

for (h, ξ) ∈ SL2(R)× [0,∞). In particular,

SFn = {ξ ∈ [0,∞) | fn(ξ) 6= 0}.

Using MfV ⊆ V for all f ∈ L∞
µ ([0,∞)), the fact that Fn ∈ V , and dominated

convergence, it follows that the function

SL2(R)× [0,∞) ∋ (h, ξ) 7−→ f(ξ)Fξ,n(h)

belongs to V for any f ∈ L2
µ([0,∞)) with {ξ | f(ξ) 6= 0} ⊆ SFn . For T > 0

we define
Sn,T = SFn ∩ [0, T ].

By (9.54) and the argument directly following it, we see that π∂(r
±) are

bounded operators on
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{F ∈ Hπ,6T | F has K-weight n}.

Since V is invariant under π∂(r
±) (where it is defined) it follows that the

function
SL2(R)× [0,∞) ∋ (h, ξ) 7−→ f(ξ)Fξ,m(h)

belongs to V for any f ∈ L2
µ([0,∞)) with {ξ | f(ξ) 6= 0} ⊆ SFn , where m,n

lie in 2Z are arbitrary. Varying m,n ∈ 2Z and the functions f ∈ L2
µ([0,∞)),

we can write any F ∈ Hπ with {ξ | F (·, ξ) 6= 0} ⊆ SF as a convergent sum
of elements of V and obtain F ∈ V .

Since V is separable, we can find a dense set {F(k) | k ∈ N} of vectors,
apply the above argument to each F(k) and obtain the same statement for

B =
⋃

k∈N

BF(k)
= {ξ ∈ [0,∞) | there exists a k ∈ N with F(k)(·, ξ) 6= 0}.

This proves the proposition. �

Exercise 9.66. Let µ be a σ-finite measure on [0,∞) as in Proposition 9.64. Show that
the centralizer of πµ,e is given by all multiplication operators Mf with f ∈ L∞

µ ([0,∞)).

The following finishes our discussions of the hyperbolic Fourier transform.

Concluding the proof of Theorem 9.59. Let µ be the measure on [0,∞)
defined by 1

8π ξ tanh ξ dξ. By the first part of the proof on p. 456, we know
that

Cc(H) ∋ f 7−→ f̂
hyp ∈ Heven

µ

is an equivariant isometry between the Koopman representation πH and the
integral πµ,e of the even principal series representation. Hence it can be ex-
tended to an equivariant isometry from L2(H) to a closed πµ,e-invariant
subspace V ⊆ Heven

µ . By Proposition 9.64, this subspace can be defined
by a measurable subset SV ⊆ [0,∞) and the formula (9.52). We show
that SV = [0,∞) (up to null sets) by finding a sequence (fn) in Cc(H),

so that for every ξ ∈ [0,∞) there exists some n ∈ N with f̂
hyp

n (·, ξ) 6= 0.
In fact we let (fn) be a sequence of spherical functions in Cc(H) with

∫

H

fn dvol = 1

for all n ∈ N, so that supp fn is a shrinking neighbourhood of i ∈ H. For
every ξ ∈ [0,∞) it now follows that

f̂
hyp

n (k, ξ) =

∫

H

fn(z)χ∞,ξ(z) dvol(z) −→ 1

as n → ∞ and for all k ∈ K by K-invariance of fn and continuity of the
function z 7→ χ∞,ξ(z) = ℑ(z)

1
2− i

2 ξ.
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Hence we have SV = [0,∞) (up to null sets), which gives V = Heven
µ

by (9.52), and Theorem 9.59 follows. �

9.5 The Complementary Series Representation

We recall from Section 9.3 that for ξ ∈ R the principal series representa-
tion πξ,e is constructed from the unitary character χξ defined by

χξ(atux) = eiξt

for atux ∈ B. Moreover, πξ,e then turned out to be an irreducible unitary
representation with Casimir eigenvalue απξ,e = −ξ2. According to the proof
of Theorem 9.22 in Section 9.2.5, there could (and, according to the statement
of the theorem, there should) be another type γs of even irreducible unitary
representation with Casimir eigenvalues αγs = s2 for s ∈ (0, 1) that we have
not yet seen. To construct γs we try to mimic the construction of πξ,e in
Definition 9.30 while attempting to ‘replace iξ by s’.

Definition 9.67 (Complementary series representation). For s ∈ (0, 1)
we define the non-unitary character χ(s) on B = {atux | t, x ∈ R} by

χ(s)(atux) = est

for atux ∈ B. The complementary series representation γs of G = SL2(R)
is initially defined as the left-regular representation on the space Vs of those
functions f : G→ C with the following properties:

(1) f is smooth, and

(2) f is even, and f(gb) = χ(s)(b)
−1∆B(b)

1
2 f(g) for all g ∈ G and b ∈ B.

The main difference between this and the construction of the principal
series representation is, of course, that we are using here non-unitary char-
acters, which means that the L2-norm on K will not be preserved under
the left-regular representation (as was the case for the principal series rep-
resentation). Instead, we will have to define a new norm and inner product
on Vs.

Theorem 9.68 (Complementary series representations). Let s ∈ (0, 1).
The regular representation on the completion H(s) of Vs defines a non-
tempered irreducible unitary representation γs with Casimir eigenvalue s2,
called the complementary series representation.
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464 9 Unitary Representations of SL(2)

9.5.1 The Space and its Inner Product

In the following, let M = {±I} be the centre of SL2(R). We will always
identify functions on K/M with even functions on K.

Lemma 9.69 (Smooth functions on K/M). Let s ∈ (0, 1). Then Vs is iso-
morphic to C∞(K/M). In fact every element f ∈ Vs is uniquely determined
by its restriction f |K ∈ C∞(K/M) and every even smooth function fK on K
can be extended via

f(katux) = fK(k)e−(s+1)t (9.55)

for katux ∈ KAU to an element of Vs. In particular, for every n ∈ 2Z the
function Fs,n defined by

Fs,n(kψatux) = e−inψ−(s+1)t (9.56)

for kψatux ∈ KAU belongs to Vs and is a K-eigenfunction with K-weight n.

Proof. We note that Definition 9.67(2) implies that any function f ∈ Vs is
uniquely determined by f |K . Clearly the map

Φ : K ×A× U ∋ (kψ, at, ux) 7−→ g = kψatux ∈ SL2(R)

is smooth, and hence f |K ∈ C∞(K/M) for all f ∈ Vs. The inverse of Φ is
also smooth, since it maps g ∈ SL2(R) first to the polar coordinates (ψ, r)
of ge1, and then to kψ ∈ K, alog r ∈ A, and a−1

log rk
−1
ψ g = ux ∈ U . This

shows that (9.55) defines a smooth function on G for any fK ∈ C∞(K/M).
Moreover, g = katux ∈ KAU and b = at0ux0

∈ B = AU implies that

f(gb) = f(kat+t0ue−2t0x+x0
)

= fK(k)e−(s+1)(t+t0)

= fK(k)e−(s+1)te−st0e−t0

= f(katux)χ(s)(b)
−1∆B(b)

1
2 ,

which shows that f ∈ Vs, as claimed in the lemma.
Applying the above to the character χ−n on K for some n ∈ 2Z defines

the function Fs,n ∈ Vs in (9.56). By definition,

(
γskθ (Fs,n)

)
(kψ) = Fs,n

(
k−1
θ kψ

)
= e−in(ψ−θ) = einθFs,n(kψ)

for all kθ, kψ ∈ K. By the first part of the proof, this shows that Fs,n has K-
weight n for γs. �

Definition 9.70 (The inner product on Vs). For s ∈ (0, 1) we define
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〈f1, f2〉Vs =
1

π2

∫ π

0

∫ π

0

f1(kθ1)f2(kθ2)

| sin(θ1 − θ2)|1−s
dθ1 dθ2 (9.57)

for f1, f2 ∈ Vs.

For now, (9.57) simply falls from the sky. We will, however, give additional
meaning to it after we have established the fundamental properties of this
inner product.

Lemma 9.71 (The inner product on Vs). For any s ∈ (0, 1), the
form (9.57) defines an inner product on Vs.

We note that the proof of this lemma will require both s > 0 and 1−s > 0.

Proof of Lemma 9.71. We note that R ∋ θ 7→ | sin θ| has period π. This
gives us

1

π2

∫ π

0

∫ π

0

dθ1 dθ2
| sin(θ1 − θ2)|1−s

=
1

π2

∫

R/Zπ

∫

R/Zπ

dθ1 dθ2
| sin(θ1 − θ2︸ ︷︷ ︸

=θ

)|1−s

=
1

π

∫

R/Zπ

dθ

| sin θ|1−s <∞

since | sin θ| ≍ |θ| as θ → 0 and s > 0 implies that
∫ 1

0
dθ
θ1−s <∞. Therefore, the

function (θ1, θ2) 7→ 1
| sin(θ1−θ2)|1−s lies in L1([0, π]2), and the integral in (9.57)

converges for all f1, f2 ∈ Vs.
Sesqui-linearity of 〈·, ·〉Vs follows directly from the definition in (9.57).

Thus it remains to show that 〈f, f〉Vs > 0 for all f ∈ Vsr{0}. The Fourier
expansion of f |K allows us to write

f =
∑

n∈2Z

cnFs,n

for some sequence of coefficients (cn) ∈ ℓ1(2Z). Using sesqui-linearity, we
obtain

〈f, f〉Vs =
∑

m,n∈2Z

cmcn〈Fs,m, Fs,n〉Vs .

We claim that m,n ∈ 2Z with m 6= n implies that 〈Fs,m, Fs,n〉Vs = 0 and
that 〈Fs,n, Fs,n〉Vs > 0 for all n ∈ 2Z. Together, these show that 〈f, f〉Vs > 0
for all f ∈ Vsr{0}.

Suppose first that m,n ∈ 2Z with m 6= n. Then
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〈Fs,m, Fs,n〉Vs =
1

π2

∫ π

0

∫ π

0

e−imθ1+inθ2

| sin(θ1 − θ2)|1−s
dθ1 dθ2

=
1

π2

∫

R/Zπ

∫

R/Zπ

ei(n(θ
′
2+ψ)−m(θ′1+ψ))

| sin(θ′1 − θ′2)|1−s
dθ′1 dθ

′
2

= ei(n−m)ψ〈Fs,m, Fs,n〉Vs
by using the substitutions θ1 = θ′1 +ψ and θ2 = θ′2 +ψ for some ψ ∈ R. This
implies that 〈Fs,m, Fs,n〉Vs = 0 for m 6= n.

For n ∈ 2Z, we define

In = π〈Fs,n, Fs,n〉Vs =
1

π

∫

R/Zπ

∫

R/Zπ

ein(θ2−θ1)

| sin(θ1 − θ2)|1−s
dθ1 dθ2

=

∫

R/Zπ

einθ

| sin θ|1−s dθ.

Note that

In =

∫

R/Zπ

e−inθ

| sin θ|1−s dθ = In

via the substitution θ′ = −θ. Thus

In =

∫ π

0

cos(nθ)

(sin θ)1−s
dθ,

and so we wish to show that In > 0 for all n ∈ 2Z. Since

I0 =

∫ π

0

1

(sin θ)1−s
dθ > 0

and I−n = In for all n ∈ 2Z, it remains to show that In > 0 for all n ∈ 2N.
For I2 we have, using integration by parts,

I2 =

∫ π

0

cos 2θ(sin θ)s−1 dθ

=

[
sin 2θ

2
(sin θ)s−1

]π

0

−
∫ π

0

sin 2θ

2
(s− 1)(sin θ)s−2 cos θ dθ

= [cos θ(sin θ)s]
π
0︸ ︷︷ ︸

=0

+(1− s)
∫ π

0

cos2 θ(sin θ)s−1 dθ

= (1− s)
∫ π

0

1 + cos 2θ

2
(sin θ)s−1 dθ

=
1− s
2

(I0 + I2) ,
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where the boundary terms vanish since s > 0. We now solve this equation
for I2, to obtain

I2 =

(
1− s
1 + s

)
I0 > 0

since s < 1.
For a general n ∈ 2N, we again use integration by parts to see that

In =

∫ π

0

cos(nθ)(sin θ)s−1 dθ

=

[
sin(nθ)

n
(sin θ)s−1

]π

0︸ ︷︷ ︸
=0

−
∫ π

0

sinnθ

n
(s− 1)(sin θ)s−2 cos θ dθ

=
(1 − s)
n

∫ π

0

sin(nθ) cos θ

sin θ
(sin θ)s−1 dθ.

We again wish to relate In to earlier values of the sequence, and hence use
the fact that n ∈ 2N to calculate that

sin(nθ) cos θ

sin θ
=

1

2

(einθ − e−inθ)(eiθ + e−iθ)

(eiθ − e−iθ)

=
1

2

(
ei(n−1)θ+ei(n−3)θ+· · ·+e−i(n−3)θ+e−i(n−1)θ

)(
eiθ+e−iθ

)

=
1

2

(
einθ + 2ei(n−2)θ + · · ·+ 2e−i(n−2)θ + e−inθ

)

= cos(nθ) + 2 cos ((n− 2)θ) + · · ·+ 2 cos(2θ) + 1.

Putting this into the above formula for In gives

In =
1− s
n

(In + 2In−2 + · · ·+ 2I2 + I0) ,

which may be solved for In to give the recursion formula

In =
1− s

n− 1 + s
(2In−2 + · · ·+ 2I2 + I0) .

Using the fact that s < 1, this implies once more that In > 0 by induction
on n ∈ 2N. �

Definition 9.72 (The space H(s)). Let s ∈ (0, 1). We define H(s) to be the
completion of Vs with respect to the norm induced by 〈·, ·〉Vs .
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9.5.2 Unitarity of the Complementary Series

Proof of unitarity in Theorem 9.68. Recall from Example 1.6 that the
group SL2(R) acts on v ∈ S1 via g.v = 1

‖gv‖gv for g ∈ SL2(R), and that

the Radon–Nikodym derivative for the normalized length measure m on S1

satisfies
dg∗m

dm
(v) = ‖g−1v‖−2. (9.58)

Also recall that we used this set-up on p. 421 to discuss the principal series
representation πξ on Hξ ∼= L2(K) ∼= L2

m(S1).
For u1, u2 ∈ R2r{(0, 0)} we define the function

D
(
u1, u2

)
= | det(u1, u2)|,

and note that D(r1u1, r2u2) = |r1||r2|D(u1, u2) for all r1, r2 ∈ R×. Moreover,
we also have

D
(
g−1u1, g

−1u2
)
= | det(g−1(u1, u2))| = D

(
u1, u2

)
(9.59)

for g ∈ SL2(R), by multiplicativity of the determinant. To understand the
connection between D(·, ·) and 〈·, ·〉Vs , we let θ1, θ2 ∈ [0, π), set

vθj = kθje1 =

(
cos θj
sin θj

)

for j = 1, 2 and calculate

D
(
vθ1 , vθ2

)
=

∣∣∣∣det
(
cos θ1 cos θ2
sin θ1 sin θ2

)∣∣∣∣ = | sin(θ1 − θ2)|. (9.60)

Because of these formulas, it will be convenient to identify kθ ∈ K with

vθ = kθe1 =

(
cos θ
sin θ

)
∈ S1

for θ ∈ [0, 2π). In this notation, and since f ∈ Vs is even, we may use (9.60)
to express the norm in the form

‖f‖2Vs =
∫

S1

∫

S1

f(kθ1)f(kθ2)

D(vθ1 , vθ2)1−s
dm(vθ1) dm(vθ2),

where m denotes the normalized arc length measure on S1.
Fix some f ∈ Vs and g ∈ SL2(R). Then, by definition, we have
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‖γsgf‖2Vs =
∫

S1

∫

S1

f(g−1kθ1)f(g
−1kθ2)

D(vθ1 , vθ2)1−s
dm(vθ1) dm(vθ2).

Let us write g−1kθj = kψjatjuxj for j = 1, 2 for the Iwasawa decomposition

of these products, so that ψj , tj , and xj are functions of vθj ∈ S1 for j = 1, 2.
Then

g−1vθj = g−1kθje1 = kψjatje1 = etjvψj ,

in particular
‖g−1vθj‖ = ‖atje1‖ = etj , (9.61)

and
g−1.vθj = ‖g−1vθj‖

−1g−1vθj = vψj (9.62)

for j = 1, 2. Combining the definition of Vs with (9.61), we obtain

f(g−1kθj ) = f(kψjatjuxj ) = e−tj(s+1)f(kψj ) = ‖g
−1vθj‖

−(s+1)f(kψj )

for f ∈ Vs. Using (9.59) and (9.62), we also have

D(vθ1 , vθ2) = D(g−1vθ1 , g
−1vθ2) = ‖g−1vθ1‖‖g−1vθ2‖D(vψ1

, vψ2
).

For the norm of γsgf , this leads to

‖γsgf‖2Vs=
∫

S1

∫

S1

‖g−1vθ1‖−(s+1)f(kψ1
)‖g−1vθ2‖−(s+1)f(kψ2

)

‖g−1vθ1‖1−s‖g−1vθ2‖1−sD(vψ1
, vψ2

)1−s
dm(vθ1)dm(vθ2)

=

∫

S1

∫

S1

f(kψ1
)f(kψ2

)

D(vψ1
, vψ2

)1−s
‖g−1vθ1‖−2‖g−1vθ2‖−2 dm(vθ1)dm(vθ2)

=

∫

S1

∫

S1

f(kψ1
)f(kψ2

)

D(vψ1
, vψ2

)1−s
dg∗m(vθ1)dg∗m(vθ2). (by (9.58))

However, by (9.62) this double integral now has the form

∫

S1

∫

S1

F
(
g−1.vθ1 , g−1.vθ2

)
dg∗m(vθ1) dg∗m(vθ2)

=

∫

S1

∫

S1

F (vθ1 , vθ2) dm(vθ1) dm(vθ2).

Therefore the last expression for ‖γsgf‖2Vs turns into ‖f‖
2
Vs. This shows that γ

s
g

is unitary on Vs, and that it extends by continuity to a unitary operator
on H(s).
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Finally, we verify the continuity of the complementary series representa-
tion γs. To see this, let f1, f2 ∈ Vs and note that

〈γsgf1, f2〉Vs =
∫

S1

∫

S1

f1(g
−1kθ1)f2(kθ2)

D(vθ1 , vθ2)1−s
dm(vθ1) dm(vθ2)

depends continuously on g ∈ SL2(R) by dominated convergence. This implies
continuity of g 7→ γsgf by simply expanding ‖γsgf − γsg0f‖2Vs into a sum of
inner products. Hence Lemma 1.11 gives continuity of the unitary represen-
tation γs. �

9.5.3 Irreducibility of the Complementary Series

Lemma 9.73 (Casimir eigenvalue). Let s ∈ (0, 1). For the complemen-
tary series representation, the Casimir element γs∂(Ω) is multiplication by s2

on Vs. Moreover,

γs∂(r
+)Fs,n =

n+ 1 + s

2
Fs,n+2 and

γs∂(r
−)Fs,n =

−n+ 1 + s

2
Fs,n−2

for all n ∈ 2Z.

Proof. We reuse the calculation in the proof of Lemma 9.33. In fact we
proved (9.21) by calculating a pointwise derivative, and this part of the argu-
ment would apply for any ξ ∈ C. Using ξ = −is replaces iξ by s, and (9.21)
takes the form

γs∂(a)Fs,n =
n+ 1 + s

2
Fs,n+2 +

−n+ 1 + s

2
Fs,n−2 (9.63)

for n ∈ 2Z (see Exercise 9.74 below). We recall that a = r+ + r− and apply
Proposition 9.13 for γs. From this the formulas for γs∂(r

+)Fs,n in the lemma
follow.

We now apply Ω in the form (9.13) and obtain

γs∂(Ω)Fs,n = γs∂
(
4r+ ◦ r− + (1E + ik)◦2

)
Fs,n

= (−n+ 1 + s)γs∂(2r
+)Fs,n−2 + γs∂(1E + ik)◦2Fs,n

= (−n+ 1 + s)(n− 1 + s)Fs,n + (1− n)2Fs,n = s2Fs,n

for all n ∈ 2Z. Using Fourier series for a smooth function on K/M , this
extends to all smooth f ∈ Vs. �
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Exercise 9.74. Prove (9.63) as a partial derivative within H(s).

Proof of irreducibility in Theorem 9.68. Let s ∈ (0, 1). We recall
that Vs contains the orthogonal basis vectors Fs,n for n ∈ 2Z of H(s).
Hence the completion H(s) has, for every n ∈ 2Z, a one-dimensional weight
space spanned by Fs,n and no eigenvector for odd weights. Moreover, by
Lemma 9.73, the Casimir operator acts by multiplication by s2. This is all
one needs to know in order to obtain the irreducibility of γs using arguments
we have used many times before.

Indeed, if V ⊆ H(s) is a non-trivial closed γs-invariant subspace, then
as K is compact and abelian there must exist a K-eigenvector F ∈ V . By
the above, F is a multiple of Fs,n0

for some n0 ∈ 2Z. Using the raising
and lowering operators and the fact that they do not map Fs,n0

to zero
(by Corollary 9.14 or Lemma 9.73) we obtain from the fact that Fs,n0

∈ V
that Fs,n0±2 ∈ V also. Iterating we see that V contains Fs,n ∈ V for all n ∈ 2Z
and hence V = H(s). �

9.5.4 Decay and Integrability Properties

The following shows, in particular, the remaining claim in Theorem 9.68 that
the complementary series is not tempered. However, the precise information
regarding the decay properties of the matrix coefficients of Fs,0 ∈ H(s) will
be useful in the next section.

Lemma 9.75 (Matrix coefficient of Fs,0). Let s ∈ (0, 1). The matrix

coefficient φ(s) = ϕγ
s

Fs,0
is bi-K-invariant, satisfies the asymptotics

φ(s)(g) ≍s ‖g‖s−1
HS

for g ∈ SL2(R), and belongs to Lp(G) if and only if p > 2
1−s . Moreover, φ(s)

converges for s ր 1, uniformly on compact subsets of G, to the constant
function 1.

Proof. As Fs,0 has K-weight 0, it is clear that φ(s)(g) = 〈γsgFs,0, Fs,0〉 is
bi-K-invariant. For that reason it suffices to consider g = at for t > 0 in the
proof of the asymptotics of φ(s). For the matrix coefficient, this gives
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φ(s)(at) = 〈γsatFs,0, Fs,0〉

=
1

π2

π∫

0

π∫

0

Fs,0(a
−1
t kθ1)Fs,0(kθ2)

| sin(θ1 − θ2)|1−s
dθ1 dθ2

=
1

π

π∫

0

Fs,0(a
−1
t kθ1)

1

π

π∫

0

1

| sin(θ1 − θ2)|1−s
dθ2

︸ ︷︷ ︸
Cs

dθ1, (9.64)

where the inner integral contributes a constant Cs only depending on s (be-
cause we may use the substitution ψ = θ1 − θ2 for θ2). As in the proof of
Proposition 8.39, we apply the Iwasawa decomposition to a−1

t kθ = kψat0ux0

for varying kθ ∈ K, which determines kψ ∈ K, at0 ∈ A, and ux0
∈ U . For t0

this gives

e2t0 = ‖kψat0ux0
e1‖2 = ‖a−1

t kθe1‖2 = e−2t cos2 θ + e2t sin2 θ.

Using the definition of Fs,0 in Lemma 9.69, we have

Fs,0(a
−1
t kθ) = e−(s+1)t0 =

(√
e−2t cos2 θ + e2t sin2 θ

)−(s+1)

(9.65)

We note that this implies that Fs,0(a
−1
t kθ1) is unchanged if we replace θ1

by π−θ1. Hence we may also replace the outer normalized integral over [0, π]
in (9.64) by the normalized integral over [0, π2 ], which gives

φ(s)(at) =
2Cs
π

π
2∫

0

Fs,0(a
−1
t kθ) dθ. (9.66)

To study the asymptotics of the matrix coefficient φ(s) of Fs,0, we first
note that (9.65) implies that

Fs,0(a
−1
t kθ) ≍ max

(
e−t| cos θ|, et| sin θ|

)−(s+1)
.

We now replace Fs,0(a
−1
t kθ1) in the integral (9.66) by this maximum. The

latter is given by et sin θ1 unless θ1 is very close to 0—specifically, un-
less tan θ1 < e−2t. Therefore
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φ(s)(at) ≍s
arctan e−2t∫

0

(
e−t cos θ︸︷︷︸

≍1

)−(s+1)
dθ +

π
2∫

arctan e−2t

(
et sin θ︸︷︷︸

≍θ

)−(s+1)
dθ

≍s e(s+1)t arctan e−2t + e−(s+1)t 1

−sθ
−s
∣∣∣∣
π
2

arctan e−2t

≍s e(s+1)te−2t +
1

s
e−(s+1)te2st

≍s e(s−1)t +
1

s
e(s−1)t ≍s e(s−1)t,

which gives the claimed asymptotic.
Now let p > 0. Using the asymptotics and the decomposition of the Haar

measure in (8.11), we obtain

∫

SL2(R)

φ(s)(g)
p dm(g) ≍

∞∫

0

φ(s)(at)
p sinh 2t dt.

Since we are only interested in whether this integral converges, we restrict
the integral to [1,∞), use the estimate sinh 2t ≍ e2t for t ∈ [1,∞), and the
asymptotics for φs(at) to see that

∞∫

1

φ(s)(at)
p sinh 2t dt ≍s

∞∫

1

et(s−1)pe2t dt.

Notice that the exponent

t(s− 1)p+ 2t = (2− (1− s)p)t

of the integrand has a negative coefficient if and only if p > 2
1−s , and that

this characterizes finiteness of the integral.
It remains to prove the final claim in the lemma concerning the behaviour

of φ(s) as sր 1. For this, first note that Cs as in (9.64) depends continuously
on s ∈ (0, 1), and that

Cs =
1

π

π∫

0

1

| sin θ|1−s dθ −→ C1 =
1

π

π∫

0

dθ = 1

for sր 1 by dominated convergence. Next note that Fs,0(a
−1
t kθ) as in (9.65)

also makes sense for s ∈ [ 12 , 1] and depends continuously on

(θ, s, t) ∈ [0, π2 ]× [ 12 , 1]× R.
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On restricting t to a compact interval I, uniform continuity implies that the
function φ(s)(at) as defined in (9.66) makes sense and depends continuously

on (s, t) ∈ [ 12 , 1] × I. Therefore by uniform continuity again and (9.65) we
have that φ(s)(at) converges to the function

I ∋ t 7−→ φ(1)(at) =
2C1

π

π
2∫

0

1

e−2t cos2 θ + e2t sin2 θ
dθ.

uniformly on I as sր 1. Now note that

d

dθ

(
arctan

(
e2t tan θ

))
=

1

1 + e4t tan2 θ
e2t

1

cos2 θ
=

1

e−2t cos2 θ + e2t sin2 θ
,

which together with C1 = 1 gives

φ(1)(at) =
2

π
lim
bրπ

2

[
arctan

(
e2t tan θ

)]b
0
= 1

as required. �

9.5.5 A Sobolev Space of the Projective Line*

Recall that the real projective line P1(R) = R2r{0}/∼ is defined as the
quotient space of R2r{0} modulo the equivalence relation u1 ∼ u2 if u1
and u2 are scalar multiples of each other. Note that P1(R) = S1/∼ can
also be obtained from the circle by identifying opposite points. Moreover, we
may also identify the equivalence class [kθe1]∼ ∈ P1(R) for some kθ ∈ K
with kθM ∈ K/M . Consequently functions on P1(R) correspond to even
functions on K. In this sense, Lemma 9.69 shows that Vs can be identified
with C∞(P1(R)). For the completion H(s) of Vs this leads to the following
result.

Proposition 9.76 (A Sobolev space). Let s ∈ (0, 1). The norm on Vs is
equivalent to the L2-Sobolev norm with − s

2 derivatives. Hence H(s) is the L
2-

Sobolev space W− s
2 ,2(P1(R)) with − s

2 derivatives.

Proof. We recall that the L2-Sobolev space W− s
2 ,2(T) with − s

2 derivatives
is defined as the completion of C∞(T) with respect to the norm defined by

‖f‖2−s
2 ,2

=
∑

n∈Z

|cn|2|n|−s

for f =
∑
n∈Z cnχn. In the case of P1(R) = S1/∼ ∼= K/M ∼= T/〈12 + Z〉,

we simply restrict to even functions and n ∈ 2Z. Due to the orthogonality
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relations satisfied by Fs,n with respect to 〈·, ·〉Vs and 〈·, ·〉− s
2 ,2

= 〈·, ·〉W− s
2
,2

for n ∈ 2Z, the proposition is equivalent to the statement that

|n|−s ≪ ‖Fs,n‖2Vs ≪ ‖Fs,n‖
2
− s

2 ,2
= |n|−s (9.67)

for all n ∈ 2Z. For this, recall that ‖Fs,−n‖2Vs = ‖Fs,n‖
2
Vs for all n ∈ N. Hence

to prove (9.67) it suffices to calculate the asymptotics of ‖Fs,n‖2Vs as n→∞,
which will follow by combining Corollary 9.14, Lemma 9.73, and Stirling’s
formula for the gamma function.

Let n ∈ Z and apply Lemma 9.73 to Fs,2n to obtain

γs∂(r
+)Fs,2n =

2n+ 1 + s

2
Fs,2n+2. (9.68)

On the other hand, Corollary 9.14 gives

‖γs∂(r+)Fs,2n‖2 = 1
4

(
(2n+ 1)2 − s2

)
‖Fs,2n‖2. (9.69)

Together, we obtain the recursion formula

‖Fs,2n+2‖2 =
4

(2n+ 1 + s)2
‖γs∂(r+)Fs,2n‖2 (by (9.68))

=
(2n+ 1)2 − s2
(2n+ 1 + s)2

‖Fs,2n‖2 (by (9.69))

=
2n+ 1− s
2n+ 1 + s

‖Fs,2n‖2 =
n+ 1−s

2

n+ 1+s
2

‖Fs,2n‖2

for the norms.
Now recall the Gamma function

Γ (x) =

∫ ∞

0

tx−1e−t dt

for x > 0, and that integration by parts shows that Γ (x + 1) = xΓ (x). We
define c = cs > 0 by the formula

‖Fs,2‖2 =
Γ
(
1 + 1−s

2

)

Γ
(
1 + 1+s

2

) c,

and prove by induction on n ∈ N that

‖Fs,2n‖2 =
Γ
(
n+ 1−s

2

)

Γ
(
n+ 1+s

2

)c. (9.70)

Indeed the definition of c is the start of the induction, and the recursion
formula gives the inductive step
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‖Fs,2n+2‖2 =
n+ 1−s

2

n+ 1+s
2

‖Fs,2n‖2 =

(
n+ 1−s

2

)
Γ
(
n+ 1−s

2

)
(
n+ 1+s

2

)
Γ
(
n+ 1+s

2

) c

=
Γ
(
n+ 1 + 1−s

2

)

Γ
(
n+ 1 + 1+s

2

) c

for n ∈ N.
Next we recall Stirling’s formula for the gamma function, which states that

Γ (x) ∼
√

2π

x

(x
e

)x
,

where as usual ∼ means that the ratio of the left-hand and right-hand side
converges to 1 as x → ∞ (see Section B.2). We will also write ≈ to mean
that the ratio converges to a positive constant depending on s ∈ (0, 1). Using
Stirling’s formula on (9.70) gives

‖Fs,2n‖2 =
Γ
(
n+ 1−s

2

)

Γ
(
n+ 1+s

2

) c ∼
√
n+ 1+s

2

n+ 1−s
2︸ ︷︷ ︸

∼1

(
n+ 1−s

2

e

)n+ 1−s
2

(
n+ 1+s

2

e

)n+ 1+s
2

c

≈
(
n+ 1−s

2

n+ 1+s
2

)n+ 1−s
2

︸ ︷︷ ︸
≈1

(
n+

1 + s

2

) 1−s
2 − 1+s

2

≈ n−s.

Taking the square root gives the desired asymptotic in (9.67) for ‖Fs,2n‖Vs
as n→∞. �

9.6 Spectral Gap, Decay, and Integrability Exponents

Using the complete description of ŜL2(R), and in particular the complemen-
tary series representation, we can upgrade the results concerning integrability
and decay exponents (pπ and κπ, respectively) from Section 8.7. Moreover,
we will relate these to the notion of spectral gap defined in Section 4.2.1 and,
in addition, to the following quantity.

Definition 9.77 (Complementary series parameter). Let π be a uni-
tary representation of SL2(R). Then the complementary series parameter of π
is defined by

sπ = sup{s ∈ [0, 1) | s = 0 or γs ≺ π}.

Theorem 9.78. Let π be a unitary representation of SL2(R). Then
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min (1, κπ) =
2

max (2, pπ)
= 1− sπ. (9.71)

For κ < min(1, κπ) and any g ∈ G we have

∣∣〈πgv, w
〉∣∣≪κπ,κ

‖v‖‖w‖‖g‖−κHS (9.72)

for any K-eigenvectors v, w ∈ Hπ, and
∣∣〈πgv, w

〉∣∣≪κπ,κ
S(v)S(w)‖g‖−κHS (9.73)

for any C1-smooth vectors v, w ∈ Hπ. Moreover, κπ > 0, pπ <∞, and sπ < 1
are all equivalent to π having spectral gap.

We note that, even for the proof of the first equality concerning κπ and pπ,
knowledge about the complementary series will be useful. We again write G
for SL2(R).

Proof of (9.72)–(9.73) and that min (1, κπ) =
2

max(2,pπ)
. Suppose that π is

a unitary representation of SL2(R). Comparing the definition of integrability
and decay exponents in Definitions 7.23 and 8.43, we may assume that π has
no fixed vectors. Suppose first that pπ < 2. Then, by definition, π is almost
square integrable, and hence tempered by Theorem 8.5, and satisfies (9.72)
for all κ < 1 by Theorem 8.41. Hence κπ > 1 and min (1, κπ) = 1 = 2

max(2,pπ)
,

as claimed.
We suppose now that pπ > 2. By Lemma 8.45 we have pπ 6 2

κπ
. With pπ >

2 we obtain from this that κπ 6 1, and hence

min(1, κπ) = κπ 6
2

pπ
=

2

max(2, pπ)
. (9.74)

To prove the opposite inequality, suppose that p > 0 is such that π is p-
integrable. By definition, this means that there exists a dense set of vec-
tors V ⊆ Hπ so that ϕπv,w ∈ Lp(G) for all v, w ∈ V . Let ε > 0, fix a posi-
tive s̃ ∈

(
2
p − ε, 2p

)
, and note that s̃ ∈ (0, 1) since p > pπ > 2. We claim that

this makes the inner tensor product π ⊗ γ s̃ tempered.
Assuming the claim for now, we let v, w ∈ Hπ be K-eigenvectors and

let Fs̃,0 be the spherical function as in Lemma 9.69. Then both v ⊗ Fs̃,0
and w ⊗ Fs̃,0 are also K-eigenvectors. Therefore temperedness of π ⊗ γ s̃ and
Theorem 8.41(2), together with the estimate for the Harish-Chandra spherical
function in Theorem 8.31, give

∣∣〈πgv, w〉
∣∣φ(s̃)(g) =

∣∣∣〈(π ⊗ γ s̃)gv ⊗ Fs̃,0, w ⊗ Fs̃,0〉
∣∣∣

≪ε ‖v ⊗ Fs̃,0‖‖w ⊗ Fs̃,0‖‖g‖−1+ε
HS

≪ε,s̃ ‖v‖‖w‖‖g‖−1+ε
HS
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for all g ∈ G, where φ(s̃) is the matrix coefficient of Fs̃,0. Together with the
lower bound for φ(s̃) in Lemma 9.75, we obtain after dividing by φ(s) the
estimate

|〈πgv, w〉| ≪ε,s̃ ‖v‖‖w‖‖g‖−s̃+εHS .

Recalling the assumption s̃ ∈
(
2
p − ε, 2p

)
we also obtain

|〈πgv, w〉| ≪p,ε ‖v‖‖w‖‖g‖
− 2
p
+2ε

HS

for all K-eigenvectors v, w ∈ Hπ. By Proposition 7.27 this upgrades auto-
matically to all C1-smooth vectors v, w ∈ Hπ if we replace the norm of v, w
by the degree-one Sobolev norms of v, w (and multiply the implicit con-
stant by an absolute constant). Hence κ = 2

p − 2ε is a decay exponent for π

satisfying (9.72) and (9.73). Recalling that ε > 0 and p > 0 with π be-
ing p-integrable were arbitrary, we see that the claim implies that κπ > 2

pπ
.

Together with (9.74), this gives the desired equality.
Turning to the claim that π ⊗ γ s̃ is tempered, notice first that the linear

hull 〈γ s̃(G)Fs̃,0〉 of the G-orbit of Fs̃,0 is dense in H(s̃) by irreducibility of

the complementary series representation. Therefore 〈V〉⊗la 〈γ s̃GFs̃,0〉 is dense
in Hπ ⊗H(s̃) and, by sesquilinearity of matrix coefficients, it suffices to con-

sider the matrix coefficient φ of v ⊗ γ s̃g1Fs̃,0 and w ⊗ γ s̃g2Fs̃,0. This gives

φ(g) = 〈πgv, w〉〈γ s̃gg1Fs̃,0, γ s̃g2Fs̃,0〉 = ϕπv,w(g)λg2ρg1φ(s̃)(g).

By assumption, ϕπv,w ∈ Lp(G) and, by Lemma 9.75, φ(s) ∈ L
2

1− 2
p since s̃ < 2

p

implies 2
1−s̃ <

2
1− 2

p

. Using (B.1), this implies that φ belongs to Lq(G) for

q =
p 2
1− 2

p

p+ 2
1− 2

p

=
2p

p(1− 2
p ) + 2

= 2,

which proves the claim. �

Corollary 9.79. Let s ∈ (0, 1). Then the complementary series γs has almost
decay exponent

κγs = 1− s.

Proof. Applying the already established first part of Theorem 9.78 to γs

and the vector Fs,0 ∈ Hs, we obtain the upper bound in

‖g‖s−1
HS ≪s |φ(s)(g)| ≪s,κ ‖g‖−κHS (9.75)

for all g ∈ G and any κ < min(1, κγs). The lower bound in (9.75) comes
from Lemma 9.75. Together we obtain s− 1 6 −κ or, equivalently, κ 6 1− s
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by letting g → ∞. Since the choice of κ < min(1, κγs) was arbitrary, this
gives κγs 6 1− s < 1.

By Lemma 9.75, φ(s) = ϕγ
s

Fs,0
belongs to Lp(G) for all p > 2

1−s . By Ex-

ercise 8.44 and irreducibility of γ(s), this implies that γs is p-integrable for
all p > 2

1−s and so

pγs 6
2

1− s .

Together with the first part of Theorem 9.78 again, we obtain from this

κγs =
2

pγs
> 1− s,

and hence the corollary. �

Concluding the proof of Theorem 9.78. We start by proving the
inequality min(1, κπ) 6 1 − sπ. For this we suppose that γs ≺ π for
some s ∈ (0, 1) and κ < min(1, κπ). By the first part of the theorem, we know
that κ satisfies (9.72) for all K-eigenvectors v, w ∈ Hπ. Using Lemma 8.42
just as in the proof of (1) =⇒ (2) in Theorem 8.41 on p. 367, it follows that κ
is also a decay exponent for γs. By Corollary 9.79 this implies κ 6 κγs = 1−s.

As κ < min(1, κπ) and s ∈ (0, 1) with γs ≺ π were arbitrary, we obtain

min(1, κπ) 6 1− sπ. (9.76)

For this, we also note that (9.76) holds trivially if there is no complementary
series γs weakly contained in π, since in this case sπ = 0.

Note that if sπ = 1 then (9.76) shows that κπ = 0 and so there is equality
in (9.76). If sπ = 0 (that is, if no complementary series are weakly contained
in π) then π is tempered and so κπ = 1. This follows, for example, from the
argument in Corollary 9.29 but also from the discussion below. So we now
suppose that sπ ∈ [0, 1) and claim that there exists a countable set S ⊆ (0, sπ]
(with S = ∅ if sπ = 0) so that

π ≺ λ⊕
⊕

s∈S
γs. (9.77)

Let κ ∈ (0, 1 − sπ) so that κ < 1 − s for all s ∈ S. By Corollary 9.79 this
shows that κ is a decay exponent for γs for all s ∈ S. In fact, we have

| 〈γsv, w〉 | ≪ ‖v‖‖w‖‖g‖−κHS (9.78)

for all s ∈ S and K-eigenfunctions v, w ∈ H(s). As κ < 1 − sπ 6 1 the
estimate (9.78) holds similarly for λ. This allows us to prove the same es-
timate for λ ⊕⊕s∈S γ

s. Indeed, let v, w ∈ L2(G) ⊕⊕s∈S H(s) be two K-
eigenfunctions, and let us write v0, w0 ∈ L2(G) for the components of w,w
corresponding to λ, and vs, ws ∈ H(s) for the components corresponding
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to s ∈ S. Then
∣∣∣∣∣

〈(
λ⊕

⊕

s∈S
γs

)
(g)v, w

〉∣∣∣∣∣ =
∣∣〈λgv0, w0

〉∣∣+
∑

s∈S

∣∣〈γsgvs, ws
〉∣∣

≪
(
‖v0‖‖w0‖+

∑

s∈S
‖vs‖‖ws‖

)
‖g‖−κHS .

Applying the Cauchy–Schwarz in the Hilbert space C|S|+1, we may estimate
the parenthesis on the right by the product

√
‖v0‖2 +

∑

s∈S
‖vs‖2

√
‖w0‖2 +

∑

s∈S
‖ws‖2 = ‖v‖‖w‖.

Using (9.77), applying Lemma 8.42, and using the argument for (1) =⇒ (2)
in the proof of Theorem 8.41 on p. 367, we obtain

∣∣〈πgv, w
〉∣∣≪ ‖v‖‖w‖‖g‖−κHS

for any K-eigenvectors v, w ∈ Hπ (without changing the implicit constant),
which once more implies (9.73) for C1-smooth vectors. We therefore see that
any κ < 1−sπ is a decay exponent, which gives κπ > 1−sπ for the supremum,
and hence equality in (9.76).

To prove the claim (9.77) let v ∈ Hπ be a unit vector, Q ⊆ G a com-
pact set, and ε > 0. Applying Proposition 4.36 we can find finitely many
irreducible representations πj ≺ π and vectors vj ∈ Hπj for j = 1, . . . , n

so that
∑n

j=1 ‖vj‖2 = 1 and ϕπv is equal to
∑n

j=1 ϕ
πj
vj on Q up to O(ε).

In Theorem 9.22 we found all irreducible representations of G = SL2(R),
and by Table 9.1 (see Theorem 8.23, Theorem 8.30, and Theorem 9.31) we
have πj ≺ λ or πj = γs for some s ∈ (0, sπ]. In the former case we may

apply the definition of weak containment πj ≺ λ and replace ϕ
πj
vj by a sum

of matrix coefficients for the regular representation. In other words, we may
assume instead that πj = λ or πj = γs for some s ∈ (0, sπ].

We now vary v within a dense countable subset of the unit sphere in Hπ,
set Q = B

‖·‖HS
n and ε = 1

n for n ∈ N. This way we obtain a subset S ⊆ (0, sπ]
that is at most countable so that (9.77) holds by the definition of weak
containment in Definition 4.1.

The argument above completes the proof of (9.71) except for a tiny detail
that we have intentionally kept hidden under the rug until now. To prove
that κ ∈ (0, 1 − sπ) is a decay exponent for π, we used the estimate (9.78)
but did not discuss the dependency of the implicit multiplicative constant on s
in S. (Note that Corollary 9.79 makes no claim concerning this.) Assuming
that we can choose the implicit constant so that it does not depend on s ∈ S
but only on κ and sπ, the above argument applies as explained.
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To see that (9.78) holds with an implicit constant that only depends on κ
and sπ we will review the proof of Corollary 9.79. So let s ∈ S. By Lemma 9.75
we have that |φ(s)| belongs to Lp(G) if and only if p > 2

1−s , which implies

that γs is p-integrable for p > 2
1−s by Exercise 8.44. Note that κ < 1 − sπ

and s 6 sπ imply 2
1−s 6 2

1−sπ <
2
κ , which allows us to fix some p ∈

(
2

1−sπ ,
2
κ

)

so that γs is p-integrable for all s ∈ S. Since p < 2
κ we may also fix some s̃

in
(
κ, 2p

)
. By the first part of the proof of Theorem 9.78 we have that γs⊗γ s̃

is tempered. which gives

∣∣〈γsgv, w
〉
φ(s̃)(g)

∣∣≪ε ‖v‖‖w‖‖g‖−1+ε
HS

for any K-eigenvectors v, w ∈ Hs. Dividing by
∣∣φ(s̃)(g)

∣∣ ≍s̃ ‖g‖s̃−1
HS we obtain

∣∣〈γsgv, w
〉∣∣≪s̃,ε ‖v‖‖w‖‖g‖−s̃+εHS .

As s̃ > κ we may set ε = s̃ − κ and obtain (9.78) with an implicit constant
that only depends on κ and sπ.

Finally we note that κπ > 0 (and so, equivalently, pπ < ∞ or sπ < 1)
implies that π has spectral gap by Proposition 7.25. Assume for the converse
that κπ = 0 and so, equivalently, that sπ = 1. However, this means by
definition that there exists a sequence sn ր 1 with γsn ≺ π. By the definition
of weak containment and Lemma 9.75 this shows that 1G ≺ π. Using (for
example) Proposition 4.24 and the condition (≺op) in Theorem 4.30, this
shows that π cannot have spectral gap. �

Exercise 9.80. Suppose the unitary representation π of SL2(R) is a countable direct sum
of irreducible representations. Define

s⊕π = sup{s ∈ [0, 1) | s = 0 or γs is one of the summands of π}.

Show that in this case Theorem 9.78 also holds for s⊕π instead of sπ.

9.7 Compact Quotients of SL(2)

We will study in this section the Koopman representation on compact quo-
tients X = Γ\SL2(R) by uniform lattices.

9.7.1 Effective Decay of Matrix Coefficients

Corollary 9.81. Let Γ < SL2(R) be a uniform lattice and X = Γ\SL2(R).
Then the Koopman representation πX of SL2(R) has effective decay of matrix
coefficients.
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Proof. By Proposition 4.28 the Koopman representation πX has spectral
gap. By Theorem 9.78 this implies that πX also has effective decay of matrix
coefficients. �

We note that the above result also holds more generally for finite volume
quotients X = Γ\SL2(R) by any lattice Γ < SL2(R). Proving this requires a
different argument, for example using an analysis of the so-called Eisenstein
series and the cuspidal spectrum. We will not pursue this further here.

9.7.2 Complete Decomposability

The following result is special to compact quotients.

Theorem 9.82. Let Γ < SL2(R) be a uniform lattice and X = Γ\SL2(R).
Then the Koopman representation πX is a countable direct sum of irreducible
unitary representations.

Proof. For the proof it will be useful to first refine part of Proposition 4.28.
Indeed we claim that for ψ ∈ C∞

c (G) the convolution operator π∗(ψ)
maps L2(X) into C∞(X).

To see the claim, let ψ ∈ C∞
c (X) and h = exp(tm) for some t ∈ R

and m ∈ sl2(R). For f ∈ L2(X) we than have

π∗(ψ)f(xh) =

∫

G

ψ(g)f(xhg) dmG(g) =

∫

G

ψ(h−1g)f(xg) dmG(g).

Using this together with (4.16) we have for t ∈ [−1, 1]r{0} that
∥∥∥∥
1

t
((π∗(ψ)f) (· exp(tm))− (π∗(ψ)f) (·))− π∗ (λ∂(m)ψ) f

∥∥∥∥
∞

=

∥∥∥∥π∗
(
1

t

(
λexp(tm)ψ − ψ

)
− λ∂(m)ψ

)∥∥∥∥
∞

≪
∥∥∥∥
1

t

(
λexp(tm)ψ − ψ

)
− λ∂(m)ψ

∥∥∥∥
∞
‖f‖2

with the implicit constant depending on suppψ, m ∈ sl2(R), and X only.
However, as ψ ∈ C∞

c (G) the final supremum norm converges to 0 as t→∞.
This implies that the derivative of π∗(ψ)f in the direction of m is equal
to π∗ (λ∂(m)ψ) f . Iterating this statement shows that π∗(ψ)f ∈ C∞(X) as
claimed.

We now show that any non-trivial invariant subspace V ⊆ L2(X) con-
tains an irreducible closed subspace. For this let f0 ∈ V be a unit vector and
choose from a suitable approximate identity (ψn) an element ψ ∈ C∞

c (G)
satisfying ψ > 0, ψ∗ = ψ, ‖ψ‖1 = 1 and ‖π∗(ψ)f0 − f0‖ < 1. This
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shows that π∗(ψ)|V 6= 0. By Proposition 4.28 and invariance of V , we have
that π∗(ψ)|V : V → V is a compact self-adjoint operator. Let µ 6= 0 be an
eigenvalue of π∗(ψ)|V and Vµ its associated finite-dimensional eigenspace. By
the above claim we have that Vµ = π∗(ψ)Vµ ⊆ C∞(X). In particular, π∂(Ω)
is defined on Vµ. For f ∈ Vµ we also have

π∗π∂(Ω)f = π∂(Ω)π∗(ψ)f = π∂(Ω)µf = µπ∂(Ω)f,

which shows that π∂(Ω)Vµ ⊆ Vµ. Therefore the restriction of π∂(Ω) to the
finite-dimensional subspace Vµ has a smooth eigenfunction g ∈ Vµ ⊆ V .

Next we decompose g =
∑

n∈Z gn into a sum of K-eigenfunctions and
choose n ∈ Z so that gn 6= 0. Note that

F = gn =
(
πX |K

)
∗ (χn) g ∈ V

as V is invariant, and that

F (x) =
1

2π

∫ 2π

0

e−iθ
(
πXkθg

)
(x) dθ =

1

2π

∫ 2π

0

e−iθg(xkθ) dθ

can be defined by a parameter integral for x ∈ X . As g is smooth we may dif-
ferentiate under the integral sign, which when applied to the central Casimir
element Ω shows that F ∈ V is also an eigenfunction for πX∂ (Ω).

To summarise, we have shown that any closed invariant subspace V con-
tains a non-zero K-eigenvector with K-weight n ∈ Z so that F is also an
eigenvector for πX∂ (Ω) and eigenvalue λ ∈ R. By Corollary 9.23 this implies
that the restriction of πX to the cyclic subspace 〈F 〉πX ⊆ V is irreducible.

The theorem now follows from a simple application of Zorn’s lemma. Let

C = {S | S is a set of pairwise orthogonal irreducible subspaces of L2(X)}

ordered by inclusion. It is straightforward to see that any linearly ordered
chain in C has an upper bound, namely the union of the chain. Hence there
exists a maximal element in C. That is, there exists a maximal set S0 of
pairwise orthogonal subspaces in L2(X). As L2(X) is separable, S0 is at most
countable. Let W be the direct sum of the subspaces in S0 and let V =W⊥.
If V 6= 0 we can apply the above argument to find an irreducible subspace
of V , which contradicts maximality of S0. Hence V = 0 and W = L2(X)
is a direct sum of the irreducible subspaces contained in S. Note that each
irreducible subspace satisfies that the space of K-invariant vectors is at most
one-dimensional. As L2(X)K = L2(X/K) = L2(Γ\H) is infinite-dimensional,
it follows that |S0| =∞. �
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9.7.3 The First Non-trivial Eigenvalue

We conclude our excursion into hyperbolic surfaces by establishing a link be-
tween effective decay of matrix coefficients and the first non-trivial eigenvalue
for the Laplace–Beltrami operator on the surface. Following the choices made
in Section 8.3 concerning H we define the Laplace–Beltrami operator ∆hyp

on H by
∆hypf(z) = y2

(
∂2xf(z) + ∂2yf(z)

)

for f ∈ C∞(H) and z ∈ H. It can be verified directly that the action of an
element g ∈ SL2(R) satisfies

(∆hypf) ◦ g = ∆hyp(f ◦ g)

for f ∈ C∞(H) (see Exercise 9.85). This also shows that ∆hyp descends to
a well-defined operator on C∞(Γ\H for any discrete subgroup Γ < SL2(R)
(which we will also obtain in Lemma 9.84 by a different argument). To avoid
technicalities concerning cone points of Γ\H we will assume in the following
that Γ/{±I} is torsion-free, which implies in particular that no γ ∈ Γ other
than ±I has a fixed point in H. Indeed, if γ.z = z for some z ∈ H we find
some g ∈ SL2(R) with z = g.i. This gives g−1γg.i = i and hence g−1γg
generates a discrete subgroup of StabSL2(R)

(i) = SO2(R), and so must be a
torsion element.

For a compact surfaceM = Γ\H defined by a uniform lattice Γ < SL2(R)
with no non-central torsion elements the Laplace–Beltrami operator∆hyp has
a satisfying spectral theory. Indeed, there exists a sequence of eigenvalues

λ0 = 0 < λ1 6 λ2 6 · · ·

with λn →∞ for n→∞, and a sequence of eigenfunctions

f0 = 1M , f1, f2, · · · ∈ C∞(M)

so that
∆hypfn = −λnfn

for all n ∈ N0.
The first non-trivial eigenvalue λ1 > 0 measures in a sense the amount of

connectivity of the surface M . For us it is of interest because of the following
result.

Corollary 9.83 (First eigenvalue and almost decay exponent). Let Γ
be a torsion-free uniform lattice in SL2(R), let X = Γ\SL2(R), and let

M = Γ\H ∼= X/K.

Then the Koopman representation πX has almost decay exponent
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κπX =

{
1 if λ1 > 1

4 , and

1−√1− 4λ1 if λ1 <
1
4 .

For the proof we first need to establish a link between∆hyp and the Casimir
operator

Ω = 1E + a◦2 + d◦2 − k◦2

considered so often in this chapter.

Lemma 9.84. Let Γ , X, and M be as in Corollary 9.83. Let f ∈ C∞(M),
which we may identify with a smooth K-invariant function on X. Then

πX∂ (Ω)f = f + 4∆hypf.

Proof. We identify f ∈ C∞(M) with the smooth functions H ∋ z 7→ f(Γz)
and SL2(R) ∋ g 7→ f(Γg.i). In order to prove the lemma, we have to first
calculate πX∂ (a)f and πX∂ (d)f as functions of g ∈ SL2(R).

By definition we have

πX∂ (a)f(g) = ∂t|t=0f(gat.i) (9.79)

for all g ∈ SL2(R) as at = exp(ta). To calculate (9.79) we use the chain
rule for differentiation, while always expressing total derivatives using the
standard basis of R2. Hence the total derivative of f at z = g.i = x+ iy ∈ H
is simply (

∂xf(z), ∂yf(z)
)
.

Next we write g = ux

(
y

1
2

y−
1
2

)
kθ for some kθ ∈ K and apply (8.5) for the

Möbius transformation corresponding to ux,

(
y

1
2

y−
1
2

)
, and kθ respectively,

to see that their derivatives are the matrices representing multiplication by
the complex numbers 1, y, and 1

(sin θi+cos θ)2 = e−2θi respectively. Finally we

note that the total derivative of at.i = e2ti at t = 0 is simply 2i, which we
identify with 2e2. Putting these together, we obtain

(
πX∂ (a)f

)
(g) =

(
∂xf(z), ∂yf(z)

)
· y ·

(
cos 2θ sin 2θ
− sin 2θ cos 2θ

)
2e2

= 2y
(
sin(2θ)∂xf(z) + cos(2θ)∂yf(z)

)

where g = ux

(
y

1
2

y−
1
2

)
kθ and z = g.i.

For πX∂ (d)(f) we only have to change the last step of the calculation.
Indeed a simple calculation reveals that
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d

dt

∣∣∣
t=0

(exp(td).i) = d

dt

∣∣∣
t=0

((
cosh t sinh t
sinh t cosh t

)
.i
)

= 2,

and so we simply have to replace 2e2 as above by 2e1. This gives

πX∂ (d)f(g) = 2y
(
cos(2θ)∂xf(z)− sin(2θ)∂yf(z)

)
.

Fix some z0 ∈ H. As Γ < SL2(R) is discrete and has no non-central torsion
elements, it follows that there exists some r > 0 so that

Ψ : BH
r (z0) ∋ z 7−→ Γz ∈M

is injective. We let O = BH
r (z0) and choose some F ∈ C∞

c (O). Using the
chart map Ψ we may also consider F as a function on M . We now calculate

〈
πX∂ (Ω)f, F

〉
=
〈
πX∂
(
1E + a◦2 + d◦2 − k◦2) f, F

〉

= 〈f, F 〉 −
〈
πX∂ (a)f, πX∂ (a)F

〉
−
〈
πX∂ (d)f, πX∂ (d)F

〉
.

Using our preparations above for f and F we have that πX∂ (a)fπX∂ (a)F is
equal to

2y
(
sin(2θ)∂xf(z) + cos(2θ)∂yf(z)

)
2y
(
sin(2θ)∂xF (z) + cos(2θ)∂yF (z)

)
.

Next we use the fact that m = 1
π dθ dvol = 1

π dθ 1
y2 dxdy. Integrating over θ,

we see that
〈
πX∂ (a)f, πX∂ (a)F

〉
is equal to

2

∫

O

(
∂xf(x+iy)∂xF (x+iy)+∂yf(x+iy)∂yF (x+iy)

)
dxdy.

Finally, we use the fact that F ∈ Cc(O) and apply integration by parts
along x and along y separately, which leads to

−2
∫

O

(
∂2xf(x+ iy)F (x+ iy) + ∂2yf(x+ iy) F (x+ iy)

)
dxdy

= −2
∫

O

(
∆hypf

)
F dvol(z).

The expression
〈
πX∂ (d)f, πX∂ (d)F

〉
gives the same result, which shows that

〈
πX∂ (Ω)f, F

〉
=
〈
f + 4∆hypf, F

〉
.

As F ∈ C∞
c (O) was arbitrary, we see that πX∂ (Ω)f is equal to f + 4∆hypf

on the image of O. Varying z0 ∈ H proves the lemma. �

Proof of Corollary 9.83. By Theorem 9.82 we have
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L2(X) ∼=
∞⊕

j=0

Vj (9.80)

for countably many irreducible subspaces Vj < L2(X). We may assume
that V0 = C1, which is the only trivial representation (by transitivity of
the action of SL2(R) on X). For j > 1 and a non-spherical Vj we apply
Corollary 9.29 to see that the restriction of πX to Vj is tempered and has
decay exponent 1− ε for all ε > 0.

Suppose now j > 1 and Vj is spherical, and let f ∈ Vj be a non-zero K-
invariant function. Let αj be the eigenvalue of πX∂ (Ω)|Vj so πX∂ (Ω)f = αjf .
By Lemma 9.84 this shows that f is also an eigenfunction of ∆hyp; that
is, ∆hyp(f) = −λnf and, moreover,

αj = 1− 4λn 6 1− 4λ1. (9.81)

If now λ1 > 1
4 , then αj 6 0 for all j ∈ N. However, this implies by The-

orem 9.31 that Vj is isomorphic to a principal series representation and is
tempered with almost decay exponent 1. Hence in this case all direct sum-
mands of (9.80) with j > 1 are tempered.

Suppose now that λ < 1
4 . If Vj is isomorphic to the complementary series

representation γsj , then (9.81) shows that

αj = s2j 6 1− 4λ1.

Hence the complementary series parameter satisfies

sπX 6
√
1− 4λ1.

On the other hand the eigenfunction for the first non-trivial eigenvalue gen-
erates an irreducible representation by Corollary 9.23, which must be a com-
plementary series representation for parameter

√
1− 4λ1. Therefore

sπX =
√
1− 4λ1.

Theorem 9.78 and Exercise 9.80 show that πX has almost decay exponent

κπX = 1−
√
1− 4λ1.

�

Exercise 9.85. Prove that (∆hypf) ◦ g = ∆hyp(f ◦ g) for f ∈ C∞(H) and g ∈ SL2(R).
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