
A Pólya–Carlson dichotomy for algebraic dynamics?

(joint work with Jason Bell, Robert Royals and Richard Miles)

Tom Ward (Durham) October 2014, UEA



A complex power series
∑

n>0 anz
n with radius of convergence R is

said to admit a natural boundary at |z | = R if there is no analytic
or meromorphic extension can cross the circle |z | = R.

The classical example is

F (z) =
∞∑
n=0

z2
n
,

which has |z | = 1 as natural boundary since F (z) = z + F (z2).

These series are also called lacunary as the early examples had
missing powers.
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The dynamical setting

Let θ : X → X be a map (usually a continuous map on a compact metric
space) with the property that

Fixθ(n) = |{x ∈ X | θnx = x}| <∞

for all n > 1.

The associated dynamical zeta function

ζ(z) = exp
∑
n>1

Fixθ(n)

n
zn

and generating function

F (z) =
∑
n>1

Fixθ(n)zn

are invariants of topological conjugacy.
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Context

Hasse–Weil introduced the function

ζHW (z) = exp
∑
n>1

zn

n
Fix(f n)

for the Frobenius map f on the Fq points of an algebraic variety
defined over a finite field Fq.

Formally

exp
∑
n>1

zn

n
trace(An) =

1

det(I − zA)

for any operator (or matrix) where this makes sense.In particular:
if periodic points are counted by traces of some operator, then we
expect rationality and a link to the spectrum of that operator.
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Another reason to view the exp
∑

formalism as natural is an Euler
product formula:

ζf (z) =
∏
τ

(1− z |τ |)−1,

where the product is taken over all closed periodic orbits τ with |τ |
the length of τ .



In many natural settings these functions are rational or have a
meromorphic extension:

I The map x 7→ 2x (mod 1) has ζ(z) = 1−z
1−2z .

I More generally, toral endomorphisms / automorphisms have
rational zeta functions.

I Many natural dynamical systems have rational zeta functions
(shifts of finite type, Axiom A maps,...).
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On the other hand:

I There is a smooth map on the 2-torus with Fix(n) =
(2n
n

)
for

all n > 1, so
(1− 4z)(1 + F (z))2 = 1

and hence the zeta function is an irrational algebraic function.

I The map x 7→ 1− µx2 for µ = 1.401155 . . . (the ‘Feigenbaum
constant’) has exactly one closed orbit of length 2n for each
n > 1, so

ζ(z) =
∞∏
n=0

(1− z2
n
)−1 =

∞∏
n=0

(1 + z2
n
)n+1.

Notice that ζ(z2) = (1− z)ζ(z), so this has a natural
boundary for ‘lacunary’ reasons.
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Assume now that θ is a compact group automorphism.

So the sequence of numbers (Fix(θn)) has several properties:

I each term is greater than or equal to 1 (since the identity is
fixed by any automorphism);

I it is a divisibility sequence (and thus ‘classified’ when the zeta
function is rational);

I and other mysterious arithmetic conditions.

Cautionary example: The function f (z) = 1
(1−z)(1−z5) is the

dynamical zeta function of the permutation τ = (1)(23456) on the
set {1, 2, 3, 4, 5, 6}. The sequence (Fixτ (n)) is a linear recurrent
divisibility sequence greater than or equal to 1, but f is not the
zeta function of any group automorphism.
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Familiar group automorphisms like toral automorphisms have
rational zeta functions.

The ‘next simplest’ automorphism, the dual of x 7→ 2x on Z[1/6]
has

Fix(n) = (2n − 1)|2n − 1|3,

and we outline a proof that |z | = 1
2 is a natural boundary for its

zeta function.
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Relating ζ to F :

It is enough to show that F (z) =
∑

n>1 Fix(θn)zn has a natural
boundary.

Let R(z) =
∑

n>1 |2n − 1|3zn, so that

F (z) = R(2z)− R(z).

We claim that |z | = 1 is a natural boundary for R, and hence
|z | = 1

2 is one for F (and hence for ζ).
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Write

R(z) =
1

3

∑
2|n

|n|3zn +
∑
2-n

zn,

so R(z) = 1
3G (z2) + H2(z), where G (z) =

∑
n>1 |n|3zn.

Since H2 is rational, it is enough to show that G has natural
boundary |z | = 1.

Writing n = 3ek , where e > 0 and 3 - k , gives

G (z) =
∑
e>0

1

3e

∑
3-k

z3
ek =

∑
e>0

1

3e
H3(z3

e
)

= H3(z) +
1

3

∑
e>0

1

3e
H3(z3

e+1
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It follows that

G (z) = H3(z) +
1

3
G (z3).

Using this functional equation inductively, we deduce that there are
dense singularities of G on the unit circle, occurring at 3e-th roots
of unity, e ∈ N.

Remark: This is not a reasonable proof – its only method is luck.
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coefficients and radius of convergence 1 is either rational or has
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Question: Do zeta functions for compact group automorphisms
enjoy the same dichotomy?
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Two additional fundamental tools:

Hadamard: Let K be a field of characteristic zero, and suppose
that

∑
n>0 bnz

n and
∑

n>1 cnz
n in K[[z ]] are expansions of rational

functions. If there is a finitely-generated ring R over Z
with an = bn

cn
∈ R for all n > 1, then

∑
n>0 anz

n is also the
expansion of a rational function.

Fabry: If 0 < p1 < p2 < · · · are integers with pn
n →∞ as n→∞

and (an) is a sequence of complex numbers for which
∑

n>1 anz
pn

has radius of convergence 1, then the series admits |z | = 1 as a
natural boundary.

Warning: The radius of convergence of the zeta function of a
group automorphism is rarely 1, and is usually unknown.
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The simplest case is to assume that X is a one-dimensional
solenoid, so (roughly) the automorphism is dual to the map x 7→ rx
on the ring R = Z[ 1p : p ∈ S ] for some subset S of the primes.

Write fS(n) = |rn − 1| · |rn − 1|S and FS(z) =
∑

n>1 fS(n)zn,
where |x |S =

∏
p∈S |x |p.

To see how Hadamard arises, we claim that FS is rational if and
only if |r |p 6= 1 for all p ∈ S (‘hyperbolicity’).
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The first non-trivial case is S finite and S ′ = {p | |r |p = 1} 6= ∅.

S finite implies that the values of

f (n) = |rn − 1|S ′ =
∏
p∈S ′

|rn − 1|p

lie in a finitely-generated extension of Z.

For r = a
b , we can assume that a > |b| and hence that

fS(n) = (an − bn)f (n).

If FS is rational then fS is a linear recurrence sequence, so by
Hadamard we deduce that f is also.

Arithmetic arguments can then be used to show that f takes on
infinitely many values infinitely often, which is impossible.
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For S co-finite it is easy to show that the Pólya–Carlson dichotomy
holds because the theorem itself applies.



With more effort we can show that the Pólya–Carlson dichotomy
holds in several cases:

I If S is finite and dim(X ) = 1.

I If S is co-finite and dim(X ) = 1.
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holds in several cases:

I If S is finite and dim(X ) = 1.

I If S is co-finite and dim(X ) = 1.

I If dim(X ) = 1 and the complement of S comprises primes
p1 < p2 < · · · with log pn+1

pn
→∞.



With more effort we can show that the Pólya–Carlson dichotomy
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In higher dimensions life is harder. A result of Miles allows each
system to ultimately be associated to a set S of places of a
number field.

I If dim(X ) 6 3 and S is finite then the Pólya–Carlson
dichotomy holds.

Remaining problems:

1) In dim(X ) = 1 to handle an inclusion–exclusion argument for
arbitrary subsets of the primes.

2) In dim(X ) > 3 to handle the appearance of Salem numbers
(some of the arguments rely on hyperbolicity).

3) To understand disconnected groups (equivalently, positive
characteristic fields).

4) If the dichotomy is really there, to explain this rigidity.
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dichotomy holds.

Remaining problems:

1) In dim(X ) = 1 to handle an inclusion–exclusion argument for
arbitrary subsets of the primes.

2) In dim(X ) > 3 to handle the appearance of Salem numbers
(some of the arguments rely on hyperbolicity).

3) To understand disconnected groups (equivalently, positive
characteristic fields).

4) If the dichotomy is really there, to explain this rigidity.



In higher dimensions life is harder. A result of Miles allows each
system to ultimately be associated to a set S of places of a
number field.

I If dim(X ) 6 3 and S is finite then the Pólya–Carlson
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