Chapter 3
Rationality

In this chapter we generalize some of the phenomena hinted at in Section 1.2.
We will define the notion of algebraic groups defined over @@, and show how
these often give rise to closed (and sometimes even compact) orbits on the
space Xg = SLg(R)/ SL4(Z). We motivate this discussion by studying orthogonal
groups, unipotent groups, and orbits arising from number fields. Finally, we
will turn this discussion around by proving the Borel density theorem, which
implies that finite volume orbits in X; typically arise from algebraic groups
defined over Q. For this we also introduce some more basic concepts and results
concerning algebraic groups without developing this important theory very far
(which cannot be done in a couple of pages).

3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits
3.1.1 Orthogonal Groups

Let Q(u) = utAQu be a rational quadratic form defined by a symmetric ma-
trix Ag € Mat,;(Q), where u is a d-dimensional column vector whose entries are

variables uy, ..., uy. We show now how any such quadratic form gives rise to a
closed orbit of its associated special orthogonal subgroup
SOq = {g € SLy | Q(gu) = Q(u)}. (3.1)

Proposition 3.1 (Closed orbits). If Q is a rational quadratic form, then the
orbit
SOq(R) (1 SLd(Z)) c Xy

of the identity coset under the real points of SO is closed.

Notice that the notation SO¢ and SL; used in (B.I]) deliberately does not
specify any field or ring, and therefore leaves somewhat undetermined the group
being discussed; in particular it does not specify whether the group is countable
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90 3 Rationality

or uncountable, for example. For now we should think of this as a convenient
shorthand, or a macro, which defines many different groups at once. For example,
if we specify the real points, then the notation denotes the closed linear subgroup
of SLy4(R) defined by

SOq(R) = {g € SL4(R) | Q(gu) = Q(u)}.

Similarly, we may specify the integer points to obtain a discrete subgroup

SOq(Z) = {g € SL4(Z) | Q(gu) = Q(u)}

of SO (R). More generally, for any ring R we obtain the group SOg(R) of R-
points of SO, (or any similar expression) by taking the R-points of the ambient
group, here SL,, in its definition.

PRrROOF OF PROPOSITION Bl Notice that Q(gu) is the quadratic form defined
by gtAQg and that the symmetric matrix A is in one-to-one correspondence
with the form @. Therefore, we may also write

SOo ={g€SLy | g'Agg = Ag}-

Multiplying Ag by the common denominator of its entries if necessary, we may
assume that A, € Maty(Z) (without changing SOg,). Now suppose that

as n — oo with h,, € SO (R) and g € SL4(R). In order to show that the orbit
is closed, we need to show that

z € SO (R) (I SLy(Z)). (3.3)

Notice that (32) simply means that there exist sequences (v,) in SL4(Z)
and (g,,) in SL,(R) with €, — I as n — oo, such that h,vy, = ¢,g for alln > 1.
Applying these matrices to Ay gives

Y AgTn = TnhnAgha v = (€,9) Ageng — 9 Agg

as n — 00.
However, VfLAnyn € Mat,(Z), so the convergent sequence (”Y;AQ%) has to

stabilize: There exists some ng such that
t t t
Yo A0 Vne = MmAQIn = 9 Agg

for all n > ngy. This implies that g”y,fol € SO, (R) which, together with (B.2),
gives (B3). O

In some cases it is also relatively straightforward to combine the previous
statement with Mahler’s compactness criterion (Theorem 1.51) and so deduce
compactness of orbits.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 91

Proposition 3.2 (Compact orbits). If Q is a rational quadratic form such
thall .

0 ¢ Q(Q™0}),
then the orbit SO (R) (I SLy(Z)) is compact. Equivalently,

SO0g(Z) = {g € SL4(Z) | QtAQg =Aq}
is a uniform lattice in SOq(R).

PROOF. Just as in the proof of Proposition 3.1 we may assume that A lies
in Mat,(Z). We need to show that there exists some § > 0 such that

SOG(R) (ISLy(Z)) C X4(6). (3.4)

Then Theorem 1.51 and Proposition B.ltogether show that the orbit is compact.
As Q: RY = R is continuous, there exists some § > 0 such that ||z]| < &
implies that |Q(x)| < 1. Now suppose that (4] does not hold for §. Then there

exists some h € SOg(R) such that hZ contains a non-zero d-short vector hm
with m € Z%. However, this shows that

[Q(m)| = |Q(hm)| <1 (3.5)
which implies that QQ(m) = 0 since A, € Mat,(Z), contradicting our assumption

and completing the proof. ([

Ezxample 3.3. These examples describe some of the possibilities that may arise
in low dimensions.

(1) If Qq(uq,uq) = ujusg, then Proposition Bl shows that A SLy(Z) is closed
since SOg, (R) = A is simply the full diagonal subgroup of SLy(R) isomor-

phic to R (see also Section 1.2.2). However, the orbit is not compact, as it
corresponds to the divergent orbit mentioned on page 12.

(2) If Qqo(uy,us) = uf — uguy — u3, then Proposition applies (see Exer-
cise [3.6]), and gives a compact orbit SOg, (R) SLy(Z). As we will see later
(in Theorem [B.35)), there exists some g € SLy(R) and A > 0 for which

Q2(u) = AMQ:1(gu),
which in turn implies that
SO, (R) = g~ SOq, (R)g.
To see this notice that h € SOg, (R) gives

Qs(g~ " hgu) = AQ, (hgu) = AQ; (gu) = Q,(u).

t Q is then called anisotropic over Q.
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92 3 Rationality

Hence
9850¢q, (R)SLy(Z) = AgSLy(Z)

is also compact. In fact g = ggyg1den from Section 1.2.2 can be used, recovering
the claim made on page 12.
(3) If Q3(uy, g, u3) = 2ujus — us then Proposition B applies, and shows that

SOq, (R)SL3(Z) € X3

is closed. However, it is not compact (see Exercise B1).

(4) If Qq(uq,uq,us) = ul +uj — 3u§ then Proposition applies. To see this,
assume for the purposes of a contradiction (and without loss of generality
by clearing denominators as usual) that Q4(mq,my, m3) = 0 for some prim-
itivel integer vector (my,my,mg) € Z?. Then using congruences modulo 4
shows that

mi +m3 —3m3 =mi +m3+mj; (mod 4),

is a sum of three squares modulo 4. However, the only squares modulo 4 are 0
and 1, which forces m, my, ms to all be even, contradicting the assumption.
Hence the orbit
SOg, (R) SL3(Z)
is compact.
We now recall some of the basic theory of quadratic forms over the reals. (1
Any symmetric matrix Ag € Maty(R) can be diagonalized in the sense that

there is an orthogonal matrix k for which k*Ak is diagonal. If needed we can
change the sign of the last column to ensure that k € SO4(R). In the associated

coordinate system (vy,...,v,)" we then have
Uy Uy d
Qi) =@k :|] =2
(P Vq =1
for scalars ¢y, ..., ¢4 € R. The form @ is non-degenerate if ¢; #0fori=1,...,d

(equivalently, if det Ap # 0), is indefinite if there exist a pair 4,j € {1,...,d}
with ¢; > 0 and ¢; <0, and is positive-definite if ¢; > 0 for all i = 1,...,d.

By taking the square roots of the absolute values of the entries in the diagonal
matrix k:tAQk, we may define a diagonal matrix a for which

a 'k Agka™!

is diagonal with entries in {0, +1}. Assuming that @ is non-degenerate (so that
the entries lie in {41}), write p for the number of +1s and ¢ for the number

of —1s; the signature(l5) of Q is (p, q). We usually assume that p > ¢ (this can

t An integer vector is primitive if the entries are co-prime.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 93

always be achieved by replacing the form @ with the form —@). Note that for
non-degenerate () we have det a = | det AQ|1/2.

The discussion above shows that if Q and Q" are non-degenerate and of the
same signature, then there exists some g € GL4(R) such that Q'(u) = Q(gu).
Moreover, we also have Q'(u) = AQ(g'u) for ¢ € SLy4(R) and A > 0, which

implies as in Example B.3(2) that SO, and SOy are conjugate in SLy(R).

Ezample 3.4. The quadratic forms (from Example B3) @, and @, have signa-
ture (1, 1); the quadratic forms Q3 and @, have signature (2, 1). It follows that
the orthogonal groups SO, (R) and SO, (R) are conjugate (as claimed earlier),
and the orthogonal groups SOg, (R) and SO, (R) are conjugate.

We summarize and strengthen our discussion as follows.

Theorem 3.5 (Signature of quadratic forms). Any non-degenerate quad-

ratic form Q on R can be assigned a signature (p,q) with p+ q = d. Given a
form Q of signature (p,q), the set of quadratic forms of the form Q" with

Q'(u) = Q(gu)

obtained from Q by some g € GL4(R), is precisely the set of quadratic forms
of signature (p,q). The group of R-points of two orthogonal groups for non-
degenerate quadratic forms of the same signature are conjugate in SL4(R).

In the following we will always (and sometimes implicitly) assume that the
quadratic forms are non-degenerate. Fixing, for a given signature (p,q), some
real quadratic form @ of this signature, we define SO, , = SOq. If p = d,
then SO, o(R) = SO,4(R) is compact, and if 0 < p < d it is noffl. Our discus-
sion above (and Example B3)(3),(4)), shows that there are various matrices g
in SL4(R) for which SO, ,(R)gSL,4(Z) is closed or even compact—these orbits

correspon(ﬂ to rational quadratic forms with signature (p, ).

Exercise 3.6. Prove that uf — U Uy — ug # 0 for (uq, u2)t € Q2\{0} (a fact used in Exam-

ple [33(2)).

Exercise 3.7. Prove the claim made in Example [33(3), by showing that the closed or-
bit SOg, (R) SL3(Z) C X3 has unbounded height.

Exercise 3.8. Let A = SO;;(R) C SLy(R). Show that every closed A-orbit in X, corre-
sponds (as indicated after Theorem [B.5]) to a binary quadratic form with rational coefficients.
Notice that this cannot hold for K = SO, (R).

t Since, for example, it contains at least one copy of SO; ; = A as a closed subgroup.

¥ At this stage we only know one direction of this correspondence. The second direction will
be obtained from the Borel density theorem, see Exercise [3.52 and Exercise 4.17.
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94 3 Rationality

3.1.2 Rational Stabilizer Subgroups

It is straightforward to generalize Proposition 3.1l However, setting up the lan-
guage of linear groups, in which the generalization is naturally phrased, requires
more work than does the generalization itself. We start this introduction to linear
algebraic groups here, discuss other classes of examples in Sections and [3.4]
and return to the theory of linear algebraic groups in Section and Chap-
ter 7. For a detailed account of algebraic geometry, we refer to the monographs
of Hartshorne [66] or Shafarevich [139], and for linear algebraic groups we refer
to those of Borel [7], Humphreys [69], and Springer [147].

An affine variety is a subset Z of C" or, more generally, of K" for another
field K with K an algebraic closure, defined by the vanishing of polynomial
equationsﬁl. We will write both Z and Z(K) for this variety, so that

Z = Z(K)

will always consist of all solutions to the polynomial equations over the algebraic
closure. An important example for us is

SL; = {g € Mat, | detg — 1 = 0},

where Mat, is the d*-dimensional vector space of d x d matrices.

A regular function is simply the restriction of a polynomial to the variety. In
order to be able to work with this definition, and in particular to have a way
to uniquely describe a regular function, we need to know when a polynomial
vanishes on the variety. The description of the set of polynomials that vanish
on an affine variety is given by the Hilbert Nullstellensatz,(lﬁ) which we now
recall. We refer to Eisenbud [48, Th. 1.6] or Hungerford [70, Prop. VIII 7.4] for
the proof.

Theorem 3.9 (Hilbert Nullstellensatz). Let K be an algebraically closed
field, and let J C K[zy,...,x,] be an ideal defining the affine variety

Z(J)={z e K" | f(z) =0 for all f € T}.

Then | € K[y, ..., z,] vanishes on Z(J) if and only if there exists a power ™
for some m > 1 of f that belongs to J .

The ideal
rad(J) = {f € K[zy,...,z,] | f™ € J for some m > 1}

is called the radical of the ideal J. If we now write K[Z] for the ring of reg-
ular functions on the variety Z = Z(J) defined by the ideal 7, then we can

T We apologize to the expert for the barbaric and old-fashioned definition, but as our focus
will usually be on rather concrete groups comprising R-points, this approach is appropriate
here. In particular we will avoid talking about schemes and spectra.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 95

reformulate the Nullstellensatz by the formula
K[Z(T)] = K21, .- 2,]/rad(T).
Returning to our example
SLy = Z(det(-) — 1) C Maty,

we need to establish what the radical of the ideal generated by the polyno-
mial det(-) — 1 in d? variables is in order to talk about regular functions. This
is explained by the following result.

Lemma 3.10 (SL; is Zariski connected). For any d > 1 the polyno-
mial det(g) — 1 is irreducible as a polynomial in the variables g; ;, 1 < i,j < d,
with coefficients in C (or in any other field).

PROOF. Suppose that det(g) — 1 = p(g)q(g), where p, g are polynomials in the
independent variables g; ;, 1 < 4,5 < d. Now notice that the determinant is
linear in each of its rows, so for every pair 7, j the polynomial det(g) — 1 is of
degree one in the variable g; ;. It follows that for any 4,j one of p or ¢ is of
degree one in g, ; and the other is independent of g; ; (that is, of degree zero in
the variable g; ;). As this holds for every pair i, j, we obtain a partition

PUQ={(,j)|1<i,j<d}
of the indices so that
p(g) € Clg, ; | (4,5) € P]
and
q(g9) € Clg; ; | (i,7) € Q]

If P (or Q) is empty, then p € C (respectively g € C) is a scalar—which is the
desired conclusion.
With deg denoting the total degree,

d = deg(det(g) — 1) = deg(p(g)q(g)) = deg(p(g)) + deg(q(g))- (3.6)

Assuming that P and @ are both non-empty, we derive a contradiction by
defining

1 if (i,7) € P;
which extends to monomials m by summation over the factorization of m, and
to polynomials by defining

degp(g;,;) = {

degp (Y exmy) = max{degp(my) | e # 0},

Just as in (B0, we find that
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96 3 Rationality

degp(pg) = degp(p) + degp(q).

Now ¢ must have a constant term (since det(g) — 1 has a constant term),
so degp(q) = 0. It follows that p(g)q(g) contains monomials in the variables g; ;
with (4, j) € P of total degree degp(p) = deg(p) only. By (B.0) and our assump-
tions on P and @ we have 0 < deg(p) < d. However, this is a contradiction
as det(g) — 1 contains a constant term, and all other monomials have total
degree d. O

Let K be any field. We will often be interested not in the whole variety
consisting of all points in K" defined by an ideal over the algebraic closure of
a field, but in fact only in the K-points of the variety, meaning those vectors
in K" on which the polynomials all vanish. In general this set may be empty
because K is not assumed to be algebraically closed, and even if it is non-empty
it may not resemble the whole varietyEl In particular, there is no reason for
the set of K-points to remember the ideal at all (in other words, Theorem
does not hold without the requirement that the field be algebraically closed).
Nonetheless, we may define for any affine variety Z its K-points as the set

Z(K) = ZnK",

where as before Z = Z(K) by definition.

Moreover, we are often interested in regular functions with ‘coefficients’ in K.
Formally we say that Z is defined over K if J = rad(J) defines Z and the
ideal J C K[xy,...,m,]is generated by JNK|[x1, ..., ,]. Under this assumption
we define the ring of K-reqular functions to be

K[Z] = Klz1, .., 2] /T N K[y, ..., 2,].

We will return to these notions in Section

Let us return to our main example SL; which is defined over any field K,
since the coefficients of the irreducible polynomial det(-) — 1 are integers. Hence
it makes sense to consider the ring of K-regular functions

K[SLd] = K[gl,lv s 7gl,dvg2,17 cee 792,d7 s 7gd,17 s 7gd,d]/<det(g) — 1>,

where K is the field of coefficients allowed in the polynomials. For us the field K
will often be R, Q,, or Q.

A D-dimensional algebraic representation of SLy over K is a D*-tuple of K-
regular functions

¢;,;(9) € K[SLg]

for 1 <i4,j < D, which we think of as a matrix

¢ € Matp (K[SLg])

f An example to have in mind here is the variety defined by the equation z* +y2 = —1 defined
over R, and a less trivial example is the variety defined by the equation z° + y3 = 1 defined
over Q.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 97

with the properties that ¢(I;) = Ip and

¢(9)0(h) = d(gh) (3.7)

for all g, h € SLy.
Let us give an example of a representation of SL;, which will be important
in Section 3.4l The conjugation representation is defined by

Mat, 3 A — gAg ™"

for g € SL,. Since det(g) = 1, the matrix g_1 has entries which are regu-
lar functions (since the inverse is calculated by taking the matrix consisting
of the determinants of the minor matrices multiplied by the inverse of the de-
terminant). Therefore, we can choose a basis and get a D = d*-dimensional
representationf] beonj (defined over any field K). Indeed, ¢eon;j(9)@conj(h) is the
matrix corresponding to the composition

Ar— hAh ' — g (hAhfl) g ' = (gh)A(gh)™",

which is also represented by ¢conj(gh). Therefore, ([B.7) holds by uniqueness of
matrix representations.
Another example of a representation has already been used: For g € SL; the
map
Maty 3 A— (") 'Ag~! (3.8)

is linear in A and a regular function in g. Moreover, we may restrict to symmetric
matrices and choose a basis of the space of symmetric matrices. In this way we
d(d+1)

obtain a matrix representation ¢y, € Matp with D = =5—=.

Proposition 3.11 (Rational stabilizer groups of points have closed
orbits). Let ¢: SL; — GLp be an algebraic representation over Q, and
let v e QP. Then the (rational) stabilizer subgroup

Stabgr,, (v) = {g € SLy | ¢(g)v = v}
gives rise to a closed orbit
StabSLd (’U) (]R) (I SLd(Z)) g Xd
through the identity coset.

Notice that Stabgy,, (v) is itself a subgroup defined by polynomial equations
(and hence will be seen to be an algebraic subgroup defined over Q, once we
define this notion in Section BA]). The proof of Proposition B11]is much quicker

T As will become more and more clear, part of the art in discussing algebraic groups and their
representations will be to not really write down any concrete polynomials or regular functions
(as these quickly become quite complicated).
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98 3 Rationality

than the discussion above, which was included to familiarize the notion of alge-
braic representations of SL,.

PrOOF OF PrROPOSITION B.11l Notice that there are finitely many coefficients
in (a representation of ) the polynomials in ¢(g). Let N be their common denom-
inator, so that ¢(y) € 3 Matp(Z) for all v € SL4(Z). Let M be the common
denominator of the entries in v. Suppose that

as n — 0o with h,, € Stabgr, (v)(R) and g € SL;(R). We wish to show that
x € Stabgy,, (v)(R) SLy(Z). (3.10)

Just as in the proof of Proposition Bl we may rewrite B9) as h,vy, = €,9
with ~,, € SL;(Z), €,, € SLy(R), and €,, — I as n — co. Applying the inverse of

these matrices to v via the representation ¢ shows that the sequence (¢(7n)7lv>

.. D .
lies in ﬁZ and converges, with

0(1) "' = ()"0 = dleng) v — 6(g) v
as n — oo. Therefore this sequence must stabilize, and so ¢(y,) ‘v = ¢(g) v

for some n, which shows that g7, ' € Stabgr,, (v)(R), giving (B.10). O

Although the following is not needed for the proof above, let us try to un-
derstand a little more about SL4(K) and algebraic representations of SL; over
any field K. By Lemma 1.59 we know that

SLy(K) = [SLq(K), SLy4(K)].

It follows that SLy4(K) (resp. SLy(K)) cannot have any abelian factors, and
so det ¢(g) = 1 for every algebraic representation ¢ over K and g € SLy(K). By
Theorem and Lemma this must therefore also hold as an identity in

K[SLy] =Klg; ; : 4,5 =1,...,d]/(det g — 1).

Exercise 3.12. For any subspace V C R? we define
Ly ={g€SL,; | gV =V and g|y preserves the volume}.

(1) Show that Ly (R)SLg4(Z) C Xy is closed if V' is a rational subspace.

(2) More generally, let g = ggSLy(Z) and let V be a gOZd—rational subspace. Show
that Ly (R)zg is closed.

(3) Let zg and V be as in (2). Let G < SL4(R) be a closed subgroup such that Gz is closed.
Show that (G N Ly (R))zg is closed.

Exercise 3.13. Show that ¢ € Matp, (K[SLy]) satisfies B0) for all g, h € SL if and only if
it satisfies ([B7)) as an abstract identity in K[SLy x SLy].

Page: 98 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



3.2 Intrinsic Diophantine Approximation on Spheres 99

3.2 Intrinsic Diophantine Approximation on Spheres

We fix d > 2 and wish to discuss Diophantine approximation for points in the
sphere st c R However, we wish to find approximations to points v € sé1
by rational vectors %p e %! within the sphere. We will refer to this sort of
problem as intrinsic Diophantine approximation. In contrast to the abundance
of rational points in R? used for extrinsic approximation it is not a priori clear
how many rational points in S exist (but Pythagorean triples certainly give
rise to many). As a result it is not clear what error rate or quality of approxi-
mation should be expected in this setting.

After earlier work"™ Kleinbock and Merrill [83] found and proved the optimal
result in 2015. We only discuss a few of their results and the version of Dani’s
correspondence they found, and refer to their paper for more details and further
results.

Theorem 3.14 (Intrinsic approximation for Sdil). For a point v € S%!
and an integer N > 1 there exists an integer ¢ with 1 < ¢ < N and an integer
vector p € Z* with %p e S™ and with

1 C

V= =PI S T 1
q qZ N2
where C' > 0 is a constant depending only on d.

This implies the following corollary quite directly.

Corollary 3.15 (Intrinsic approximation for Sd_l). For anywv € S there
exist infinitely many p € Z¢ and integers q = 1 with %p e S and with

7
v—=p|| <
q

¢
q )

where C is a constant as in Theorem B.14
This in turn motivates the following definition.

Definition 3.16. A vector v € S ! is said to be intrinsically well approzimable
if for any € > 0 there exist infinitely many vectors p € 7% and integers ¢ > 1
with %p € S%! and with

1 H 5
v—-p||l < -.
q q

If this does not hold, v is called intrinsically badly approzimable.
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100 3 Rationality

3.2.1 The Dynamical Interpretation

The amazing insight of Kleinbock and Merrill was that intrinsic Diophantine
approximation in S~ also has a dynamical interpretation similar to that used
in Section 2.4. This allowed them to translate known dynamical results and
bring them to bear on the problem of intrinsic Diophantine approximation.

For this we let Qq(zg, 21, ..., 44) = -2 + a1 + - + a5 and G = SOgq, (R).
Then Y = G-Z™ ~ G/G n SLg,1(Z) is a closed orbit by Proposition Bl We
also define the diagonal subgroup A = {a, | t € R} by setting

cosht —sinht
a; = | —sinht cosht eq
I

for t € R. Finally for v € S we may apply the Gram—Schmidt procedure and
let k, € SO4(R) have v" as its first row vector and then define

(1 d+1
A”_<kU)Z €Y.

Notice that the elements of A, have the form

q

() )|

withg € Zand p € Z* and the remaining entries corresponding to the orthogonal
projection of p onto (Rv)™. With this we can state the insight of Kleinbock and
Merrill.

Proposition 3.17 (Intrinsic Dani correspondence for Sdil). A wvector v
in ST s intrinsically well approzimable if and only if the forward orbit

{atA'u | t > 0}
1s unbounded in Y .

Before we start the proofs of the results above we rephrase Mahler’s com-
pactness criterion for subsets of Y. For this and the following discussion it will
be convenient to say that a vector v € R s a light vector if Qq(v) = 0.

Lemma 3.18 (Mahler compactness in Y using light vectors). For a point
y=9gSLay1(Z) €Y

with g € SOq, (R) we have
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3.2 Intrinsic Diophantine Approximation on Spheres 101

M (y) = w(y) = min{|[o]| | v € gZTN0} and Qq(v) = 0}.

In particular, a closed subset B C'Y is compact if and only if w|g > € for
some g > 0.

PROOF. Suppose first that A;(y) < 1 and let A (y) = |jv|| for v € gZ**'. Then
Qo) = | =g + v} + - +vg| <ol < 1

and Qu(v) = Qg 'v) € Qu(Z™") C Z imply that Qy(v) = 0. There-
fore A1(y) < 1 implies that A;(y) = w(y).

By Mabhler’s compactness criterion (Theorem 1.51) and Proposition Bl the
set {y € Y | A\;(y) > 1} is compact. This implies that w is bounded on this set.
Together with A\; < w and the above this gives A; < w. The lemma follows from
Theorem 1.51 and Proposition 311 ([l

PROOF OF THEOREM B4l Let v € S*', t > 0 and <Z> € Z*" be a light
vector such that ¢ = [|p|| > 0 and

a (1 ky) <Z> H = w(aA,) < 1. (3.11)

In particular the first two entries of

5:

q gcosht — (v,p)sinht

ay (1 k ) (q> =W (v.p) | = | —gsinht+ (v,p) cosht

b

are bounded by . Taking their sum and difference gives

lge™" + (v,p)e"| =e""|q + (v,p)| < 2,

‘ p—
‘qet — (v,p)et‘ = et|q - (v,p)‘ < 20. (3.12)

In particular, by dividing by the exponentials and taking the sum we obtain
2q < 26! + 26" < 48¢t.

Moreover, dividing B12) by ge’ gives
‘ 1 26
1-— (v, —p) < —.
q
qy . : 1 d—1
As (p) is a light vector we have 7P € S and

2:2—2(U, 1p) <X (3.13)

Page: 101 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



102 3 Rationality

Hence together with 6 <« 1 we conclude by (BI1)) that 1 < ¢ < coe’ for some
constant ¢y and

We now fix N > ¢y and define t = log % to obtain the desired estimate. For

the case N < ¢y we simply use ¢ = 1 and p = (1,0,...,0)" and increase the
constant C' accordingly. O

PrROOF OF PROPOSITION [BI7 Suppose first that the orbit is unbounded.
Let ¢y > 0 and find ¢ > 0 so that w(a,4,) < g¢. This gives the bound B.II))
with § = w(a;A,) < &g, which implies BI3) for ¢ < 20e’. Together this gives

> as? 4ep
<— <=
q q

v——p

/

It follows that v is intrinsically well approximable.
Suppose now that v is intrinsically well approximable and let € € (0, 1). Then
there exists an integer ¢ > 1 and p € 74 with %p € S? and with

(3.14)

7l
v——p| <
q
Taking the square and expanding gives

1 1
2—2<v,—p) = ‘v——p
q q

We set ¢ = ee’ and note that ¢ > 0. Multiplying the above with qTet gives

2 2
€

<5
q

et |q - (U,p)| g 2e.
Using the definitions of cosht and sinh ¢ we may obtain

|gcosht — (v, p)sinht| < ¢,
|—¢sinht + (v,p) cosht| < e.

In other words, we have obtained good estimates for the first two components

of the vector
1 q
(') ()

By definition of a; and k, the remaining entries correspond to the orthogonal
projection 7(p) of p to the orthogonal complement of Rv. Therefore these entries

are bounded by
1
i (Zp=0)
q
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3.3 Rational Unipotent Subgroups 103

due to [B.I4)). Together we have shown that
A (atkadH) <e.

As € > 0 was arbitrary we deduce that the forward orbit is unbounded. O

In the next chapter we will show in particular that Y has finite volume.
Moreover, G° = SOq_ (R)? = 8O, 1(R)? is a simple Lie group. Together with
the Mautner phenomenon in Proposition 2.25 this gives ergodicity for the action
of A on G°(ISLy1(Z)) C Y. From here it is possible to show that almost
every vector v € SR intrinsically well approximable (along the lines of
Exercise 2.24).

On the other hand it is also possible to find many vectors v € S* that are
intrinsically badly approximable using Schmidt games. Together this shows that
the results presented are in a sense optimal. However, the precise value of C' in
Theorem [B.14] is mysterious and depends on the geometry of the orbit Y. We
refer the reader to the paper of Kleinbock and Merrill [83] for more details.

Exercise 3.19 (Intrinsic Dirichlet improvability). Prove that there exists some con-
stant A € (0, C) with the following property. If v € S*! has the property that for any large
enough integer N there is an integer ¢ with 1 < ¢ < N and p € 74 with %p € $%! and with
A
1 1
q2N?2

1
o 7pH <
q

then v is rational, meaning that v € Qd nsdt.

3.3 Rational Unipotent Subgroups™*

[In this section we will construct lattices in certain] connected, simply connected
nilpotent Lie groups. By Ado’s theorem (see Ado [1] or Knapp [87, Th. B.8])
and Engel’s theorem (see Knapp [87, Th. 1.35],) such a group can be embedded
into the upper triangular subgrou

 This section gives more examples of compact quotients of nilpotent groups, but otherwise
is not essential for most of what follows. It will, however, become part of our proof of the
Borel-Harish-Chandra theorem in Section 7.4.

' Once we have discussed these notions it will be easy to see that the groups we will discuss
here are of the form G = G(R) for a connected unipotent algebraic group G defined over Q.
As the theorem and its proof does not require this language we leave this fact to the reader.
§ Ado’s and Engel’s theorems are usually stated for a nilpotent Lie algebra instead of for the
corresponding simply connected group, but the former implies the latter, see Exercise 3211

Page: 103 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



104 3 Rationality

1x*... %
1*x... %

N = . < SLy(R) (3.15)
1

for some d > 1. A subgroup G < SL4(R) is called unipotent if it is conjugated
to a subgroup of N.

Theorem 3.20 (Lattices and Mal'cev basis for unipotent Q-groups).
Let G < SL4(R) be a connected unipotent subgroup whose Lie algebra g is a
rational subspace of s13(R) C Maty(R). Then

G(Z) = GNSLy(Z)
s a uniform lattice in G. Moreover, writing { = dim G, there exist elements
Uiy, € gN sl (Q)
for which
G(Z) = {exp(k1v1) exp(kqvy) - - - exp(keve) | ki, ..., ke € Z},

G = G(R) = {exp(syv1) exp(sav) - - exp(sevy) | 51, .., 80 € R},

and
F = {exp(tvq) exp(tavy) - - - exp(tyvy) | t1,...,t, € [0,1)}

is a fundamental domain for G(Z) in G. Moreover, the map
(s1,---,80) — exp(svy) exp(svz) - - - exp(s,vy)

is a (polynomial) diffeomorphism between R’ and G. The vectors Viy...,Vp NG
are called a Mal'cev basis.

PRrROOF. As g C sl;(R) is, by assumption, both a nilpotent Lie algebra and
a rational subspace, the same holds for all the elements of the lower central
series. In particular, g’ = [g, g] is a rational subspace. By assumption, g can be
conjugated into the Lie algebra of N. Therefore, the exponential map

exp(v) ZI—I—’U-F%’UQ—I—---—F ﬁvdil
is actually a polynomial map on g with the logarithm map

log(g) =g —1—4(g—1)*+ -+ (-1)"L5(g - D"

as a polynomial inverse (which is defined on all of G). From this it follows that
the linear group G is isomorphic to its Lie algebra g, if we equip the latter with
the polynomial group operation v * w = log(exp(v) exp(w)).
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3.3 Rational Unipotent Subgroups 105

Recall that there is a—possibly immersed—Lie subgroup G’ < G with Lie
algebra g’. This shows that for sufficiently small v,w € g’ the product v * w
lies in g'. However, using the fact that the group product v * w for v,w € g
is a polynomial in v and w, we can now concludd! that g’ * g’ C g’. Indeed,
if 1 is a linear function vanishing on g’ and v € g’ is sufficiently small, then
the map w — ¥ (v * w) is a polynomial on g’ which vanishes on all sufficiently
small w. Tt follows that ¥ (v * w) = 0 for all w € g’. Reversing the roles of v
and w, and using the fact that a linear subspace is defined by the collection
of all linear functions that vanish on it, we see that g’ * g’ C g’. However, this
shows that G’ = exp(g’) is simply the isomorphic image of the Lie ideal g’ and
so is a normal closed connected subgroup of G. Note furthermore that the Lie
algebra of G/G' is g/g’. Hence G/G' is abelian and can be identified with its
Lie algebra under the exponential map.

As m = dim(G’) < ¢ = dim(G) and the Lie algebra g’ of G’ is rational, we
may assume that the theorem already holds for the unipotent subgroup G’. So
let v},..., v, be the Mal'cev basis for G’ and the uniform lattice

G'(Z) = G' N SLy(Z).

Let F' C G’ be the fundamental domain as in the theorem for G'(Z) in G'.
Let V C g be a rational linear complement to g’ < g.
We claim that the image of G(Z) in the abelian group G/G’ = g/g' = V is

discrete. For this let K = exp (BY ) cqG/ G', which is a compact neighbourhood
of the identity. Suppose that

VG e KN (G(Z)/G) C G/G'.

Then we may modify the representative v by elements of G'(Z) on the right to

ensure that v € exp(BY)F/, so that « belongs to a fixed compact set. As G(Z)
is discrete it follows that there are only finitely many possibilities for vG’, and
so the image of G(Z) in G/G’ is discrete.

Next we claim that the image of G(Z) modulo G’ is a lattice in V. To see
this, we have to find £ —m = dim V linearly independent elements in the image
of G(Z) in G/G' = V. This follows in turn since for every rational element v € V/
we have

exp(Nv) =1+ Nv + %N2U2 +F ﬁNd_lvd_1 e G(z)
for a sufficiently divisible .
We now choose vy, ...,v, € g so that

exp(v;) € G(Z)

" Once we have introduced the notion of Zariski density we will see that this argument uses
the fact that the Hausdorff (that is, standard) neighbourhood of (0,0) € g’ x g is Zariski
dense in gl X g/

Page: 105 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



106 3 Rationality

for j =1,...,¢ and the elements
exp(v1)G’, ..., exp(v,) G’

are a basis of the lattice obtained from G(Z) in G/G’ (see Exercise 1.43). The

elements
! !
’Ul,...,’l)g,'Ul,...,'Um

are now a Mal'cev basis.
To see this, let v € G(Z). Considering vG' we find ki,...,k, € Z such
that vG' = exp(k,v,) - - - exp(k,v,)G’, or equivalently
7 = (exp(kyoy) - -exp(kev) 'y € G

Applying the inductive assumption it follows that
v = exp(kyvy) - - exp(kpvp) exp(kyvr) - - exp(ky, )

for some ky,..., ko, ki, ...k, € Z.If g € G is arbitrary we may argue similarly
to obtain unique sq,...,s, € R with

g = exp(s1v1) - - exp(svg) exp(s101) - - - exXP (81 Uy )-
Furthermore, if we consider g as a representative of a coset gG(Z) we may
define k; = [s;] for j = 1,...,¢ alnd multiply g on the right with the lattice
clement (exp(kyvy)---exp(kyvp))  to obtain

glexp(kyvy) -+ exp(kpvg)) ™" = exp(tiv) - - exp(tvg)g’

with ¢’ € G’ and uniquely determined t;,...,t, € [0,1). Moreover, by the
inductive assumption for ¢’ there exist uniquely determined ¢},...,t; € [0,1)
with

9'G'(Z) = exp(exp(tyvr) - - exp(tyvy) G (Z).

We deduce that the set F' is indeed a fundamental domain. [l

Exercise 3.21. In Knapp [87, Th. B.8, Th. 1.35] it is shown that any nilpotent Lie algebra
can be embedded into the Lie algebra n of N for some d > 1 (where N is defined by [BI3))).
Use this (and the discussions regarding the exponential map of this chapter applied to G = N)
to show that every connected, simply connected nilpotent Lie group can be embedded into N.

Exercise 3.22. Let G be a unipotent connected subgroup of SL;(R) (with a rational Lie
algebra). Show that G can be defined using polynomial equations (with rational coefficients).
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3.4 Algebraic Number Theory and Compact Torus Orbits 107

3.4 Algebraic Number Theory and Compact Torus
Orbits*

[n this section we study another class of examples of orbits of rational stabilizer
groups, which are intimately related to algebraic number theory. Let

K =Q(¢) =Q[T]/{m(T))

be an algebraic number field generated by an algebraic number ¢, with minimal
polynomial m of degree d = [K : Q] = degm(T'). We may assume that m is
monic. Let O C K be an order (a subring of K that contains 1 and is isomorphic
to Z as a group). Replacing ¢ by n¢ has the effect of multiplying the non-leading
coefficients of m(T") by powers of n. Thus we may assume that m € Z[T], so
that ¢ is an algebraic integerﬁ, and Z[¢] is an order. Even though K can be
embedded into R or C, we prefer not to think of K as a subfield of C but rather
as the abstract field K = Q[T]/(m/(T)) with ( =T + (m(T)).

The following represents the first fundamental result*®)
number theory that we wish to prove.

within algebraic

Theorem 3.23 (Dirichlet unit theorem). Let O be an order in an algebraic
number field K. The group O™ of units is isomorphic to F x 2" where F s
a finite group of roots of unity in K, r is the number of real embeddings K — R,
and s is the number of pairs of complex embeddings K — C.

The numbers r and s may also be described as follows. Splitting m(T') over C
gives

m(T) = (T =)+ (T = )T = G (T = Gpr) -+ (T = G ) (T = ),

with (1,...,( € Rand ¢.11,...,(4s € CNR. Using K = Q[T]/(m(T)), the
real embeddings ¢;: K — R are then all of the form

¢z(f(T)) = f(Cz)

for some i =1,...,r, and the complex embeddings are all of the form

Gr1i(F(T)) = f(Grtd),

respectively

Grii(F(T) = f(Crpa)s
fori=1,...,s and f € Q[T].

! This section provides interesting examples of algebraic groups (more precisely, of torus
subgroups) and compact orbits, and connects these to algebraic number theory. It is not
essential for most of the later chapters. It will, however, become part of our proof of the
Borel-Harish-Chandra theorem in Section 7.4.

t An algebraic integer is an algebraic number for which the monic minimal polynomial has
integer coefficients.
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For the second fundamental theorem in algebraic number theory we need two
more definitions. For an order O in a number field we say that an ideal 7 C O
is proper if O = {p € K | BJ C J}. Note that O itself is always a proper ideal
in O. Moreover, two ideals 7,7’ C O are equivalent if there exists some § € K

so that J’ =pJ.

Theorem 3.24 (Finite class number). For a number field K and an order O
there are only finitely many equivalence classes of proper ideals in O.

3.4.1 Compact Orbits Arising From Number Fields

Another point of view in discussing K and its embeddings is given by studying
the map defined by multiplication by ( =T + (m(T))

¢ QIT]/{m(T)) — Q[T]/(m(T))
() + (m(T)) — TF(T) + (m(T)).

We consider -¢ as a linear map over Q. In this way the characteristic polynomial
of - is a rational polynomial of degree d which annihilates the map. As m is
irreducible of degree d it follows that m is the characteristic and also the minimal
polynomial of the map. Therefore, the linear map - has eigenvalues

Clv ey Crv <r+17 <r+17 ey Cr-i—sv Cr-i—s‘

More generally, if -5 is the linear map defined by multiplication by 5 € K, then
its eigenvalues (considered as a Q-linear map on the vector space K over Q) are

agaixﬂ

¢1(B)7 e 7¢r(ﬁ)7¢r+l(6)u¢r+l(ﬁ)v e 7¢r+s(6)7¢r+s(ﬁ)'

We now discuss how to obtain a concrete matrix representation of K, which
will allow us to use the results of Section 3.1l This is quite similar to how one
can consider C as a field of 2 x 2 matrices using the correspondence

Coz+iy+— <Z _:vy) € Mat,y (R),

and it is helpful to view the construction below simply as an analogue of this.
We let &;,...,&, be a Z-basis of a proper O-ideal J. With this basis in mind,
we may now identify the linear map -8 on K with a matrix

¥7(B) € Maty(Q).

T This follows since B = f(¢) for some polynomial f. If 3 € K\Q then none of the eigenvectors
are in Q. In that case the eigenvectors only appear after ‘extending the scalars’, for example
replacing K = Qd by K ® C = c.
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We are again using column vectors so that -8: K — K corresponds to apply-
ing ¥(B) to column vectors v € Q". By assumption, for 8 € K we have

BeEO = (-B)(&) € J forall i <= 1 ;(B) € Maty(Z).
Note that for 4 € K* we have ¢7(87") = ¢7(8)"" and hence
B e O <1 ;(8) € GL4(Z) = {g € Maty(Z) | det(g) = +1}. (3.16)
Below we will be studying the subgroup

O' = {8 0" | ¥7(8) € SL4(2)};

this is either @™ or an index two subgroup of @, and so it suffices for Theo-
rem [3.23 to show the desired description for O.

Proposition 3.25 (Compact torus orbit). Let v; = ¢ 7(¢) € Maty(Z) and
consider the stabilizer subgroup
Ty ={9€SLq| gvz9~" = vz}
for the conjugation action (that is, the centralizer of v ). Then the orbit
T.7(R) (I SL4(Z))
is compact, and the corresponding uniform lattice T 7(Z) < T ;(R) satisfies
T (Z) = SLy(Z) N T7(R) = 17 (O).

In more technical language, the subgroup T 7 is a special case of an algebraic
torus (it is in fact a Q-anisotropic Q-torus). Moreover, the algebraic group T,
is closely related to the group Resg g G, obtained by applying restriction of
scalars to the multiplicative group G,,—it is the kernel of the Q-split char-
acter Ng|g on Resg|g G,,. Minding our language we will not use these words
often, but we will give a short introduction to these terms in Chapter 7.

The following will be useful for the proposition and for the following discus-
sions.

Lemma 3.26 (Matrix representation of K). For v, = ¢ 7(() we have
Y7 (K) = {w € Mat,(Q) | wo, = vew, }
and this space has dimension] d over Q.

PROOF. As K is a field it follows that v is injective and hence 1 7(K) has
dimension d over Q. Moreover, for 8 € K we have

t As the subspace in question is defined by rational equations, the dimension of it as a subspace
of Maty(Q) over Q equals the dimension of it as a subspace of Maty(R) over R (and similarly
for C).
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Vr(Blvg =v7(B)Ys(C) =v7(BC) =v7((B) =vy7(B)-

This gives one inclusion for the rational subspace in the lemma. To prove the
second inclusion we show that wv, = v w also defines a d-dimensional subspace.

However, we equivalently calculate the dimension after ‘extending scalars
to C’. In other words, we calculate the dimension of {w € Mat,(C) | wv, = vew}
over C. This has the advantage that we may diagonalize v, over C. For a diagonal

matrix a with pairwise distinct eigenvalues aq,..., a4 the condition wa = aw
gives w; ;a; = a;w; ; for all 4,57 = 1,...,d, which forces w to be diagonal. It
follows that {w € Maty(C) | wv, = v,w} has dimension d over C, which gives
the equality in the lemma. O

Proor orF ProrosiTION B.25l By Proposition B.I1] and our definition of T,
we know that the orbit is closed. We also note that Lemma [3.26] implies that

T7(Z) = {w € Mat,(Q) | wv, = vew} N SL4(Z)
=g ({be K |9(b) € SLy(Z)}) = ¢¥7(0")

by BI6).

We prove compactness along the lines of the proof of Proposition For
this we need a replacement for the quadratic form, and this is provided by the
norm form

Nijo(B) = det ¢ 7(B)

which is originally defined for 8 € K (independent of J or its chosen basis).
Since K is a field, N |g(8) = 0 for 8 € K if and only if 3 = 0, which is similar
to the hypothesis in Proposition 3.2l Let us write

t(v) =v& + - F vy

forv € Qd, so that by assumption ¢ gives an isomorphism between Z% and J as
well as between (@d and K. We also note that 1 o ¢: (@d — Maty(Q) is linear,
and so we can extend it to a linear map

W, RY — Mat,(R).

Similarly we may think of det(¥;(x)) as a homogeneous polynomial in d vari-
ables zq,...,z, of total degree d.
Now suppose that T.(R)(ISL4(Z)) is unbounded. Then for some vec-

tor m € Z*{0} and h € T 7(R) the vector hm is very small. This implies
that |det W, (hm)| < 1. We claim that

U, (hm) = h¥ 7(m). (3.17)

Assuming this for now, and recalling that h € SL;(R), we obtain that (in analogy
to B.5) on page @) |det ¥, (m)| = |det ¥, (hm)| < 1, which forces det ¥ ;(m)
to be 0 (since det ¥ ;(m) € Z). However, m € Z~{0} corresponding to some
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B =u(m) € {0}

cannot have Ngo(B8) = det¥;(m) = 0, proving that T;(R)(/SLy(Z)) is
bounded, and hence compact.
For the claim we take the R-linear hull of the subspaces in Lemma and
get
W7 (RY) = (Y7 (K))z = {w € Maty(R) | woz = v w}. (3.18)
Also notice that
Vg(aB) = Yg()bs(8) (3.19)

for a, p € K, since v 7 is giving the matrix representation of multiplication by
elements of K in the given basis. This may also be phrased as

Y7 (u(hm)) = b7 (e(m)) (3.20)

for h € ¢¥7(K) and m € Z%. Indeed, h = v 7(a) is the matrix which sends m
corresponding to 8 = 1(m) to hm corresponding to a8 = 1(hm), so that the left-
hand sides of (B19) and (3:20]) agree. The right-hand sides agree tautologically,
and so (B220) follows. Equivalently, we have shown that the identity [BI7) holds

for h € Y 7(K) and m € Z". However, this is a linear equation in h which there-

fore also holds for h € ¥7(R?) in BIR). In summary, we obtain the claim (3I7)
and the proposition follows. (|

3.4.2 Proving the Dirichlet Unit Theorem

To finish the proof of Theorem [3.23] we need to analyze the structure of T 7 (R).

Proposition 3.27 (R-points of the torus subgroup). With the notation as
above,

T (R) = M x R,
where M is a compact linear group with connected component of the identity
isomorphic to (S')*.

The pair of numbers (r, s) play a similar role for T as the signature of the
associated quadratic form does for an orthogonal group. In this sense, the result
above is an analogue of Theorem

PROOF OF PROPOSITION [3.27. We already did most of the work for this already.
In fact, as in that proof, the group

T;(R) = {g € SL4(R) [ gvs = v7g}

is conjugate tdl

T Just as in the theory of Jordan normal forms, this follows quickly from consideration of R
as an R[T]-module, where T acts via vz, which gives
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{g € SLy(R) | gve r = ve R}

where v, g is the block-diagonal matrix

G

— Cr
R (e8Y) € Maty(R)

o)

and ¢ is the map defined by

1+ iy — (;j —y>.

x

We use v g (instead of vg;,e) to ensure that the conjugation takes place over R,
which is needed to analyze T ;(RR). It is easy to check (for example, by a dimen-
sion argument as in the proof of Lemma [3.26]) that

{g € Maty(R) | gve g = ve rg}

= a/l,...,a/reR,bl,...,bSEC

u(by)
Therefore T 7(R) is isomorphic to the multiplicative group
{(ag,-sapbyye b)) €RTXC® [ay - -a,lby|®- - [by)* =1}
which contains the non-compact part
t. t

{(etl,...,eT,eT“,...,etT“)|t1+~-~—|—tr—|—2tr+1—|—-~-—|—2tr+s:0},

and this is isomorphic (as a Lie group) to R""*~". The subgroup M C T ;(R)
is then the subgroup isomorphic to the ‘group of signs’

{(517"'757“7’215"'525)|€i € {i1}7|zl| :1751"'57“ = 1}

R = RIT/(T—¢y) x -+ x RITIAT—¢,) x RITY (pe (T)) x -+ x RIT)/(p;_ (T)),

where p¢ (1), ... "Pe s (T) are the quadratic real minimal polynomials of . 1,...,(mps
in C. We refer to Hungerford [70, Ch. VII] for the details.
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O

PROOF OF THEOREM [3:231 By Proposition 325, O is isomorphic to a (uni-
form) lattice in T 7(R), which by Proposition [3.27] is isomorphic to the abelian
group M x R™T*71 Taking the quotient by M we obtain a uniform lat-
tice in RHS*l, which must be generated by r + s — 1 elements. Suppose
that aq,...,q,, s 1 € O are elements that give rise to a Z-basis of the lat-
tices in R"™*~'. Then Qq,...,0., 4 1 generate ot up to the kernel of the map
from O" to R™* 71, However, this kernel F' maps under ¢ and the isomorphism

to M x R"™7! to the compact group M (with discrete image) and so must be
finite. O

3.4.3 Compact Orbits for the Diagonal Subgroup and Finite Class
Number*

[fThe set-up used above can be used further to discuss interesting distribution
properties of compact orbits arising from number fields. We define for a given
number field K the complete Galois embedding

¢ = (¢17' s 7¢r7¢r+17' c 7¢7‘+s): K — ]RT X (CS = RT+28 (321)

where as before 7 is the number of different real embeddings and s is the num-
ber of inequivalent pairs of complex embeddings of K. We note that ¢ is an
embedding, since each ¢; is injective).

We call (r, s) the type of the number field (as mentioned this plays the role of
the signature of a quadratic form), and define T, ; < SL, to be the centralizer
of a regular matrix

851

(8y)

with pairwise different and non-conjugate a; € R and 3; € C\R (that is,
with o; # o, B; # B;, and 8; # B_J for i # 7).

For the following result where the number field of type (r, s) is allowed to vary
we adopt the following convention. Given K, a complete Galois embedding ¢ as
in (821)), and a nontrivial Galois automorphism o: K — K, we note that

poo: K —+R"xC*?

 The remainder of Section [B-4l will not be needed again.
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is another complete Galois embedding. Moreover, given K and ¢ we obtain other
complete Galois embeddings by post-composing ¢ with a permutation of the r
real and a permutation and partial conjugation of the s complex embeddings.
Given a field K as a representative of its isomorphism class we allow several
different complete Galois embeddings (obtained by post-composition) but pick
one and only one complete Galois embedding ¢ from any Galois orbit

{¢po0o|o: K — K a Galois automorphism}.

Proposition 3.28 (Ideal classes and torus orbits). For a number field K
of type (r,s), an order O in K, and any proper O-ideal J C O the normalized
lattice

N S
cov01(¢(J))1/d

has compact orbit under T, ;(R). Two ideals Jy,Js give rise to the same orbit
if and only if they are ideals in the same number field (and order), and are
equivalent (that is, there exists some a € K~N{0} with J; = aJy).

o(J) € Xq

PRrOOF. Let K = Q({), ¢, O, and J C O be given. We will use the same
notation as used in Proposition Recall that {&;,...,&,} is a basis of J.
Taking the image of this basis under the complete Galois embedding ¢, we
obtain a basis of R%. Indeed, if this were not the case then we could find non-
zero elements 8 € O for which ¢(8) is arbitrarily small (see Exercise 1.43).
However, this also implies that [Ny g(8)| = [det ¢ 7(B)| < 1 and so with 8 € O
a contradiction. Replacing £; with —¢&, if necessary, we may assume that

1
97 = W (¢(§1)7 3 -a¢(§d))

has determinant one. By construction, z; = g jZd; also notice that g7 is—
up to the scalar—the matrix representation of the map ¢ from K (with the
basis {&;,...,&;}) to R" x C* (with the standard basis). Furthermore, recall
that v7 = ¥ .7(¢) is the matrix representation of multiplication by ¢ on K (with
basis &;,...,&;). In R x C® multiplication by ¢ corresponds to multiplying
the various coordinates by ¢,(¢), ..., ®,(¢) and to applying the matrices corre-
sponding to the complex numbers ¢, 1(C), ..., ¢, ({) respectively; that is, to
an application of a block-diagonal matrix v¢ g. This shows that

gjvj = UC,RQJ' (322)

Now v, g is of the same type as v, and defines the same centralizer T, ,.
Therefore,

~1
Tr,s = gJTng
since (B:22) gives for instance that

-1 -1 -1 -1
97997 V¢r = 959V597 = 95V7995 — Ve rIT997
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for g € T . Moreover,

T, s(R)gs SL4(Z) = g4 T 7(R) SLy4(Z)

is compact by Proposition [3.25

Notice that if we choose a different basis of 7, then this does not change the
point 7 € X;. Also notice that if J' = BJ for some f € K™ then B¢4,. .., B¢,
is a basis of J', and using this basis we see by [B22) (which, by the same
argument, also holds for -5 instead of -¢) that

97 =95%7(B) =vr97-
Since v, g € T, s(R) this shows that
T, € T, s(R)z 7,

which is the first direction of the second claim in the proposition.
Let now J (and J') be a proper O (respectively O')-ideal in a number field K
(respectively K /), let z 7, x ; be the corresponding elements of X; defined by

complete Galois embeddings ¢ (respectively ¢'), and assume that
Ty =1tTg
for some t € T, ;(R). By the definition of properness for an O-ideal J we have

O={BeK|[BTCT}
> (v € (Y(K))g | vZ* € Z%) (via v =1(B))
= {v € Maty(R) | vv; = v7v and vZ* C 2%}
= {v € Mat,;(R) | vv, s = v, ;v and v s C x5},

via conjugation by g 7. The latter set comprises all block diagonal matrices with
entries ¢(a) for all @ € O. For the lattices z ;- and z 7, this implies that 0'=0
and hence K’ = K. In fact the isomorphism is given by (;571 o¢ =0: K' - K.
By our conventions from just before the proposition this means that K = K,
and that the same complete Galois embedding ¢ is used. By the argument
above, this also implies that we have @ = . Suppose that &,...,&; is a
basis of J, so that z; = gJZd as before. Choosing the basis &, ...,&, of J'
correctly gives x ,» = gszd and g, = tgy. This shows that gbl({;) = t;0,(§;)
for i,j = 1,...,d where t; (in R or C) is the ith entry of the block-diagonal
matrix ¢ € T, ;(R). This implies that

o (&
ti_(bz <€]>

is independent of j. Hence there exists some 5 € K with
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t; = ¢;(B)
fori=1,...,r +s, and it follows that J' = 7. O

We now use the above to prove that there are only finitely many equivalence
classes of proper ideals.

PROOF OF THEOREM Let J be an ideal with A; = g;Z% € X,

the associated lattice with compact orbit. Let a € GL4(R) be the block-

diagonal matrix with entries ¢;(¢),...,¢,(¢) in R and blocks corresponding

to ¢, 41(¢),- -, #r15(¢) in C. Notice that (J C J implies that a,. A7 < A 7.
We claim that

is compact and that there exists some 1 > 0 so that if 4,4 € B sat-
isfy dx, (4, A"y < nthen T, ((R)A =T, ,(R)A". Together with Proposition
this implies the desired finiteness.

CoOMPACTNESS. That B is closed follows quite directly from its definition and
the topology of X;. Let § > 0 be so small that for v € R? with [|v|| < § we have

lalo] <1 (3.23)

for 5 = 0,1,...,d — 1. This implies that B C X;(9). Indeed, if A € B
d

and v € AN Bs ~{0} then the bound (B:23) together with covol(A) = 1 implies

that the vectors v, av, ... ,ag_lv are linearly dependent. However, this gives

an invariant A-rational subspace which contradicts irreducibility of the minimal
polynomial m(T) of .

TRANSVERSE DIRECTIONS. We show that for any Aqg € B there exists ng > 0 so
that
BN By (4y) C T, (R)A.

Compactness of K then implies that there also exists a uniform 7 as in the
previous claim. Let A, = gOZd and A" = hA be elements of B. By definition
this shows that galaggo € Maty(Z) and gglh_laghgo € Maty(Z). If now 7,

is sufficiently small and h € B,S,Ld(R) these two integer matrices have to agree,
which implies h_lach = a, and hence h € T, ,(R) as required. O

The results obtained make the following folklore problem (generalizing results
and conjectures of Linnik [100]) well-formulated.

Problem 3.29. For a given order O in an algebraic number field K of type (r, s),
let po be the probability measure on X; obtained from normalizing the sum of
the T, ;(R)-invariant probability measures on T, ;(R)xz; for the various equiva-
lence classes of proper O-ideals. Find all of the weak*-limit of the measures p¢
as the discriminant D = (covol(¢(0)))” goes to infinity.

This has been solved for d = 2 by Duke [36] (using subconvexity of L-
functions, building on a breakthrough of Iwaniec [73]), and for d = 3 and
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type » = 3, s = 0 by Einsiedler, Lindenstrauss, Michel and Venkatesh [43] (by
combining subconvexity bounds for L-functions with ergodic methods). More
accessible but weaker results are contained in [42] and [44].

Exercise 3.30. (a) Let d > 2. Show that the compact orbits of T(g ) (R) (of type (d,0))
in X4 are all of the form T4 oy (R)z 7 for some proper O-ideal J and some order O C K in a
totally real number field.

(b) Show that this is not necessarily the case for the type (0,d/2) (with d even).

(c) Decide the same question for the remaining cases.

3.5 Linear Algebraic Groups

In this section (and in Chapter 7) we will introduce linear algebraic groups, and
will link this concept to the theory of linear Lie groups, pointing out the obvious
similarities as well as some of the more subtle differences between the theories.
We start with the basic definitions, but in order to avoid being too diverted by
this important (and large) theory, we will be brief at times.

3.5.1 Basic Notions of Algebraic Varieties

Let K be a field] and let K denote an algebraic closure of K. A subset Z C K" is
called Zariski closed it Z = Z(J) is the affine variety Z(J) defined by a subset
or, without loss of generality, an ideal J C K[:vl, ..., Zg). The Zariski closed
subsets are the closed sets of a topology, which is called the Zariski topology.
This is easily shown to be a topology:

o If Zl = Z(jl) and Z2 = Z(j2) then Zl U Z2 = Z(j1j2)
o If Z, =2(J,) for a € A, then

ﬂZa:Z<UJa>.

acA a€A

A subset S C Kd is also called Zariski K-closed if J with Z = Z(J) can be
chosen in K[z, ..., 24].

If K is equal to R, C, or Q,, then clearly every Zariski closed (or Zariski
open) subset is also closed (or open) in the usual sense. For most of the derived
properties (density, connectedness, and so on) this is not clear and indeed is
often false. For instance, if S C K is infinite then it is already Zariski dense
in K. We will always say Zariski open, Zariski closed, Zariski dense, and so on,
if we refer to properties of the Zariski topology. When we use the words open,

T We will generally be interested in the cases R, Q,, and Q, but will only assume that the field
has characteristic zero a little later.
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closed, dense, and so on, then this will refer to the metric (often also referred to
as the Hausdorff') topology of Rd, (Cd, or Qz derived from the norms on these
spaces.

We recall that the polynomial ring K[z, ..., 24| is Noetherian by the Hilbert
basis theorem (see Eisenbud [48, Th. 1.2]). That is, every ideal J C Kz, ..., 4]
is finitely generated. Equivalently, for any increasing chain J; C J, C --- of
ideals there exists some N > 1 such that 7, = Jy for all n > N. This gives
a Noetherian descending chain condition for affine varieties: If Z; O Zy O - --
is a descending chain of varieties in Kd, then there exists some N > 1 such
that Z, = Zy forn > N.

An affine variety (equivalently, a Zariski closed set) is called irreducible or
Zariski connected] if it is not a union of two proper Zariski closed subsets.
Equivalently, a variety Z is irreducible if any two nonempty Zariski open subsets
of Z intersect, if J(Z) is a prime ideal, or if its ring of regular functions

K[Z] = Rlay,...,2a) /T (Z)

is a principal ideal domain (that is, has no zero divisors).

A field extension F : K has transcendence degree n if F contains n mutually
transcendental elements f1, ..., f, € F (that is, elements with the property that
the evaluation map

K[Tla"-aTn] 99'—>g(f17"'7fn)

is injective) but does not contain n + 1 mutually transcendental elements (see
Hungerford [70, Sec. VI.1]). Assuming that Z = Z(J) is an irreducible affine
variety, we can form the field of rational functions K(Z) comprising all quo-
tients 5 with f,g € K[Z] and g # 0. The transcendence degree of K(Z) : K is

called the dimension dim(Z) of the variety Z. Notice that if Z = K’ then the
dimension of Z is d, and if Z is defined by a single irreducible polynomial

feK[zy,..., 24

(in which case Z is called a hypersurface), then the dimension of Z is (d — 1).
The following lemma further reinforces our intuition concerning this notion of
dimension.

Lemma 3.31 (Strict monotonicity of dimension). Suppose that Zy C 7,

is a proper irreducible subvariety of an irreducible variety Z; C Kd. Then
dim Z, < dim Z;.

ProOF. By definition

' This definition does not match the topological definition of connectedness in the Zariski
topology, but it will in the context of algebraic subgroups.
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K[Z,] = K[z, ... s Tal /Ty,
with J; = J(Z;), has transcendence degree k = dim Z;. By reordering the
variables if necessary, we may assume that

$1+j1,,$k+j1 GK[Zl] (324)
are algebraically independent, and
Ty + I, xq + 0

are algebraically dependent on the elements in (3.24). All other regular or ra-
tional functions in K(Z;) are then algebraically dependent on the elements
in (824). In fact it follows that

K(Zl) %K(xlv"'v'rk) [Ik-i-l +\717"'5Id+\71]

is a finite field extension of the field of rational functions in the first £ variables.
Since Z, C Z, is a proper subvariety, there exists some f € J(Z3)NJ(Z1).
As f+ J; is non-zero in K(Z;), there exists some

g+ T €Kz, .. xp) [t + Tns o xg + T

such that fg+ J; = 1 + J;. Clearing the denominators (which belong to the
subring K[y, ..., x;]) in this relation, we find that there exists some g; € K[Z,]
such that

fa+Th =h+T

for some non-zero h € K[y, ..., 2,]NJ(Z,). This shows that the transcendence
degree of K(Z,) is less than or equal to k — 1. O

The Noetherian property has the following consequence for varieties.

Lemma 3.32 (Decomposition into irreducible components). Let Z be an
affine variety. Then Z is a finite union

of irreducible sub-varieties Zy, ..., Z,, in which we may and will make the as-
sumption that Z; € Z; for i # j. We will refer to Zy, ..., Z, as the irreducible
components of Z. Moreover, the decomposition into irreducible components is
(up to their order) unique.

We note that if Z is a hypersurface, then the claimed existence and uniqueness
follow quickly from the statement that K[z,...,z4] is a unique factorization
domain.

ProOOF oF LEMMA B.32 If Z is not irreducible then by definition we can find
two proper subvarieties Z,, Z, C Z with Z = Z; U Z,. If these are irreducible,
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we have found the irreducible components of Z. If Z; is not irreducible, we find
proper subvarieties Z; 1, Z; o € Z with Z; = Z; 1 UZ; 5. We do the same for Z
if it is not 1rredu01ble and repeat as necessary. By the Noetherian property
this construction has to terminate after finitely many steps, for otherwise an
infinite chain of strictly decreasing Zariski closed subsets would be created. In
other words, we can always find a finite tree with Z at the top and irreducible
varieties at the bottom, as illustrated in Figure B3Il

Z=12,U 2,

N

=2Z11UZ 5

N

Fig. 3.1: A tree of subvarieties of Z with irreducible varieties at the end nodes.

By construction we then have

Z:O&

where each Z; C Z is an irreducible affine variety arising as an end node in the
tree. If the list of irreducible subvarieties has repetitions, then we simply remove
them. Also, if Z; O Z, for i # j, we remove Z; from the list.

Finally, uniqueness follows directly from the definitions: If

m n
=Jz={7
i=1 j=1
are minimal lists then for every j € {1,...,n} we have
m
=Jzinz
i=1
As Zj is irreducible there exists some 4(j) € {1,...,m} with

Z, =70 Zy) C Zy)-

Similarly, for every i € {1,...,m} there exists some (i) € {1,...,n} with
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i C Zygiy

Since now Z; C Zj/(l-) C Z, (i) for every i and ZJ/- C Zy < ZJ/(Z(J-)) for every j,
it follows that » and j are inverses of each other, m = n, and Z; = Z;(i) for all 4.

O
—d
Assume again that Z C K is an irreducible k-dimensional affine variety. A
point 29 in Z is called smooth if the ‘tangent space’ in the variables uq, ..., uy
defined by

d
> w0, @) = (u,.. . ug) - V) =0
j=1

forall f € J(Z), is k-dimensional. The partial derivatives are defined as abstract
linear maps on the space of polynomials (so that the definition matches the
usual maps if K is R or C). It satisfies the usual properties (the product and
chain rules, for example) over any field K. The reader may quickly decide which
points of the variety defined by the equation y2 = 2% are smooth in this sense
(and thus see why the definition makes sense, and that it accords in this case
with geometrical intuition; see also Lemma B.30). An irreducible affine variety
is called smooth if every point of the variety is a smooth point.

Lemma 3.33 (Most points are smooth). Let Z C K be an irreducible affine
variety and suppose the characteristic char K of the field K is zero. Then the set
of smooth points of Z is a non-empty Zariski open subset of Z. Moreover, the
tangent space has at no point of Z a dimension smaller than dim Z.

The lemma should indeed be interpreted as saying that most points of an
irreducible variety are smooth. This is because a non-empty Zariski open subset
of an irreducible variety is automatically Zariski dense. Moreover, subsets of
an affine variety that are both Zariski dense and Zariski open have a strong
intersection property: Every finite intersection of Zariski dense and open subsets
is again Zariski dense and open (see Exercise B.34).

Proor orF LEMMA [B:33. We split the proof into several steps (some of which
will also be used later).

A FIRST ZARISKI OPEN SET O,. We show the existence of a concrete non-
empty Zariski open set Oy, C Z so that for all points in O, the tangent space
has dimension at most £ = dim Z.

We assume again that

v+ J(2),...,0,+ T(Z) e K(Z) (3.25)
are algebraically independent while
Tppr + T (2), ... xg+ T (2)

are algebraically dependent on the elements in ([B:28). Thus there exists, for
every £ € {k+1,...,d} a non-zero polynomial
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ngK[l’l,...,l'l]ﬁj(Z)

of minimal degree in z, for which (viewed as a polynomial in x,) the non-zero
coefficients do not belong to K[z1,...,2, 1] N J(Z). Since charK = 0, we gef]

9r = 8wgf€ ¢ J(2).

We define the Zariksi open set O, = Z~Z(gj41---g4) by the non-vanishing
of g = gry1- Ga-

Using the derivative V(f,) (for £ = k + 1,...,d) of these polynomials (as
equations that define the tangent space) we see that every point in O, has a
tangent space of dimension less than or equal to k. To see that these points are
smooth points of the variety we have to show that the tangent space is indeed k-
dimensional. We show this firsfl on an even smaller Zariski open subset.

SMOOTHNESS ON A SECOND ZARISKI OPEN SET Oy, € O,. It would be tempting

to believe that an irreducible variety Z C K" of dimension k can be defined

by (d — k) polynomials (for example, fi.1,...,f; as above). This would be
convenient but fails in general. As a replacement for this we claim that there
exists some non-zero h € K[z, ..., 24 \J(Z) with

hT(Z) € (frt1s---5 fa)- (3.26)

As T is finitely generated and prime, we only have to show that for every
polynomial f € J there is some h ¢ J with hf € (fpi1,..., fq). If

fEK[Il,...,$k+1]mj,

then we can take h to be a power of the leading coefficient of fy; (considered

as a polynomial in z,,; with coefficients in K[zy,...,z;]). In fact, with this
choice of h we ensure that we can apply division with remainder to obtain
hf=afy +0b

where b = 0 as it has smaller degree in z;; than f;,; does and belongs to J.

By induction on ¢ and the degree of f with respect to x, the same argument
applies for any f € K[zy,... ,Toyq] N T . Indeed, if the leading coefficient of f
as a polynomial in z, belongs to J NK[zy,...,z,_,] then we use the induction
hypothesis on this leading coefficient. If it does not belong to J we multiply f
by the leading coeflicient of f, and use division with remainder. The definition
of f, ensures that one of the two arguments applies to reduce the degree of f
in z,.

' If charK = p and it so happens that f, is a polynomial in z,...,z,_1, x? then 8wfe =0.
With more care this problem can be dealt with—we refer to Hartshorne [66] for the details.

¥ We use this step below to show that we can never have a tangent space of dimension strictly
less than k, hence we cannot rely on this fact here.
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Let f € J(Z). By the claim, we see that hf = hy 1 fop1+- - +hafq, for some
polynomials hyq,...,hg. We note that V(hf) = V(h)f +hV(f). Moreover, on
evaluating at a point € Z this becomes V(hf)(z) = h(z)V(f)(x). Similarly
we get

hz)V(f) (@) = hiy1 (@) V(frr) (@) + - + ha(2)V(fa) (2)
which expresses V(f)(x) as a linear combination of V(f;)(z) for
j=k+1,....d
if only h(z) # 0. This shows that on the Zariski open set

Ogn = Z>Z(Gg1 - gah)

every tangent space is exactly k-dimensional. We note that this will be sufficient
for our subsequent discussions concerning linear algebraic groups.

SMOOTH POINTS. To prove the lemma it remains to show that the set of smooth
points is Zariski open, and that at no point of Z does the tangent space have
dimension strictly smaller than k. If now

20 = (Igo), .. ,arglo)) ez

is an arbitrary smooth point, or more generally a point whose tangent space has
dimension k" < k, then we may reorder the variables so that the tangent space
projects onto the subspace spanned by the first k" basis vectors, and so that for
each £ € {k' +1,...,d} there exists some f, € J(Z) such that

(vfz)j = 5@,;‘
for 0,5 € {k/ +1,...,d}. It follows that the determinant

F = det (vfé)Ja

where £,j € {k/ + 1,...,d}, does not vanish at the point 2, Unfolding the
definition shows that any other point

x € Op = Z~Z(F)

is also a point at which the tangent space has dimension less than or equal to k',
which is less than or equal to k.

If ¥ < k at some point x(o), then we have found a non-empty Zariski open
subset O on which all points have tangent spaces of dimension less than or
equal to k'. However, as Z is irreducible this set would have to intersect the
non-empty Zariski open subset O, (on which the tangent spaces are known to
be k-dimensional) nontrivially, which would give a contradiction.
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Therefore, there is no point where the tangent space has dimension strictly
less than k, and so applying the argument for k' = k we see that the set of
smooth points is Zariski open (and Zariski dense). O

A point ¥ € Z of a (not necessarily irreducible) affine variety is smooth
if 20 belongs to precisely one of the irreducible varieties Z;, C Z as above,

and % is a smooth point of Z;. Lemma[3.35now says that inside every variety Z
the subset of points that are smooth points of Z is a Zariski open and dense
subset of Z.

Exercise 3.34. Let Z be an affine variety. Show that a finite intersection of Zariski dense
and open sets is again Zariski dense and open.

3.5.2 Properties Concerning the Field

One smooth K-point of a variety already gives rise to many other K-points,
if Kis R, C, or Q,. We only prove the following more restrictive version of this
result.

Lemma 3.35 (Neighbourhoods of smooth points). Let Z C C* be a k-
dimensional irreducible affine variety defined over R. There exists a nontrivial
Zariski open subset O C Z consisting of smooth points so that for all 29 in the
set O N Z(R) there exists an analytic function defined on an open subset in RF
which is a diffeomorphism onto a neighbourhood of 29 ¢ Z(R). The same holds
over C or over Q,, for a prime p < co.

Proor. Let Oy, € O, C Z be the Zariski open subsets from the proof of
Lemma B33 and let fry1,...,f4, 9 = gry1---9q, and h be as in that proof.
Recall that V(fj)(x(o)) are linearly independent for j = k+ 1,...,d and a

point !

9 e Ogp, by construction.
Applying the implicit function theorem (over R, C, ort? Q,) on a neigh-

bourhood of (¥ to the equations fep1(x) == fq(xz) = 0, we obtain (d — k)
analytic functions ¢;(zy,...,zy) for j =k +1,...,d which are all defined on a

neighbourhood U of (3:50), e ,3320)) such that

fi (@1, mp, G (), ..., dq(2) =0

forj=k+1,...,d and (zq,...,z;) € U. Moreover, all solutions to the equa-

tion fry 1 == fg =0 near 29 are of that form.
So far the argument applies to an arbitrary smooth point of Z. The diffi-
culty in general is to show that all points found—at least for (z4,...,z;) close

to (,Tgo), .. ,x,(co) )—actually belong to Z (and not just to Z({fy 1, .., f4}). This
can be shown in general but for 29 ¢ Oy, = ZZ(Gy1 - - - 9ah) follows directly

from (3:20). O
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In Section Bl we already considered a notion of ‘F varieties’: An affine va-
riety Z is defined over F, for some subfield] F C K, if its complete ideal of
relations (as in the Hilbert Nullstellensatz Theorem [B9) is generated by poly-
nomials with coefficients in F. On the other, a variety is F-closed if it can be
defined by polynomials with coefficients in F.

As in any topological space, we can define a notion of closure: the Zariski

closure of a subset S C K is the smallest Zariski closed subset Z C Kd contain-
ing S. This notion has many convenient properties, including good behaviour
with regards to subfields. Note however, that the Zariski closure of a subset
in R? is frequently much bigger than the closure in the Hausdorff topology.

Lemma 3.36 (Closures of subsets of F?). Let F C K be any subfield and S
be a subset of F. Then the Zariski closure of S is defined over F.

PROOF. Suppose that f is a polynomial in x4, ..., z, that vanishes on S. Let V
be the vector space generated by the coefficients of f over F. Let aq,...,a, be
a basis of V over F, and write

f= Z fia;
i=1

with f; € Flay,...,z4]. For any € S we now have

f(a:):Z@ai:o,

=1

and so f;(z) =0 for i = 1,...,n. This shows that the ideal of polynomials that
vanish on S is generated by those that have coefficients in F. O

Clearly a variety that is defined over K is also K-closed. In general the con-
verse is not true, but fortunately this problem only manifests itself over fields
of positive characteristic.

Lemma 3.37 (K-closed vs. defined over K). Suppose that K has character-
istic zero. Then a K-closed affine variety (or a variety that is stable under all
Galois automorphisms of K|K) is also defined over K.

PROOF. Let Z = Z(J) be the variety defined by J C K]z, ..., z,], and suppose
that f € K[zy,...,7,4] vanishes on Z (that is, suppose that f € J(Z)). Then
there exists a finite Galois field extension IL : K such that f has coefficients in L.

Let o be any Galois automorphism of the extension L : K. We claim that
the polynomial o(f) obtained by applying o to all coefficients of f also belongs
to J(Z). This may be seen as follows. Since the polynomials in J have co-
efficients in K, any Galois automorphism of K : K maps Z = Z(K) onto Z.

T We introduce this extra field for example in order to set K=R, K=C, and F = Q.
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Extending the automorphism ¢ of L : K in some way to an automorphism
of K: K we get

(@) @) = (@) (07 @) = (fle @) ) =0

for all x € Z.

The claim now implies that tr(f) = > o(f), where the sum is taken over
the finite list of Galois automorphisms of L : K, belongs to J(Z). Clearly tr(f)
has coefficients in L and is fixed by all Galois automorphisms of L. : K. There-
fore, tr(f) € K[zy,...,24] (this requires the assumption that char(K) = 0).
If K =R and L = C then we have f = Rf + iSf, where Rf = 1 tr(f)
and §f = %tr(—i f). This implies the lemma and the following argument gen-
eralizes this simple observation to any L : K with characteristic zero.

We claim that there exists a basis a;,...,a.k of L and a ‘dual ba-
sis’ ay, ..., a[Lk) of L satisfying
tr(a;a;) = 6; ; = 1 z j
' 0 if4+#j,

for all 7, j. We then have

a= Z tr(aja)a;,
i

which also holds for the polynomial f instead of a € LL. Since
tr(a; f) € J(Z) NKzy, ..., z4]

by the argument above, the lemma follows from the claim.

It remains to construct the dual basis. Let a,, ..., aq.x) € L be any basis of L
over K. By linear algebra, there exists a dual basis for the dual vector space L*
over K. We claim that the map sending a € L to ¢(a) € L* defined by

¢(a)(b) = tr(ab)
is an isomorphism of vector spaces. This may be seen as follows:

e »(1)(1) =tr(1) = [L: K], so ¢ is nontrivial (again since char(K) = 0);
o if ¢(a) = 0 then also ¢(aa’)(b) = tr (a(a’b)) = 0 for all a’,b € L, so the
kernel of ¢ is an ideal, and the field L has no nontrivial ideals.

Thus the pre-image under ¢ of the dual basis in I.* gives a dual basis in the
above sense in L.

If the variety Z is only assumed to be invariant under all Galois automor-
phisms, then once more J(Z) is invariant under all Galois automorphisms and
so the above argument shows again that Z is defined over K. 0

Page: 126 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



3.5 Linear Algebraic Groups 127

—d

In the arguments above there is always an implied coordinate system in K
(corresponding to the variables x;,...,24). We note that it is customary to
write A? for the d-dimensional affine space without a preferred origin, coordinate

system, or base field. For us the ambient affine space will be Mat,; = Ad2,
and on this space very few coordinate changes make sense with regards to the
existing (and to us important) multiplicative structure. For that reason and
also because we are often interested in subgroups of SL,; (and the orbits of the
group of their R-points), we are happy with choosing one coordinate system
and discussing subvarieties and algebraic subgroups of SL; instead of general
varieties and general algebraic groups. We will however, switch frequently from

one field to another, and as before will write Z(F) = Z(K) N Maty(F) for the F-
points of a subvariety Z < Mat, defined over F C K.

3.5.3 Linear Algebraic Groups

An affine variety G C SLg is a linear algebraic subgroup (of SLy) if G(K) is a
subgroup of SLy(K).

For a polynomial f € K[Maty], g € SLy, and € Mat, the left regular
representation is defined by

(A f) (@) = f(g~ ).

Note that A\, f € K[Mat,] has the same total degree as f and that the coefficients
of A, f are polynomials in the matrix entries of g. For any subvariety Z C Mat,

and g € SL4(K) we can now define the translated variety gZ by the ideal

AT (Z2)={flg ') | f e T(2)}.

Lemma 3.38 (Smoothness). Every point of a linear algebraic subgroup is
smooth.

The tangent space of G at the identity within Mat, is called the Lie algebra
of the algebraic subgroup G C SL,.

PrROOF OF LEMMA Suppose that g € G(K) is a smooth point of the
variety G. Then one can quickly check that I = g_1 g is a smooth point of the
left-translate variety g_lG. However, since g_lG = G we see that [ is a smooth
point of G. By the same argument, any other point is also smooth. ([l

Lemma 3.39 (Connected components). Let G C SL,; be a linear algebraic
subgroup. The Zariski connected component G° < G is by definition the unique
irreducible component of the affine variety G that contains the identity. It is an
algebraic normal subgroup of G. There are points gq,...,g, € G for which
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G = |i|giGo

i=1

is the decomposition into irreducible components of G and n = [G(K) : G°(K)].
If G is defined over K and K has zero characteristic then G° is also defined
over K.

In particular, the lemma shows that a linear algebraic subgroup is connected
in the Zariski topology if and only if it is irreducible. Hence in the following we
will frequently use the term ‘Zariski connected’ instead of ‘irreducible’.

As a corollary of the lemma we mention that it makes sense to talk about the
dimension of a (not necessarily Zariski connected) algebraic subgroup. Since all
Zariski connected components are translates of the connected component G°,
they all have the same dimension.

PRrROOF OF LEMMA The first statement is essentially an extension of the
argument in the previous lemma. If G = Z, U---U Z,, is the decomposition into
connected components, then there exists a point which is contained in only one
component. Translating G by g € G(K) permutes the connected components
and shows that G = Z; U --- U Z,, is a disjoint union. Suppose that Z; = G°.
If now g € G° then I € gflGo, which by uniqueness of the decomposition
gives G° = g 'G° = ¢G for all g € G°.

We have shown that G° is a linear algebraic subgroup. If now g € Z; fori > 1,
then the same argument gives g_lZi =G’ = Zig_l. In other words,

Z; = gG° = G’

is a coset of G’ in G. It follows that G° < G and that n = [G : G°].

Now suppose that G is defined over K, and let o be a Galois automor-
phism of K over K. Then ¢ induces a permutation of the irreducible compo-
nents ¢,G°(K) for i = 1,...,n with

o (6°(K)) = G*(K)

since o(I) = I. As this holds for all Galois automorphisms we see that G° is
defined over K if K has characteristic zero by Lemma [B.371 O

For completeness we mention another (more general but, up to isomorphisms,
equivalent) definition: A linear algebraic group is an affine variety equipped with
multiplication and inverse maps such that the multiplication and inverse maps
are regular functions (from the group to the group). We note that a construction
similar to the proof of Chevalley’s theorem in Section [3.5.6] then shows that the
variety is isomorphic to a subgroup of SL, for some d. We will speak of a linear
algebraic group G when the ambient space SL; C Mat, will not be important
for our purposes.

Ezample 3.40. We list some standard examples of linear algebraic groups.
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(a) G, denotes the additive group structure of the field. This is a linear algebraic
group because (for example) it is isomorphic to the algebraic subgroup U

of SL, with
U(K) = {(1?’) xeK},

which we saw earlier is associated to the horocycle flow if K = R.

(b) G,, stands for the multiplicative group structure of the field. This is a lin-
ear algebraic group because (for example) it is isomorphic to the algebraic
subgroup A < SL, with

-

which we saw earlier is associated to the geodesic flow if K = R.
(c) SLg, Stabg,,(v) as in Proposition [3.T1l and the groups considered in Sec-
tions B3H3 4 are further examples of linear algebraic (sub)groups.

a€ K\{O}} ,

Lemma 3.41 (Zariski closures of groups). If S C SLy(K) is a subgroup,

then the Zariski closure G = S~ is a linear algebraic subgroup defined over K.

PrOOF. By Lemma [B.36 we know that G is defined over K, so it is enough to
show that G(K) is a subgroup.

For any g € S we have gils = S by the assumption on S. This implies in
turn that gilS CG, SCyG,GCyG, gilG C G, or equivalently Gflg cG™.
Fixing some h € G we have shown hts C G or S C hG, which implies G C hG
or h~'G C G. Therefore G~ 'G C G and G is a linear algebraic subgroup. 0

Exercise 3.42. Show that the Zariski closure of a connected Lie subgroup of SLy(R) is a
Zariski connected algebraic subgroup defined over R.

3.5.4 The Lie Algebra of a Linear Algebraic Subgroup

For Lie group we already have an analytic definition of a Lie algebra. Hence
for linear algebraic subgroups of SL; over C we now have two definitions: The
analytic one as in Chapter 2 and the algebraic one as above.

Lemma 3.43 (Lie algebras). Let G < SLy4(C) be a linear algebraic subgroup.
Then the analytic Lie algebra of the complex Lie group G(C) agrees with the
algebraic Lie algebra g < Maty(C) of G as a linear algebraic subgroup. If G is
defined over R, then the Lie algebra of the real Lie group G(R) is equal to the
real subspace g(R) = g N Maty(R) < Maty(R). This holds similarly for linear
algebraic subgroups defined over Q,.

PROOF. Let £k = dimG. By Lemma B30 and its proof (relying on the im-
plicit function theorem) there exists a point 2 e G(C) and an analytic func-
tion ¢ defined on a nonempty open subset U C ck giving a homeomorphism
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between U and an open neighbourhood O C G(C) of 29, Moreover, the total
derivative Dp(z?) of ¢ at 2(¥ = ¢7*(2'”)) € U has full rank. By definition
the k-dimensional image of the total derivative is the analytic tangent space of
the k-dimensional complex manifold G(C) at 29

On the other hand fo ¢ = 0 for any f € J(G) and hence the image of
the total derivative belongs to the k-dimensional algebraic tangent space of the
variety G at 29 Tt follows that the analytic and algebraic tangent spaces agree.
Multiplying by the inverse of 2% shows the same at I and hence the first part
of the lemma.

Suppose now that G is defined over R. Note that this implies that the alge-
braic Lie algebra g is defined by linear equations over R. For v € Mat,(R) we
have exp(Rv) C G(R) if and only if exp(Rv) C G(C), which by the argument
above is equivalent to v € g. Hence the analytic Lie algebra of G(R) is given
by g(R) = g N Mat4(R).

The p-adic case is similar: We note that 2% as above may belong to a finite
field extension K of Q,. Applying the implicit function theorem over K and
arguing as above (with R replaced by an open subgroup of Z,) this does not
create any difficulty. O

A linear algebraic subgroup G < SL, is semisimple if it is Zariski connected
and its Lie algebra is semisimple. We note that this does not imply that G(R)
is connected as a manifold. For instance, SO, ; is Zariski connected while the
(Hausdorff) connected component SO, (R)” <1 SO5 ;(R) has index 2.

Exercise 3.44. Let G < SL,; be a semisimple linear algebraic group. Show that G has finite
centre.

3.5.5 K-points of Linear Algebraic Groups

As noted before, an affine variety Z defined over a field K does not have to
contain any K-points (that is, Z(K) may be empty), and even if it is non-empty
it may not be Zariski dense in the variety. Since a subgroup always contains the
identity the former problem cannot arise for linear algebraic subgroups. Even
more is true, as a result of the following lemma.

Lemma 3.45 (Density of R-points and Q,-points). If G C SL; is a Zariski
connected linear algebraic subgroup defined over R, then G(R) is Zariski dense
in G. The same holds for K = Q,, for a prime number p < oc.

We note that the above holds much more generally (see Borel [7, Th. 18.3]).
We will come back to this problem for the special case K = Q later.

ProoOF OoF LEMMA B.48 Let k = dim G. By Lemma B.43] we have

exp(g(R)) € G(R).
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Let m: Maty(R) — R* be a projection map using k£ matrix entries such
that 7|qg) is a linear isomorphism. It follows that 7 o exp: g(R) — R* has
a total derivative at 0 of full rank. Applying the inverse mapping theorem gives
a local inverse defined on an open set U C R*. It follows that ¢: U — G(R)
defined by ¢ = expo(mo exp)_1 satisfies ™o ¢ = idy.

Let Z be the Zariski closure of ¢(U) C G(R). By Lemma [3.32 we may write

as a union of irreducible varieties. By Lemma [B.31] either Z = G or
dimZ; < k=dimG

for i = 1,...,n. However, the latter case cannot happen since a finite union
of varieties of dimension strictly less than k cannot contain all points in ¢(U).
Specifically, in this case each [J(Z;) must contain some non-zero polynomial f;
in the matrix variables defining 7 so that every point in U would have to sat-
isfy the equation f;--- f, = 0. This is a contradiction, since every non-empty
open subset of R" in the Hausdorff topology is Zariski dense (since all the par-
tial derivatives, including the Oth, of a polynomial at a point determine the
polynomial). The p-adic case is similar. O

The following discussion is not essential for later developments, but it may
be useful to bear it in mind. By Shafarevich [141, Ch. VII, Sect. 2.2, Th. 1]
the set of C-points Z(C) of an irreducible affine variety Z is connected in the
Hausdorff topology. For the R-points Z(R) of an irreducible variety Z over R
this is not true. However, for algebraic groups G defined over R, the connected
component G(R)? (in the Hausdorff topology) only has finite index. We will
discuss this again for particular algebraic subgroups later (where it will usually
be easy to see). For now, notice that A(R)® < A(R) for A as in Example B.40(b)
has index two. Over @, the analogous question does not make sense, so Zariski
connected is a priori the only sensible notion of connectedness.

3.5.6 Chevalley’s Theorem, Subgroups, and Representations

Clearly, every algebraic representation gives rise to many algebraic subgroups
by defining stabilizer subgroups (as in Section B.I.2]). Chevalley’s theorem )
almost turns this construction around: Given an algebraic subgroup there exists
an algebraic representation so that the subgroup can be defined via the rep-
resentation as a stabilizer of a line (instead of a point as in Section BI.2) or
equivalently of a point in the associated projective space.

Theorem 3.46 (Chevalley). Let G < SL; be an algebraic subgroup. Then
there exists an algebraic representation p: SLg; — SLp and a D-dimensional
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vector v such that
G = {g € SLy| p(g)v ~ v},

where ~ denotes pmportionalityﬁl If G is defined over K, then the algebraic
representation p is also defined over K, and we may choose v € K.

As we will see, the theorem is proved by transforming the defining ideal of G
(which is finitely-generated) into a single vector in a high-dimensional vector
space.

PROOF OF THEOREM 340l For any g € G we have ¢G = G and, equivalently,
AT (G) = T(G).

Moreover, if A, J(G) = J(G) for some g € SL,; then g € G. As the ring of
polynomials and the ideal are infinite-dimensional we cannot use them directly.
However, by the Noetherian property we know that J(G) C K[Mat,] is finitely
generated (as an ideal). Thus we can assume it is generated by polynomials
of degree less than or equal to m for some m. Write P, for the space of all
polynomials in K[Mat,] of degree < m, and define

jém = j(G) N ,Pém'

Now notice that A\, Pg,, = Pg,, for all g € SL; and that A\, J¢,, = J<,, is
equivalent to g € G (since Jg,, generates J(G)). In other words, we have found
a finite-dimensional representation of SL; and a subspace so that G is precisely
the subgroup of SL,; that sends the subspace into itself. The representation is
also an algebraic representation (which the reader can quickly check).

What is not quite as in the theorem is that the subspace might not be a
single line. However, even that can quickly be rectified. Let ¢ = dim J,,, and

define V' = /\e P<pm and let v € /\Z J<m™0}. The algebraic representation
of SL; on P, induces an algebraic representation p on V' (check this) and for
any g € SL, the condition p(g)v ~ v is equivalent to A\, J¢,, = J<,, and hence
to g € G.

If G is now additionally defined over K, then Jg,, NK[Mat,] generates J(G)
and we can choose v as the wedge of £ elements in J,, N K[Matgy]. Since the
regular representation (and its ¢th wedge power) are defined over any field, this
proves the last claim of the theorem. O

T Notice that proportionality is itself a polynomial condition, defined by requiring the vanishing
of all 2 x 2 determinants corresponding to pairs of components of p(g)v and of v.
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3.5.7 Jordan Decomposition, Algebraic Subgroups and
Representations

Algebraic groups and algebraic representations have some striking differences to
the theory of Lie groups, which we will now start to discuss.

Let p be an algebraic representation of SL; (or more generally of an algebraic
subgroup G). Then we have the following facts:

e if u € SL; (u € G) is nilpotent, then so is p(u);
e if a € SLy(R) (a € G) is diagonalizable (when considered as an element a
of SLy) and has only real and positive eigenvalues, then the same holds

for p(a).

The first property is readily proved for the case SL; and K = Q or K a local
field. Indeed, if u € SL4(K) is unipotent, then there exists some a € SL,4(K)
with a"ua™" — I as n — oo, which implies that

pa)"p(u)p(a)™" = pla"ua™) — I

as m — 00, so the eigenvalues of p(u) (which are not changed by conjugation)
must all be 1, and hence p(u) must be unipotent.

The second property requires a bit more work. We also note that if the alge-
braic representation is only defined on the subgroup G then neither claim would
be correct in the context of Lie theory. For this notice that the Lie groups U(R)
and A(R) from Exercise are not that much different. On the one hand,
the former is connected and the latter is not, so they are not isomorphic. How-
ever, there is a surjective group homomorphism from A(R) onto U(R), and an
injective homomorphism from U(R) into A(R)® < A(R). This does not contra-
dict the above claims, since the two maps are basically the logarithm and the
exponential map, which are not algebraic homomorphisms.

We start by recalling the Jordan decomposition in a form convenient for our
purposes.

Lemma 3.47 (Jordan decomposition). Let K be a field of characteristic zero
and let g € GLy(K). Then there exist uniquely determined gy, g, € GL(K) such
that g, gs, and g, commute, g is diagonalizable over K (also referred to as
being semisimple), g, is unipotent, and g = gssgy. Any eigenvector of g is also
an eigenvector of go and of g,,.

If K is R or C, there also exist uniquely determined matrices gpos, Geomp
in GL4(K) such that g, gpos: Jeomp: Gu COMMuLe, gpos is semisimple and only
has real positive eigenvalues, geomp s semisimple and only has eigenvalues in Sl,
and gos = GposJeomp- Finally any eigenvector of g is also an eigenvector of gpog

and of geomp

PRrOOF. Let g € GL4(K). By factorising the characteristic polynomial of g we
find its eigenvalues Ay, A9, ... and a direct sum decomposition

Page: 133 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



134 3 Rationality

K'=Dv, (3.27)

where V; = ker(g — A\I )d is the generalized eigenspace of g for eigenvalue ;.
We define g, as the (matrix corresponding to the) linear map whose restriction
to V; is multiplication by the eigenvalue A; for all j. From this it follows quickly
that g, commutes with g and that g, = gs_s1 g is unipotent. This establishes the
existence within GL4(K).

Now let b € GL4(K) commute with g. Then h(V;) C V; for all j, which
implies that h also commutes with g, (and with g¢,) as defined above. Suppose
now that g = g4, is a decomposition of g into two commuting matrices such
that g is semisimple and g, is unipotent. Then g.g, = GssGy and so

~—1 ~ -1
gSS gSS = gugu

Moreover, using the above comment for h = g, and h = g, we see that the

. ~ ~ o . . . ~—1 .
matrices ggs, 9y, Jss, and g, all commute. This in turn implies that g, g is
semisimple and g,g, is unipotent. Hence

~—1 ~ 1
Jss Jss = I = gugu

and uniqueness of the Jordan decomposition within GL4(K) follows.

Now suppose g € GL4(K) and g = g9, With g, g, € GL4(K) is the Jordan
decomposition of g. Applying any Galois automorphism o of K over K gives
another such decomposition ¢ = o(g) = 0(gss)o(gy)- It follows that both gg
and g, must belong to GL4(K).

For g € GL,(C) decompose C? into generalized eigenspaces as in BZ10). De-
fine g, 50 that its restriction to V; is multiplication by |;]. Then the restriction
of Geomp = g;jsgss to V; is multiplication by |)\j|_1/\j €'S'. As above, the defini-
tion ensures that g,s and geom, commute with any h € GL4(C) that commutes
with g. This implies uniqueness similarly to the argument above, which also
implies gp0s, Jeomp € GLg(R) for g € GL4(R). O

The following two results contain the claims made in the beginning of this
section in greater generality.

Proposition 3.48 (Jordan decomposition and subgroups). Let G be an
algebraic subgroup of SLy, and let g be an element of G. If g = gygu 1S the
Jordan decomposition of g in SLy(K), then gs,g, € G also. If G is defined
over K=TR (or K = C) and gss = gposYeomp 5 the decomposition into positive
semisimple and compact semisimple parts, then once again gpos; Joomp € G-

Proposition 3.49 (Jordan decomposition and representations). Let G
be an algebraic subgroup of SLy, and let p: G — GLp be an algebraic represen-
tation. Then p(g)y = p(g4) and p(9)ss = p(gss) for all g € G. If K is R or C,

then we also have p(g)pos = P(9pos) and p(g)comp = P(Jeomp)-
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The proof of these results is intertwined. We will first prove Proposition [3.49]
in a special case, then prove Proposition[3.48] and finally obtain Proposition[3.49
as a corollary.

PROOF OF PROPOSITION FOR A CHEVALLEY REPRESENTATION. Suppose
that p is the representation of SL,; obtained in the proof of Theorem for a
subgroup G < SL,. Let g = g4 be semisimple, and assume (without loss of gen-
erality, by applying any necessary conjugation to G and g) that g is diagonal.
Then it is easy to sed] that A, restricted to P, is diagonal, with eigenvec-
tors given by monomials in the diagonal entries of g. Therefore all eigenvalues
of A\, are simply products of powers of eigenvalues of g. Taking the (th wedge

representation, the same holds for p(g) = /\Z Ag. Let g = g, be unipotent.
If Kis QR,C, or Q, for a prime p (which is where our main interest lies),
we have already shown that p(g) is unipotent. In general we may argue again
step by step as above. First, show that A, restricted to P, is unipotent by
considering monomials corresponding to the eigendirections (resp. generalized
eigendirections). Then we can show that p(g) = /\e Ay is also unipotent.

If now g = gygy is any element of SLy, then p(gg) is semisimple, p(g,) is
unipotent, p(g) = p(gss)P(9u), and p(gss), p(gy) commute with each other. This
proves the claim by the uniqueness of the Jordan decomposition.

If Kis R or C, then the argument above also shows that the eigenvalues
of p(gpos) are positive and the eigenvalues of p(geomp,) have absolute value one,
giving the theorem. (I

ProOF oF PRroOPOSITION B.48 Let G < SL, be an algebraic subgroup and

let p,v € K" be as in Theorem 346 Let g € G have the property that v € K is
an eigenvector of p(g) for the Chevalley representation. By the properties of the
Jordan decomposition, v is therefore also an eigenvector of p(g)ss = p(gss) and
of p(9)uy = p(gu)- It follows that g, g, € G. If Kis R or C, and gss = gposGeomp

then p(9)pos = P(gpos) has v as an eigenvalue. Thus g,4; Jeomp € G as well.
O

ProOF OF PROPOSITION [B.49. Let G < SL,; and let p: G — GLp be an
arbitrary algebraic representation. Then

L = Graph(p) C G x GLp C SLgypi1

is an algebraic subgroup in the following way. We require the elements of L to
be of block form
h
g
det(g)™!

with h € SL; and g € GLp (by using linear equations, the condition det h = 1,
and the polynomial equation that the last entry should be the inverse of the

t ‘We use the notation from the proof of Theorem [3.46]
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determinant of the middle block), require h € G (by the known relations of G),
and finally g = p(h) (which is a polynomial condition by assumption on p).
Now let h = hy, € G be semisimple, so that

g=1| »rh) el
det(p(h)) ™"

and hence by Proposition [3.48 we also have

However, since h, = I; and L is a graph of a homomorphism, we also
have p(h), = Ip. This shows that p(h) is semisimple if h is semisimple. The
same argument also applies to unipotent elements (respectively, to positive or
compact semisimple elements if K is R or C). The proposition follows from the
uniqueness of the Jordan decomposition. O

3.6 Borel Density Theorem

We will show in this section a version of the Borel density theorem,(ﬂ) which will
show another relationship between finite volume orbits and rationally defined
subgroups. It is the generalization of the basic observation that a lattice A < R?
cannot be contained in a proper subspace to the setting of lattices in linear
algebraic groups.

For the proof we will need two basic theorems, each of them fundamental to
its own subject. However, the two subjects concerned are often—in the context
of this book, wrongly—considered far from each other. Concretely, we will need
Poincaré recurrence from ergodic theory (in some sense the pigeonhole principle
for ergodic theory, see Theorem 1.30 and Exercise 1.34), and Chevalley’s theorem
from the theory of algebraic groups (see Theorem B.46]), and will combine these
with the facts derived in Section B.5.7 This approach goes back to work of
Furstenberg [57] and Dani [17].

Theorem 3.50 (Borel density theorem). Suppose that G < SL, is an alge-
braic subgroup defined over R and suppose that I' < G(R) is a lattice. Then

(1) If G is semisimple and G(R)® has no compact factors then I' is Zariski
dense in G. If G is only assumed to be semisimple then the Zariski closure
of I' contains all non-compact factors of G(R)° (and possibly some or all of
the compact factors).
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3.6 Borel Density Theorem 137

(2) In the general case, the Zariski closure L. < G of I' contains all unipotent
elements of G(R) and more generally all elements of G(R) that only have
positive real eigenvalues.

For the proof we will also need the following simple observation from linear
algebra.

Lemma 3.51 (Convergence to some eigenvector). Let g € SLy(R) have
the property that all its eigenvalues are real and positive, and let

p: SLy(R) — SLp(R)

be a finite-dimensional algebraic representation (obtained, for example, from
Chevalley’s theorem). Then for any w € RD\{O} there is some v € RY with
1
TP
llo(g" )wl

as n — 0o, and v is an eigenvector of p(g).

(9" w — v e RP

PROOF. By Proposition[B.48if ¢ is unipotent then p(g) is also, and if ¢ has only
positive eigenvalues then the same holds for p(g). Given w € RP~{0}, we may

write
w = Z Wx # 07

A>0

where each wy, is a generalized eigenvector for the eigenvalue A and the map p(g).
Then there is some largest eigenvalue A\;, with w,, # 0 (and hence wy = 0

for any A > A;). Also notice that [|p(g")w,|| is asymptotic to A"n*™ for
some k(A) > 0 (this may be seen by looking at the Jordan normal form of p(g),
see also the argument below). Thus

R B B
(g™l Y (g s, I

as n — oo. This reduces the problem to the case of a single eigenvalue, and
hence (by canceling the eigenvalue) to the case of a unipotent matrix

(gnwA,_) —0

1
A= P9,

acting on the generalized eigenspace V), of p(g) for the eigenvalue ;. Choosing
a Jordan basis of A, we may assume that A is a block matrix

A
A:

where each
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)

We split w = w,, into components ) w( corresponding to this block decom-

position, and apply A; to the vector

Wy
w® = :
wf?
to obtain
Lo\ () e wd (5) 4w ()
1 .
AVl - | = Lo
o a2+ P
k (7)
Wi

If now w® # 0, then the above is a vector-valued polynomial whose entry of
highest degree is in any case the first row corresponding to the eigenspace of A;.
Since this holds for each ¢, the lemma follows. O

ProoF oF THEOREM [BE0, PART (2). Let g € G(R) have only positive real
eigenvalues, let L be the Zariski closure of I' < G(R) < SL4(R), and let

p: SLd — SLD

and w € R” be the Chevalley representation for L = Stabgy,, (Rw) as in The-
orem By Poincaré recurrence we have for almost every z € G(R)/I" a
sequence n, — oo with ¢"*x — z as kK — oo. We now switch this conver-
gence to the group level as follows: For almost every h € G(R) there exist
sequences ny — oo and g, — I as k — oo, with 7, € I" with g"*h = g,hy, for
all k > 1, or equivalently with

v =h " teghh ™ g™ h.
——
—1I
Applying this group element to w gives
1 1 1

p(yp)w = lim ———"——p
Jwl| koo || p(h ™ g™ h)wl|

W= (W Lg™ h)w,
[l llo(vn,

where we have used the fact that I' < L(R) fixes Rw by definition, and
Lemma 3511 It follows by the same lemma that w is an eigenvector of p(h~'gh)

Page: 138 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



3.7 Irreducible Lattices and Quotients 139

for almost every h. Taking h — I shows that w is an eigenvector of p(g) also.
By definition of p and w this gives g € L(R). O

PrOOF OF THEOREM B.50, PART (1). Let G° = G(R)® be the connected compo-
nent of the set of real points of G. Let F' be a non-compact almost direct simple
factor of G°. Then F contains a one-parameter unipotent subgroup U, and we
can apply Part (2) of the theorem to U and to all its conjugates, which together
generate a normal connected subgroup of F' (and hence all of F'). Thus L(R)
contains F'. We may apply this for all non-compact almost direct factors of G,
which then proves the second claim in Part (1).

This also proves the first claim in Part (1) since by the above L and G have
the same Lie algebra and hence have the same dimension. However, G is by
assumption Zariski connected and so L. = G follows. O

Exercise 3.52. Let @ be a real non-degenerate quadratic form of signature (p,q) in d vari-
ables with p > ¢ > 1. Suppose the orbit SO (R) (I SLd(Z)) has finite volume. Show that a
multiple of @ has integer coefficients.

3.7 Irreducible Lattices and Quotients

In this section we classify lattices in semisimple groups into reducible and irre-
ducible lattices, and derive interesting density results (in the standard topology)
from the Borel density theorem (which gives only Zariski density).

Definition 3.53. Let G be a connected semisimple Lie group. A lattice I' < G
is called reducible if G = H, - Hy can be written as an almost direct product of
nontrivial connected semisimple Lie subgroups H;, Hy < G with the property
that Iy = I'N Hy is a lattice in Hy and I, = I' N Hy is a lattice in Hy. The
lattice is called drreducible if it is not reducible.

Examples of reducible lattices are of course very easy to find, for exam-
ple SLy(Z) x SLy(Z) is a reducible lattice in SLy(R) X SLy (R). Irreducible lattices
in semisimple but not simple groups are a bit more difficult to find[] For exam-
ple, SLy(Z[/2]) can be made into an irreducible lattice in SLo(R) x SLo(R), see
Exercise

We note that every reducible lattice can be ‘reduced’, or ‘almost decomposed’
into irreducible lattices as follows. If I' < G = H; - H, is a reducible lattice such
that I"' N H; < H; is a lattice for ¢ = 1,2, then

('NH)(I'NH,) CTI
is also a lattice in G = H; - Hy and so has finite index in I'. Studying now

I'NH; < H;

t By definition any lattice in a simple Lie group is irreducible.
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we may obtain an irreducible lattice, and if not we may repeat the decomposition
step as before. Ultimately we find finitely many irreducible lattices (that are
potentially lattices in simple groups). In this context the following notion is
useful.

Definition 3.54. Let I A < G be two subgroups of a group. Then we say
that I" and A are commensurable if I' N A has finite index in both I" and A.

Corollary 3.55 (Dense projections of irreducible lattices). Let G be a
semisimple algebraic group defined over R. We suppose that G = G(R)® has no
compact factors and that G = H, - Hy C SLy4(R) is an almost direct product
of semisimple subgroups Hy, Hy C SL4(R). Let I' < G be an irreducible lattice
in G, and suppose that Hy is nontrivial. Then the projection of I’ td1

G/H, =~ Hi/H, N H,
is dense in Hy/H; N Hy.

PROOF. If F' <G is a connected normal subgroup then F' = F(R) for a Zariski
connected normal algebraic subgroup F <1 G. In fact, suppose that g = @& §
is a decomposition of the Lie algebra g of GG into the Lie algebra f of F' and a
transversal Lie ideal f* of g. Then we define F = Cg (') where

Ce(f) ={g€ G| Ad, |y =1}

is defined over R and has Lie algebra §. In particular H; = H;(R)“ for a semisim-
ple algebraic subgroup H; <1 G for j = 1, 2. Therefore we may apply the Borel
density theorem (Theorem B50(1)) for G or any of its normal subgroups.
Write
m:G— G/Hy~H\/H, NH,

for the projection map. There are two cases to consider: Either 7 (I") is discrete
or it is not.

DISCRETE IMAGE IMPLIES REDUCIBILITY. If 71y (I") is discrete then its pre-image
under the map H, — H;/H; N H, is also discrete. Now let B; C H; be a
fundamental domain for the discrete pre-image of w1 (I") in H; and By C H,
a fundamental domain for I' N H, in Hy. Then we claim that B;By C G is
an injective domain for I'. Indeed, if v € I', by,b] € By, and by, by € By
satisfy bybyy = b5, then this identity modulo Hy, < G gives

(b (Hy N Hy)) (v(Hy N Hy)) = b} (H, N Hy).

Taking pre-images to H, and applying our assumption that B, is a fundamental
domain, it follows that b; = b}. Multiplying

' The statement and proof simplify if G = H; X H, is a direct product of two non-compact
simple subgroups H;, Hy <I G. The reader is invited to first consider this simpler case.
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3.7 Irreducible Lattices and Quotients 141

bibyy = bllblz

with bl_l we get byy = by and v € Hy. Now by = by and v = I by the injectivity
assumption on By. Hence B; B, C G is an injective domain for I', and has finite
Haar measure since I" is a lattice by assumption. This also implies thafll each
of B; and B, has finite Haar measure. In particular, I' N H, is a lattice in Hs.

By the Borel density theorem (Theorem [B50) applied to I'N Hy C H, there
is a finite collection {~,,...,7v,} € I' N H, such that

Clvyoosm) ={h € Hy | vih =hy; fori=1,...,n}

is the centre C(H,) of H,. In fact, we may choose v; € I'N HyNC(H,) and then
successively choose 75, ... so that at each stage

C(Vlv" 7/7m) g 0(717' "7’7m—1)'

By the Noetherian property of subvarieties, this construction must stop and we
find some n with
0(717 s 7771) = C(F N H?)

Since I' N H, is Zariski dense in Hy we deduce that

C(WI? s 7’771) = C(H2)

as required.
We claim that this implies for the projection my: G — G/H, = Hy/H,; N H,
that
7o(I') € Ha/H, N H,

must be discrete as well. In fact, if w5 (7y) is sufficiently small but nontrivial, then
by construction

[ma2 (), w2 (7)) # 1
for some j € {1,...,n}. This implies that

[v,v] € HoN T

is very close to an element of H;NH, but does not belong to it. However, H;NH,
is finite (it is zero-dimensional because its Lie algebra is trivial). This contradicts
the assumed discreteness of I', so 7, (I") must be discrete as claimed.

The claim establishes a symmetry between H; and H, in the above discussion.
Applying the argument above again we also see that I' N H; is a lattice in H;.
In other words, we have shown that I" is a reducible lattice.

SHOWING DENSITY. We assume now that 7 (I") is not discrete. Let

T As G is the almost direct product of H; and Hy the Haar measure mg is, in the same sense,
also almost the product of the Haar measures my, X mpy,.

Page: 141 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



142 3 Rationality

F=a (m(D) N,

be the pre-image in H; of the closure of 7 (I"). Clearly I" stabilizes the Lie
algebra f of F. By the Borel density theorem (Theorem [B50) applied to the
lattice I' in G, the same holds for G > H; (see Exercise3.59]). It follows that f <
b, is a Lie ideal in the Lie algebra b; of H;. If §f = b, then we get the desired
density of 7, (I") in the connected group H,/H; N H,.

So suppose that f # h;. We define Hj to be the almost direct product of all
factors of H; whose Lie algebras are not contained in §. Also define Hy = F°- H,
to be the almost direct product of all factors in F' and H,. Note that

G=H, Hy,=H, -F°-Hy,=H, - H,.

Since f # b, the group Hj is nontrivial. Let 7} : G — G/Hy denote the analo-
gous projection for the almost direct product G = Hj - Hy. Note that 77 is the
o

composition of 7, : G — H,/H; N Hy with the quotient by m (F°) = (m(I))".
It follows that

my (') C Hi/H] N Hj

is discrete. By the first argument in the proof, this implies that I" is a reducible
lattice in G = Hj - Hy. Therefore irreducibility of the lattice implies that f = b
and the result follows. O

Our interest in the notion of irreducibility is clearly explained in the fol-
lowing corollary. We note in particular that irreducibility is necessary for the
conclusions to hold (see Exercise B.57]).

Corollary 3.56 (Mixing of semisimple groups). Let G be the connected
component of the group of R-points of a semisimple algebraic group defined
over R. Suppose that G has no compact factors. Let X = G/I" be the quotient by
an irreducible lattice of G. Then every almost direct factor of G acts ergodically
and the action of G is mizing with respect to the Haar measure mx on X.

PROOF. By the Howe—Moore theorem for semisimple groups (Theorem 2.44), it
is sufficient to show that every simple factor acts ergodically.
So let H <1 G be a (nontrivial) simple factor of G, and suppose that the set

HB=BCX

is H —invariantﬂ
Let
7x:G— X=G/Ir

be the natural factor map, and let Bg = 7% (B) C G be the set in G cor-
responding to B. By the properties of B we have HB; = Bg, or equiva-

t By Proposition 2.1 we may assume the strict invariance H+«B = B rather than the a prior:
weaker invariance in the measure algebra my (¢g¢BAB) =0 for all g € H.
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lently B = n (w(Bg)) if #: G — G/H denotes the projection map. By
construction, BoI' = Bg and so w(Bg)n(I") = n(Bg)-

Recall from [45, Prop. 8.6] that, for any two Borel sets By,By C G/H
with mq ) (By)me u(Bs) > 0, the set

{9H € G/H | mg,;u((B:(gH)) N By) > 0}

is non-empty and open.

We may apply this to the set B; = m(Bg) and its complement B,. Since 7(1I")
is dense in G/H by Corollary B.55, we deduce that either 7(Bg) has zero mea-
sure or its complement does. Since G is the almost direct product of H and a
group locally isomorphic to G/H, the Haar measure on G can be obtained from
the Haar measures on H, the Haar measure on G/H, finite-to-one covers, and
quotients. Hence either B or its complement has zero measure in G. It follows
that either myx (B) = 0 or mx (X~B) = 0 as required. d

Exercise 3.57. Let G be as in Corollary but let I" < G be a reducible lattice. Show
that no almost direct factor of G acts ergodically on X = G/TI".

Exercise 3.58. Let D > 1 be a non-square integer, and for
a=a+bvVD e QWD)

let @ = a — bv/D denote its Galois conjugate. Now let

SLy(Z[VD)) = {g - (0‘1,1 a1,2>

Qg1 Qg9

Q11,012,002 1,02 € Z[V/'D], det(g) = 1} ,

and consider SLq(Z[v/D]) as a subgroup of SLy(R) x SLo(R) using the diagonal embedding
1: SLy(Z[VD]) — SLy(R) x SLo(R)
ajq _
9= ( b 1'2) — (9:9)

Q1 Qg2

__ (a1 a1

g (52,1 a2,2)
(a) Show that I" =1 (SL2 (Z[\/ﬁ})) < SLy(R) x SLy(R) is a discrete subgroup.
(b) Show that I' is a lattice in SLy(R) x SLy(R).

where

Exercise 3.59. Let G < SLy be an algebraic group and f C sl; a subspace (defined over K).
Show that Ad, f = f is a polynomial condition (with coefficients in K).

Notes to Chapter 3

(14 (Page @2) Almost any algebra text will cover this material, for example Gerstein [58] or,
for the more sophisticated aspects of the algebraic theory, see Lam [93].

(15)(Page [@2) The word signature is used in various ways, all meaning that the number
of +1s, —1s (and in the degenerate case 0Os) can be reconstructed from the signature (and the
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dimension). The fact that the signature is a property of the form itself is Sylvester’s law of
inertia [148] (see Lang [95, XV, Sec. 4] for a modern treatment).

(16) (Page @) Hilbert [68] proved this in his development of invariant theory.

an (Page @3) This kind of approximation was studied by Dickinson and Dodson [30] and
by Drutu [35] (implicitly), by Fukshansky [53] for n = 2, and by Schmutz [135] and Ghosh,
Gorodnik, and Nevo [59, 60] for all n > 2 and in more general settings.

(18 (Page [I07) This was shown by Dirichlet [32] in 1846 for the ring Z[¢] (the understanding
that this may not be the ring of integers in Q(¢) for an algebraic integer ¢ came later, and of
course the rank is not affected as Z[¢] has finite index in the ring of integers). We refer to the
paper of Elstrodt [50] for an account of the history.

19 (Page[124) The history, and various generalizations, of the implicit function theorem may
be found in the account by Krantz and Parks [92]. The p-adic implicit function theorem may
be found in the notes of Serre [138, p. 83].

(20)(Page [[3T) A modern proof from a sophisticated point of view is given by Conrad [15],
and the original proof in Chevalley [13]. Any book on algebraic groups will contain a version
of the theorem (possibly not under this name).

@ (Page [136)) Borel [6] proved this for semisimple Lie groups without compact factors; gen-
eralizations and simplifications have been provided by Furstenberg [57], Moskowitz [114] and
Dani [17] among others.

Page: 144 job: AAHomogeneousDynamics macro: svmono.cls date/time: 10-Nov-2025/10:29



	Rationality
	Quadratic Forms, Stabilizer Subgroups, and Orbits
	Intrinsic Diophantine Approximation on Spheres
	Rational Unipotent Subgroups
	Algebraic Number Theory and Compact Torus Orbits
	Linear Algebraic Groups
	Borel Density Theorem
	Irreducible Lattices and Quotients


