Chapter 3 Rationality

In this chapter we generalize some of the phenomena hinted at in Section 1.2. We will define the notion of algebraic groups defined over \mathbb{Q} , and show how these often give rise to closed (and sometimes even compact) orbits on the space $X_d = \operatorname{SL}_d(\mathbb{R})/\operatorname{SL}_d(\mathbb{Z})$. We motivate this discussion by studying orthogonal groups, unipotent groups, and orbits arising from number fields. Finally, we will turn this discussion around by proving the Borel density theorem, which implies that finite volume orbits in X_d typically arise from algebraic groups defined over \mathbb{Q} . For this we also introduce some more basic concepts and results concerning algebraic groups without developing this important theory very far (which cannot be done in a couple of pages).

3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits

3.1.1 Orthogonal Groups

Let $Q(u) = u^{t}A_{Q}u$ be a rational quadratic form defined by a symmetric matrix $A_{Q} \in \operatorname{Mat}_{d}(\mathbb{Q})$, where u is a d-dimensional column vector whose entries are variables u_{1}, \ldots, u_{d} . We show now how any such quadratic form gives rise to a closed orbit of its associated special orthogonal subgroup

$$SO_Q = \{ g \in SL_d \mid Q(gu) = Q(u) \}. \tag{3.1}$$

Proposition 3.1 (Closed orbits). If Q is a rational quadratic form, then the orbit

$$SO_Q(\mathbb{R})(I SL_d(\mathbb{Z})) \subseteq X_d$$

of the identity coset under the real points of SO_Q is closed.

Notice that the notation SO_Q and SL_d used in (3.1) deliberately does not specify any field or ring, and therefore leaves somewhat undetermined the group being discussed; in particular it does not specify whether the group is countable

or uncountable, for example. For now we should think of this as a convenient shorthand, or a macro, which defines many different groups at once. For example, if we specify the real points, then the notation denotes the closed linear subgroup of $\mathrm{SL}_d(\mathbb{R})$ defined by

$$SO_Q(\mathbb{R}) = \{ g \in SL_d(\mathbb{R}) \mid Q(gu) = Q(u) \}.$$

Similarly, we may specify the integer points to obtain a discrete subgroup

$$SO_Q(\mathbb{Z}) = \{ g \in SL_d(\mathbb{Z}) \mid Q(gu) = Q(u) \}$$

of $SO_Q(\mathbb{R})$. More generally, for any ring R we obtain the group $SO_Q(R)$ of R-points of SO_Q (or any similar expression) by taking the R-points of the ambient group, here SL_d , in its definition.

PROOF OF PROPOSITION 3.1. Notice that Q(gu) is the quadratic form defined by $g^{t}A_{Q}g$ and that the symmetric matrix A_{Q} is in one-to-one correspondence with the form Q. Therefore, we may also write

$$SO_Q = \{ g \in SL_d \mid g^t A_Q g = A_Q \}.$$

Multiplying A_Q by the common denominator of its entries if necessary, we may assume that $A_Q \in \operatorname{Mat}_d(\mathbb{Z})$ (without changing SO_Q). Now suppose that

$$h_n \operatorname{SL}_d(\mathbb{Z}) \longrightarrow g \operatorname{SL}_d(\mathbb{Z}) = x$$
 (3.2)

as $n \to \infty$ with $h_n \in SO_Q(\mathbb{R})$ and $g \in SL_d(\mathbb{R})$. In order to show that the orbit is closed, we need to show that

$$x \in SO_O(\mathbb{R})(I \operatorname{SL}_d(\mathbb{Z})).$$
 (3.3)

Notice that (3.2) simply means that there exist sequences (γ_n) in $\mathrm{SL}_d(\mathbb{Z})$ and (ε_n) in $\mathrm{SL}_d(\mathbb{R})$ with $\varepsilon_n \to I$ as $n \to \infty$, such that $h_n \gamma_n = \varepsilon_n g$ for all $n \geqslant 1$. Applying these matrices to A_O gives

$$\gamma_n^{\rm t}A_Q\gamma_n=\gamma_n^{\rm t}h_n^{\rm t}A_Qh_n\gamma_n=\left(\varepsilon_ng\right)^{\rm t}A_Q\varepsilon_ng\longrightarrow g^{\rm t}A_Qg$$

as $n \to \infty$.

However, $\gamma_n^t A_Q \gamma_n \in \operatorname{Mat}_d(\mathbb{Z})$, so the convergent sequence $\left(\gamma_n^t A_Q \gamma_n\right)$ has to stabilize: There exists some n_0 such that

$$\gamma_{n_0}^{\mathrm{t}}A_Q\gamma_{n_0}=\gamma_n^{\mathrm{t}}A_Q\gamma_n=g^{\mathrm{t}}A_Qg$$

for all $n \ge n_0$. This implies that $g\gamma_{n_0}^{-1} \in SO_Q(\mathbb{R})$ which, together with (3.2), gives (3.3).

In some cases it is also relatively straightforward to combine the previous statement with Mahler's compactness criterion (Theorem 1.51) and so deduce compactness of orbits.

Proposition 3.2 (Compact orbits). If Q is a rational quadratic form such that[†]

$$0 \notin Q(\mathbb{Q}^d \setminus \{0\}),$$

then the orbit $SO_Q(\mathbb{R})(I \operatorname{SL}_d(\mathbb{Z}))$ is compact. Equivalently,

$$SO_Q(\mathbb{Z}) = \{ g \in SL_d(\mathbb{Z}) \mid g^t A_Q g = A_Q \}$$

is a uniform lattice in $SO_O(\mathbb{R})$.

PROOF. Just as in the proof of Proposition 3.1, we may assume that A_Q lies in $\operatorname{Mat}_d(\mathbb{Z})$. We need to show that there exists some $\delta > 0$ such that

$$SO_O(\mathbb{R})(ISL_d(\mathbb{Z})) \subseteq X_d(\delta).$$
 (3.4)

Then Theorem 1.51 and Proposition 3.1 together show that the orbit is compact. As $Q \colon \mathbb{R}^d \to \mathbb{R}$ is continuous, there exists some $\delta > 0$ such that $||x|| < \delta$ implies that |Q(x)| < 1. Now suppose that (3.4) does not hold for δ . Then there exists some $h \in \mathrm{SO}_Q(\mathbb{R})$ such that $h\mathbb{Z}^d$ contains a non-zero δ -short vector hm with $m \in \mathbb{Z}^d$. However, this shows that

$$|Q(m)| = |Q(hm)| < 1 (3.5)$$

which implies that Q(m)=0 since $A_Q\in {\rm Mat}_d(\mathbb{Z}),$ contradicting our assumption and completing the proof.

Example 3.3. These examples describe some of the possibilities that may arise in low dimensions.

- (1) If $Q_1(u_1, u_2) = u_1u_2$, then Proposition 3.1 shows that $A\operatorname{SL}_2(\mathbb{Z})$ is closed since $\operatorname{SO}_{Q_1}(\mathbb{R}) = A$ is simply the full diagonal subgroup of $\operatorname{SL}_2(\mathbb{R})$ isomorphic to \mathbb{R}^{\times} (see also Section 1.2.2). However, the orbit is not compact, as it corresponds to the divergent orbit mentioned on page 12.
- corresponds to the divergent orbit mentioned on page 12. (2) If $Q_2(u_1, u_2) = u_1^2 u_1 u_2 u_2^2$, then Proposition 3.2 applies (see Exercise 3.6), and gives a compact orbit $SO_{Q_2}(\mathbb{R}) SL_2(\mathbb{Z})$. As we will see later (in Theorem 3.5), there exists some $g \in SL_2(\mathbb{R})$ and $\lambda > 0$ for which

$$Q_2(u) = \lambda Q_1(gu),$$

which in turn implies that

$$SO_{Q_2}(\mathbb{R}) = g^{-1} SO_{Q_1}(\mathbb{R})g.$$

To see this notice that $h \in SO_{Q_1}(\mathbb{R})$ gives

$$Q_2(g^{-1}hgu) = \lambda Q_1(hgu) = \lambda Q_1(gu) = Q_2(u).$$

[†] Q is then called *anisotropic* over \mathbb{Q} .

Hence

$$g SO_{Q_2}(\mathbb{R}) SL_2(\mathbb{Z}) = Ag SL_2(\mathbb{Z})$$

is also compact. In fact $g=g_{\rm golden}$ from Section 1.2.2 can be used, recovering the claim made on page 12.

(3) If $Q_3(u_1, u_2, u_3) = 2u_1u_3 - u_2^2$ then Proposition 3.1 applies, and shows that

$$SO_{Q_3}(\mathbb{R}) SL_3(\mathbb{Z}) \subseteq X_3$$

is closed. However, it is not compact (see Exercise 3.7).

(4) If $Q_4(u_1, u_2, u_3) = u_1^2 + u_2^2 - 3u_3^{\frac{5}{2}}$ then Proposition 3.2 applies. To see this, assume for the purposes of a contradiction (and without loss of generality by clearing denominators as usual) that $Q_4(m_1, m_2, m_3) = 0$ for some primitive integer vector $(m_1, m_2, m_3) \in \mathbb{Z}^3$. Then using congruences modulo 4 shows that

$$m_1^2 + m_2^2 - 3m_3^2 \equiv m_1^2 + m_2^2 + m_3^2 \pmod{4}$$

is a sum of three squares modulo 4. However, the only squares modulo 4 are 0 and 1, which forces m_1, m_2, m_3 to all be even, contradicting the assumption. Hence the orbit

$$SO_{Q_4}(\mathbb{R}) SL_3(\mathbb{Z})$$

is compact.

We now recall some of the basic theory of quadratic forms over the reals. (14) Any symmetric matrix $A_Q \in \operatorname{Mat}_d(\mathbb{R})$ can be diagonalized in the sense that there is an orthogonal matrix k for which $k^{\operatorname{t}}Ak$ is diagonal. If needed we can change the sign of the last column to ensure that $k \in \operatorname{SO}_d(\mathbb{R})$. In the associated coordinate system $(v_1, \ldots, v_d)^{\operatorname{t}}$ we then have

$$Q'\begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} = Q \begin{pmatrix} k \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \end{pmatrix} = \sum_{i=1}^d c_i v_i^2$$

for scalars $c_1, \ldots, c_d \in \mathbb{R}$. The form Q is non-degenerate if $c_i \neq 0$ for $i = 1, \ldots, d$ (equivalently, if $\det A_Q \neq 0$), is indefinite if there exist a pair $i, j \in \{1, \ldots, d\}$ with $c_i > 0$ and $c_j < 0$, and is positive-definite if $c_i > 0$ for all $i = 1, \ldots, d$.

By taking the square roots of the absolute values of the entries in the diagonal matrix $k^{t}A_{Q}k$, we may define a diagonal matrix a for which

$$a^{-1}k^{\mathrm{t}}A_{O}ka^{-1}$$

is diagonal with entries in $\{0, \pm 1\}$. Assuming that Q is non-degenerate (so that the entries lie in $\{\pm 1\}$), write p for the number of +1s and q for the number of -1s; the $signature^{(15)}$ of Q is (p,q). We usually assume that $p \geqslant q$ (this can

 $^{^{\}dagger}$ An integer vector is primitive if the entries are co-prime.

always be achieved by replacing the form Q with the form -Q). Note that for non-degenerate Q we have $\det a = |\det A_Q|^{1/2}$.

The discussion above shows that if Q and Q' are non-degenerate and of the same signature, then there exists some $g \in \mathrm{GL}_d(\mathbb{R})$ such that Q'(u) = Q(gu). Moreover, we also have $Q'(u) = \lambda Q(g'u)$ for $g' \in \mathrm{SL}_d(\mathbb{R})$ and $\lambda > 0$, which implies as in Example 3.3(2) that SO_Q and $\mathrm{SO}_{Q'}$ are conjugate in $\mathrm{SL}_d(\mathbb{R})$.

Example 3.4. The quadratic forms (from Example 3.3) Q_1 and Q_2 have signature (1,1); the quadratic forms Q_3 and Q_4 have signature (2,1). It follows that the orthogonal groups $\mathrm{SO}_{Q_1}(\mathbb{R})$ and $\mathrm{SO}_{Q_2}(\mathbb{R})$ are conjugate (as claimed earlier), and the orthogonal groups $\mathrm{SO}_{Q_3}(\mathbb{R})$ and $\mathrm{SO}_{Q_4}(\mathbb{R})$ are conjugate.

We summarize and strengthen our discussion as follows.

Theorem 3.5 (Signature of quadratic forms). Any non-degenerate quadratic form Q on \mathbb{R}^d can be assigned a signature (p,q) with p+q=d. Given a form Q of signature (p,q), the set of quadratic forms of the form Q' with

$$Q'(u) = Q(gu)$$

obtained from Q by some $g \in GL_d(\mathbb{R})$, is precisely the set of quadratic forms of signature (p,q). The group of \mathbb{R} -points of two orthogonal groups for non-degenerate quadratic forms of the same signature are conjugate in $SL_d(\mathbb{R})$.

In the following we will always (and sometimes implicitly) assume that the quadratic forms are non-degenerate. Fixing, for a given signature (p,q), some real quadratic form Q of this signature, we define $SO_{p,q} = SO_Q$. If p = d, then $SO_{p,0}(\mathbb{R}) = SO_d(\mathbb{R})$ is compact, and if $0 it is <math>\mathrm{not}^{\dagger}$. Our discussion above (and Example 3.3(3),(4)), shows that there are various matrices g in $SL_d(\mathbb{R})$ for which $SO_{p,q}(\mathbb{R})g$ $SL_d(\mathbb{Z})$ is closed or even compact—these orbits correspond[‡] to rational quadratic forms with signature (p,q).

Exercise 3.6. Prove that $u_1^2 - u_1 u_2 - u_2^2 \neq 0$ for $(u_1, u_2)^{t} \in \mathbb{Q}^2 \setminus \{0\}$ (a fact used in Example 3.3(2)).

Exercise 3.7. Prove the claim made in Example 3.3(3), by showing that the closed orbit $SO_{Q_3}(\mathbb{R}) SL_3(\mathbb{Z}) \subseteq X_3$ has unbounded height.

Exercise 3.8. Let $A = SO_{1,1}(\mathbb{R}) \subseteq SL_2(\mathbb{R})$. Show that every closed A-orbit in X_2 corresponds (as indicated after Theorem 3.5) to a binary quadratic form with rational coefficients. Notice that this cannot hold for $K = SO_2(\mathbb{R})$.

date/time: 10-Nov-2025/10:29

[†] Since, for example, it contains at least one copy of $SO_{1,1} \cong A$ as a closed subgroup.

[‡] At this stage we only know one direction of this correspondence. The second direction will be obtained from the Borel density theorem, see Exercise 3.52 and Exercise 4.17.

3.1.2 Rational Stabilizer Subgroups

It is straightforward to generalize Proposition 3.1. However, setting up the language of linear groups, in which the generalization is naturally phrased, requires more work than does the generalization itself. We start this introduction to linear algebraic groups here, discuss other classes of examples in Sections 3.3 and 3.4, and return to the theory of linear algebraic groups in Section 3.5 and Chapter 7. For a detailed account of algebraic geometry, we refer to the monographs of Hartshorne [66] or Shafarevich [139], and for linear algebraic groups we refer to those of Borel [7], Humphreys [69], and Springer [147].

An affine variety is a subset Z of \mathbb{C}^n or, more generally, of $\overline{\mathbb{K}}^n$ for another field \mathbb{K} with $\overline{\mathbb{K}}$ an algebraic closure, defined by the vanishing of polynomial equations[†]. We will write both Z and $Z(\overline{\mathbb{K}})$ for this variety, so that

$$Z = Z(\overline{\mathbb{K}})$$

will always consist of all solutions to the polynomial equations over the algebraic closure. An important example for us is

$$SL_d = \{ g \in Mat_d \mid \det g - 1 = 0 \},\$$

where Mat_d is the d^2 -dimensional vector space of $d \times d$ matrices.

A regular function is simply the restriction of a polynomial to the variety. In order to be able to work with this definition, and in particular to have a way to uniquely describe a regular function, we need to know when a polynomial vanishes on the variety. The description of the set of polynomials that vanish on an affine variety is given by the Hilbert Nullstellensatz, (16) which we now recall. We refer to Eisenbud [48, Th. 1.6] or Hungerford [70, Prop. VIII 7.4] for the proof.

Theorem 3.9 (Hilbert Nullstellensatz). Let \mathbb{K} be an algebraically closed field, and let $\mathcal{J} \subseteq \mathbb{K}[x_1, \dots, x_n]$ be an ideal defining the affine variety

$$Z(\mathcal{J}) = \{x \in \mathbb{K}^n \mid f(x) = 0 \text{ for all } f \in \mathcal{J}\}.$$

Then $f \in \mathbb{K}[x_1, \dots, x_n]$ vanishes on $Z(\mathcal{J})$ if and only if there exists a power f^m for some $m \ge 1$ of f that belongs to \mathcal{J} .

The ideal

$$rad(\mathcal{J}) = \{ f \in \mathbb{K}[x_1, \dots, x_n] \mid f^m \in \mathcal{J} \text{ for some } m \geqslant 1 \}$$

is called the *radical* of the ideal \mathcal{J} . If we now write $\mathbb{K}[Z]$ for the ring of regular functions on the variety $Z = Z(\mathcal{J})$ defined by the ideal \mathcal{J} , then we can

 $^{^{\}dagger}$ We apologize to the expert for the barbaric and old-fashioned definition, but as our focus will usually be on rather concrete groups comprising \mathbb{R} -points, this approach is appropriate here. In particular we will avoid talking about schemes and spectra.

reformulate the Nullstellensatz by the formula

$$\mathbb{K}[Z(\mathcal{J})] = \mathbb{K}[x_1, \dots, x_n] / \operatorname{rad}(\mathcal{J}).$$

Returning to our example

$$SL_d = Z(\det(\cdot) - 1) \subseteq Mat_d$$

we need to establish what the radical of the ideal generated by the polynomial $\det(\cdot) - 1$ in d^2 variables is in order to talk about regular functions. This is explained by the following result.

Lemma 3.10 (SL_d is Zariski connected). For any $d \ge 1$ the polynomial det(g) - 1 is irreducible as a polynomial in the variables $g_{i,j}$, $1 \le i, j \le d$, with coefficients in \mathbb{C} (or in any other field).

PROOF. Suppose that $\det(g) - 1 = p(g)q(g)$, where p, q are polynomials in the independent variables $g_{i,j}, 1 \leq i, j \leq d$. Now notice that the determinant is linear in each of its rows, so for every pair i, j the polynomial $\det(g) - 1$ is of degree one in the variable $g_{i,j}$. It follows that for any i, j one of p or q is of degree one in $g_{i,j}$ and the other is independent of $g_{i,j}$ (that is, of degree zero in the variable $g_{i,j}$). As this holds for every pair i, j, we obtain a partition

$$P \sqcup Q = \{(i,j) \mid 1 \leqslant i, j \leqslant d\}$$

of the indices so that

$$p(g) \in \mathbb{C}[g_{i,j} \mid (i,j) \in P]$$

and

$$q(g) \in \mathbb{C}[g_{i,j} \mid (i,j) \in Q].$$

If P (or Q) is empty, then $p \in \mathbb{C}$ (respectively $q \in \mathbb{C}$) is a scalar—which is the desired conclusion.

With deg denoting the total degree,

$$d = \deg(\det(g) - 1) = \deg(p(g)q(g)) = \deg(p(g)) + \deg(q(g)). \tag{3.6}$$

Assuming that P and Q are both non-empty, we derive a contradiction by defining

$$\deg_P(g_{i,j}) = \begin{cases} 1 & \text{if } (i,j) \in P; \\ -1 & \text{if } (i,j) \in Q, \end{cases}$$

which extends to monomials m by summation over the factorization of m, and to polynomials by defining

$$\deg_P\left(\sum c_k m_k\right) = \max\{\deg_P(m_k) \mid c_k \neq 0\}.$$

Just as in (3.6), we find that

$$\deg_P(pq) = \deg_P(p) + \deg_P(q).$$

Now q must have a constant term (since $\det(g) - 1$ has a constant term), so $\deg_P(q) = 0$. It follows that p(g)q(g) contains monomials in the variables $g_{i,j}$ with $(i,j) \in P$ of total degree $\deg_P(p) = \deg(p)$ only. By (3.6) and our assumptions on P and Q we have $0 < \deg(p) < d$. However, this is a contradiction as $\det(g) - 1$ contains a constant term, and all other monomials have total degree d.

Let \mathbb{K} be any field. We will often be interested not in the whole variety consisting of all points in $\overline{\mathbb{K}}^n$ defined by an ideal over the algebraic closure of a field, but in fact only in the \mathbb{K} -points of the variety, meaning those vectors in \mathbb{K}^n on which the polynomials all vanish. In general this set may be empty because \mathbb{K} is not assumed to be algebraically closed, and even if it is non-empty it may not resemble the whole variety. In particular, there is no reason for the set of \mathbb{K} -points to remember the ideal at all (in other words, Theorem 3.9 does not hold without the requirement that the field be algebraically closed). Nonetheless, we may define for any affine variety Z its \mathbb{K} -points as the set

$$Z(\mathbb{K}) = Z \cap \mathbb{K}^n$$
,

where as before $Z = Z(\overline{\mathbb{K}})$ by definition.

Moreover, we are often interested in regular functions with 'coefficients' in \mathbb{K} . Formally we say that Z is defined over \mathbb{K} if $\mathcal{J} = \operatorname{rad}(\mathcal{J})$ defines Z and the ideal $\mathcal{J} \subseteq \overline{\mathbb{K}}[x_1, \ldots, x_n]$ is generated by $\mathcal{J} \cap \mathbb{K}[x_1, \ldots, x_n]$. Under this assumption we define the ring of \mathbb{K} -regular functions to be

$$\mathbb{K}[Z] = \mathbb{K}[x_1, \dots, x_n] / \mathcal{J} \cap \mathbb{K}[x_1, \dots, x_n].$$

We will return to these notions in Section 3.5.

Let us return to our main example SL_d which is defined over any field \mathbb{K} , since the coefficients of the irreducible polynomial $\det(\cdot)-1$ are integers. Hence it makes sense to consider the ring of \mathbb{K} -regular functions

$$\mathbb{K}[\mathrm{SL}_d] = \mathbb{K}[g_{1,1}, \dots, g_{1,d}, g_{2,1}, \dots, g_{2,d}, \dots, g_{d,1}, \dots, g_{d,d}] / \langle \det(g) - 1 \rangle,$$

where \mathbb{K} is the field of coefficients allowed in the polynomials. For us the field \mathbb{K} will often be \mathbb{R} , \mathbb{Q}_p , or \mathbb{Q} .

A D-dimensional algebraic representation of SL_d over $\mathbb K$ is a D^2 -tuple of $\mathbb K$ regular functions

$$\phi_{i,j}(g) \in \mathbb{K}[\mathrm{SL}_d]$$

for $1 \leq i, j \leq D$, which we think of as a matrix

$$\phi \in \operatorname{Mat}_D\left(\mathbb{K}[\operatorname{SL}_d]\right)$$

[†] An example to have in mind here is the variety defined by the equation $x^2 + y^2 = -1$ defined over \mathbb{R} , and a less trivial example is the variety defined by the equation $x^3 + y^3 = 1$ defined over \mathbb{Q} .

with the properties that $\phi(I_d) = I_D$ and

$$\phi(g)\phi(h) = \phi(gh) \tag{3.7}$$

for all $g, h \in SL_d$.

Let us give an example of a representation of SL_d , which will be important in Section 3.4. The conjugation representation is defined by

$$\operatorname{Mat}_d \ni A \longmapsto gAg^{-1}$$

for $g \in SL_d$. Since det(g) = 1, the matrix g^{-1} has entries which are regular functions (since the inverse is calculated by taking the matrix consisting of the determinants of the minor matrices multiplied by the inverse of the determinant). Therefore, we can choose a basis and get a $D = d^2$ -dimensional representation ϕ_{conj} (defined over any field K). Indeed, $\phi_{\text{conj}}(g)\phi_{\text{conj}}(h)$ is the matrix corresponding to the composition

$$A \longmapsto hAh^{-1} \longmapsto g\left(hAh^{-1}\right)g^{-1} = (gh)A(gh)^{-1},$$

which is also represented by $\phi_{\text{conj}}(gh)$. Therefore, (3.7) holds by uniqueness of matrix representations.

Another example of a representation has already been used: For $g \in SL_d$ the map

$$\operatorname{Mat}_{d} \ni A \longmapsto (q^{\mathsf{t}})^{-1} A q^{-1} \tag{3.8}$$

is linear in A and a regular function in q. Moreover, we may restrict to symmetric matrices and choose a basis of the space of symmetric matrices. In this way we obtain a matrix representation $\phi_{\text{sym}} \in \text{Mat}_D$ with $D = \frac{d(d+1)}{2}$

Proposition 3.11 (Rational stabilizer groups of points have closed orbits). Let $\phi \colon \operatorname{SL}_d \to \operatorname{GL}_D$ be an algebraic representation over \mathbb{Q} , and let $v \in \mathbb{Q}^D$. Then the (rational) stabilizer subgroup

$$\operatorname{Stab}_{\operatorname{SL}_d}(v) = \{ g \in \operatorname{SL}_d \mid \phi(g)v = v \}$$

gives rise to a closed orbit

$$\operatorname{Stab}_{\operatorname{SL}_d}(v)(\mathbb{R})(I\operatorname{SL}_d(\mathbb{Z})) \subseteq \mathsf{X}_d$$

through the identity coset.

Notice that $Stab_{SL_d}(v)$ is itself a subgroup defined by polynomial equations (and hence will be seen to be an algebraic subgroup defined over \mathbb{Q} , once we define this notion in Section 3.5). The proof of Proposition 3.11 is much quicker

 $^{^\}dagger$ As will become more and more clear, part of the art in discussing algebraic groups and their representations will be to not really write down any concrete polynomials or regular functions (as these quickly become quite complicated).

than the discussion above, which was included to familiarize the notion of algebraic representations of SL_d .

PROOF OF PROPOSITION 3.11. Notice that there are finitely many coefficients in (a representation of) the polynomials in $\phi(g)$. Let N be their common denominator, so that $\phi(\gamma) \in \frac{1}{N} \operatorname{Mat}_D(\mathbb{Z})$ for all $\gamma \in \operatorname{SL}_d(\mathbb{Z})$. Let M be the common denominator of the entries in v. Suppose that

$$h_n \operatorname{SL}_d(\mathbb{Z}) \longrightarrow g \operatorname{SL}_d(\mathbb{Z}) = x,$$
 (3.9)

as $n \to \infty$ with $h_n \in \operatorname{Stab}_{\operatorname{SL}_d}(v)(\mathbb{R})$ and $g \in \operatorname{SL}_d(\mathbb{R})$. We wish to show that

$$x \in \operatorname{Stab}_{\operatorname{SL}_d}(v)(\mathbb{R}) \operatorname{SL}_d(\mathbb{Z}).$$
 (3.10)

Just as in the proof of Proposition 3.1, we may rewrite (3.9) as $h_n \gamma_n = \varepsilon_n g$ with $\gamma_n \in \operatorname{SL}_d(\mathbb{Z})$, $\varepsilon_n \in \operatorname{SL}_d(\mathbb{R})$, and $\varepsilon_n \to I$ as $n \to \infty$. Applying the inverse of these matrices to v via the representation ϕ shows that the sequence $\left(\phi(\gamma_n)^{-1}v\right)$ lies in $\frac{1}{MN}\mathbb{Z}^D$ and converges, with

$$\phi(\gamma_n)^{-1}v = \phi(h_n\gamma_n)^{-1}v = \phi(\varepsilon_n g)^{-1}v \longrightarrow \phi(g)^{-1}v$$

as $n \to \infty$. Therefore this sequence must stabilize, and so $\phi(\gamma_n)^{-1}v = \phi(g)^{-1}v$ for some n, which shows that $g\gamma_n^{-1} \in \operatorname{Stab}_{\operatorname{SL}_d}(v)(\mathbb{R})$, giving (3.10). \square

Although the following is not needed for the proof above, let us try to understand a little more about $\mathrm{SL}_d(\mathbb{K})$ and algebraic representations of SL_d over any field \mathbb{K} . By Lemma 1.59 we know that

$$\mathrm{SL}_d(\mathbb{K}) = [\mathrm{SL}_d(\mathbb{K}), \mathrm{SL}_d(\mathbb{K})].$$

It follows that $\mathrm{SL}_d(\mathbb{K})$ (resp. $\mathrm{SL}_d(\overline{\mathbb{K}})$) cannot have any abelian factors, and so $\det \phi(g) = 1$ for every algebraic representation ϕ over \mathbb{K} and $g \in \mathrm{SL}_d(\overline{\mathbb{K}})$. By Theorem 3.9 and Lemma 3.10 this must therefore also hold as an identity in

$$\mathbb{K}[\operatorname{SL}_d] = \mathbb{K}[g_{i,j}: i, j = 1, \dots, d]/\langle \det g - 1 \rangle.$$

Exercise 3.12. For any subspace $V \subseteq \mathbb{R}^d$ we define

$$L_V = \{g \in \operatorname{SL}_d \mid gV = V \text{ and } g|_V \text{ preserves the volume}\}.$$

- (1) Show that $L_V(\mathbb{R})\operatorname{SL}_d(\mathbb{Z})\subseteq\mathsf{X}_d$ is closed if V is a rational subspace.
- (2) More generally, let $x_0=g_0\operatorname{SL}_d(\mathbb{Z})$ and let V be a $g_0\mathbb{Z}^d$ -rational subspace. Show that $L_V(\mathbb{R})x_0$ is closed.
- (3) Let x_0 and V be as in (2). Let $G < \operatorname{SL}_d(\mathbb{R})$ be a closed subgroup such that Gx_0 is closed. Show that $(G \cap L_V(\mathbb{R}))x_0$ is closed.

Exercise 3.13. Show that $\phi \in \operatorname{Mat}_D(\mathbb{K}[\operatorname{SL}_d])$ satisfies (3.7) for all $g, h \in \operatorname{SL}_d$ if and only if it satisfies (3.7) as an abstract identity in $\mathbb{K}[\operatorname{SL}_d \times \operatorname{SL}_d]$.

3.2 Intrinsic Diophantine Approximation on Spheres

We fix $d \ge 2$ and wish to discuss Diophantine approximation for points in the sphere $\mathbb{S}^{d-1} \subseteq \mathbb{R}^d$. However, we wish to find approximations to points $v \in \mathbb{S}^{d-1}$ by rational vectors $\frac{1}{q}p \in \mathbb{S}^{d-1}$ within the sphere. We will refer to this sort of problem as intrinsic Diophantine approximation. In contrast to the abundance of rational points in \mathbb{R}^d used for extrinsic approximation it is not a priori clear how many rational points in \mathbb{S}^{d-1} exist (but Pythagorean triples certainly give rise to many). As a result it is not clear what error rate or quality of approximation should be expected in this setting.

After earlier work⁽¹⁷⁾ Kleinbock and Merrill [83] found and proved the optimal result in 2015. We only discuss a few of their results and the version of Dani's correspondence they found, and refer to their paper for more details and further results.

Theorem 3.14 (Intrinsic approximation for \mathbb{S}^{d-1}). For a point $v \in \mathbb{S}^{d-1}$ and an integer $N \geqslant 1$ there exists an integer q with $1 \leqslant q \leqslant N$ and an integer vector $p \in \mathbb{Z}^d$ with $\frac{1}{q}p \in \mathbb{S}^{d-1}$ and with

$$\left\|v - \frac{1}{q}p\right\| \leqslant \frac{C}{q^{\frac{1}{2}}N^{\frac{1}{2}}},$$

where C > 0 is a constant depending only on d.

This implies the following corollary quite directly.

Corollary 3.15 (Intrinsic approximation for \mathbb{S}^{d-1}). For any $v \in \mathbb{S}^{d-1}$ there exist infinitely many $p \in \mathbb{Z}^d$ and integers $q \geqslant 1$ with $\frac{1}{q}p \in \mathbb{S}^{d-1}$ and with

$$\left\|v - \frac{1}{q}p\right\| \leqslant \frac{C}{q},$$

where C is a constant as in Theorem 3.14.

This in turn motivates the following definition.

Definition 3.16. A vector $v \in \mathbb{S}^{d-1}$ is said to be intrinsically well approximable if for any $\varepsilon > 0$ there exist infinitely many vectors $p \in \mathbb{Z}^d$ and integers $q \geqslant 1$ with $\frac{1}{q}p \in \mathbb{S}^{d-1}$ and with

$$\left\|v - \frac{1}{q}p\right\| \leqslant \frac{\varepsilon}{q}.$$

If this does not hold, v is called *intrinsically badly approximable*.

3.2.1 The Dynamical Interpretation

The amazing insight of Kleinbock and Merrill was that intrinsic Diophantine approximation in \mathbb{S}^{d-1} also has a dynamical interpretation similar to that used in Section 2.4. This allowed them to translate known dynamical results and bring them to bear on the problem of intrinsic Diophantine approximation.

bring them to bear on the problem of intrinsic Diophantine approximation. For this we let $Q_0(x_0,x_1,\ldots,x_d)=-x_0^2+x_1^2+\cdots+x_d^2$ and $G=\mathrm{SO}_{Q_0}(\mathbb{R})$. Then $Y=G\boldsymbol{\cdot}\mathbb{Z}^{d+1}\cong G/G\cap\mathrm{SL}_{d+1}(\mathbb{Z})$ is a closed orbit by Proposition 3.1. We also define the diagonal subgroup $A=\{a_t\mid t\in\mathbb{R}\}$ by setting

$$a_t = \begin{pmatrix} \cosh t & -\sinh t \\ -\sinh t & \cosh t \\ & I_{d-1} \end{pmatrix} \in G$$

for $t \in \mathbb{R}$. Finally for $v \in \mathbb{S}^{d-1}$ we may apply the Gram–Schmidt procedure and let $k_v \in SO_d(\mathbb{R})$ have v^t as its first row vector and then define

$$\Lambda_v = \begin{pmatrix} 1 \\ k_v \end{pmatrix} \mathbb{Z}^{d+1} \in Y.$$

Notice that the elements of Λ_v have the form

$$\begin{pmatrix} 1 \\ k_v \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} q \\ (v, p) \\ \vdots \end{pmatrix}$$

with $q \in \mathbb{Z}$ and $p \in \mathbb{Z}^d$ and the remaining entries corresponding to the orthogonal projection of p onto $(\mathbb{R}v)^{\perp}$. With this we can state the insight of Kleinbock and Merrill.

Proposition 3.17 (Intrinsic Dani correspondence for \mathbb{S}^{d-1}). A vector v in \mathbb{S}^{d-1} is intrinsically well approximable if and only if the forward orbit

$$\{a_t \Lambda_v \mid t \geqslant 0\}$$

is unbounded in Y.

Before we start the proofs of the results above we rephrase Mahler's compactness criterion for subsets of Y. For this and the following discussion it will be convenient to say that a vector $v \in \mathbb{R}^{d+1}$ is a light vector if $Q_0(v) = 0$.

Lemma 3.18 (Mahler compactness in Y using light vectors). For a point

$$y = g \operatorname{SL}_{d+1}(\mathbb{Z}) \in Y$$

with $g \in SO_{Q_0}(\mathbb{R})$ we have

$$\lambda_1(y) \simeq \omega(y) = \min\{\|v\| \mid v \in g\mathbb{Z}^{d+1} \setminus \{0\} \text{ and } Q_0(v) = 0\}.$$

In particular, a closed subset $B \subseteq Y$ is compact if and only if $\omega|_B \geqslant \varepsilon$ for some $\varepsilon > 0$.

PROOF. Suppose first that $\lambda_1(y) < 1$ and let $\lambda_1(y) = ||v||$ for $v \in g\mathbb{Z}^{d+1}$. Then

$$|Q_0(v)| = |-v_0^2 + v_1^2 + \dots + v_d^2| \le ||v|| < 1$$

and $Q_0(v) = Q_0(g^{-1}v) \in Q_0(\mathbb{Z}^{d+1}) \subseteq \mathbb{Z}$ imply that $Q_0(v) = 0$. Therefore $\lambda_1(y) < 1$ implies that $\lambda_1(y) = \omega(y)$.

By Mahler's compactness criterion (Theorem 1.51) and Proposition 3.1 the set $\{y \in Y \mid \lambda_1(y) \geqslant 1\}$ is compact. This implies that ω is bounded on this set. Together with $\lambda_1 \leqslant \omega$ and the above this gives $\lambda_1 \asymp \omega$. The lemma follows from Theorem 1.51 and Proposition 3.1.

PROOF OF THEOREM 3.14. Let $v \in \mathbb{S}^{d-1}$, $t \ge 0$ and $\begin{pmatrix} q \\ p \end{pmatrix} \in \mathbb{Z}^{d+1}$ be a light vector such that $q = \|p\| > 0$ and

$$\delta = \left\| a_t \begin{pmatrix} 1 \\ k_v \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} \right\| = \omega(a_t \Lambda_v) \ll 1. \tag{3.11}$$

In particular the first two entries of

$$a_t \begin{pmatrix} 1 \\ k_v \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} = a_t \begin{pmatrix} q \\ (v,p) \\ \vdots \end{pmatrix} = \begin{pmatrix} q \cosh t - (v,p) \sinh t \\ -q \sinh t + (v,p) \cosh t \\ \vdots \end{pmatrix}$$

are bounded by δ . Taking their sum and difference gives

$$|qe^{-t} + (v, p)e^{-t}| = e^{-t}|q + (v, p)| < 2\delta,$$

$$|qe^{t} - (v, p)e^{t}| = e^{t}|q - (v, p)| < 2\delta.$$
(3.12)

In particular, by dividing by the exponentials and taking the sum we obtain

$$2q \leqslant 2\delta e^t + 2\delta e^{-t} \leqslant 4\delta e^t.$$

Moreover, dividing (3.12) by qe^t gives

$$\left|1-\left(v,\frac{1}{q}p\right)\right|<\frac{2\delta}{q\mathrm{e}^t}.$$

As $\begin{pmatrix} q \\ p \end{pmatrix}$ is a light vector we have $\frac{1}{q}p \in \mathbb{S}^{d-1}$ and

$$\left\|v - \frac{1}{q}p\right\|^2 = 2 - 2\left(v, \frac{1}{q}p\right) \leqslant \frac{4\delta}{qe^t}.$$
(3.13)

Hence together with $\delta \ll 1$ we conclude by (3.11) that $1 \leqslant q \leqslant c_0 e^t$ for some constant c_0 and

$$\left\| v - \frac{1}{q} p \right\| \ll \frac{1}{q^{\frac{1}{2}} e^{\frac{t}{2}}}.$$

We now fix $N \ge c_0$ and define $t = \log \frac{N}{c_0}$ to obtain the desired estimate. For the case $N < c_0$ we simply use q = 1 and $p = (1, 0, ..., 0)^t$ and increase the constant C accordingly.

PROOF OF PROPOSITION 3.17. Suppose first that the orbit is unbounded. Let $\varepsilon_0 > 0$ and find $t \ge 0$ so that $\omega(a_t \Lambda_v) < \varepsilon_0$. This gives the bound (3.11) with $\delta = \omega(a_t \Lambda_v) < \varepsilon_0$, which implies (3.13) for $q \le 2\delta e^t$. Together this gives

$$\left\|v - \frac{1}{q}p\right\|^2 \leqslant \frac{4\delta^2}{q^2} \leqslant \frac{4\varepsilon_0^2}{q^2}.$$

It follows that v is intrinsically well approximable.

Suppose now that v is intrinsically well approximable and let $\varepsilon \in (0,1)$. Then there exists an integer $q \ge 1$ and $p \in \mathbb{Z}^d$ with $\frac{1}{a}p \in \mathbb{S}^d$ and with

$$\left\| v - \frac{1}{q} p \right\| \leqslant \frac{\varepsilon}{q}. \tag{3.14}$$

Taking the square and expanding gives

$$2 - 2\left(v, \frac{1}{q}p\right) = \left\|v - \frac{1}{q}p\right\|^2 \leqslant \frac{\varepsilon^2}{q^2}.$$

We set $q = \varepsilon e^t$ and note that $t \ge 0$. Multiplying the above with $\frac{qe^t}{2}$ gives

$$e^t |q - (v, p)| \le 2\varepsilon.$$

Using the definitions of $\cosh t$ and $\sinh t$ we may obtain

$$|q \cosh t - (v, p) \sinh t| \ll \varepsilon,$$

 $|-q \sinh t + (v, p) \cosh t| \ll \varepsilon.$

In other words, we have obtained good estimates for the first two components of the vector

$$a_t \begin{pmatrix} 1 \\ k_v \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}$$
.

By definition of a_t and k_v the remaining entries correspond to the orthogonal projection $\pi(p)$ of p to the orthogonal complement of $\mathbb{R}v$. Therefore these entries are bounded by

$$\|\pi(p)\| = \left\| q\pi\left(\frac{1}{q}p - v\right) \right\| \leqslant \varepsilon$$

due to (3.14). Together we have shown that

$$\lambda_1 \left(a_t k_v \mathbb{Z}^{d+1} \right) \ll \varepsilon.$$

As $\varepsilon > 0$ was arbitrary we deduce that the forward orbit is unbounded.

In the next chapter we will show in particular that Y has finite volume. Moreover, $G^o = \mathrm{SO}_{Q_0}(\mathbb{R})^o \cong \mathrm{SO}_{d,1}(\mathbb{R})^o$ is a simple Lie group. Together with the Mautner phenomenon in Proposition 2.25 this gives ergodicity for the action of A on $G^o(I\operatorname{SL}_{d+1}(\mathbb{Z})) \subseteq Y$. From here it is possible to show that almost every vector $v \in \mathbb{S}^{d-1}$ is intrinsically well approximable (along the lines of Exercise 2.24).

On the other hand it is also possible to find many vectors $v \in \mathbb{S}^d$ that are intrinsically badly approximable using Schmidt games. Together this shows that the results presented are in a sense optimal. However, the precise value of C in Theorem 3.14 is mysterious and depends on the geometry of the orbit Y. We refer the reader to the paper of Kleinbock and Merrill [83] for more details.

Exercise 3.19 (Intrinsic Dirichlet improvability). Prove that there exists some constant $\lambda \in (0, C)$ with the following property. If $v \in \mathbb{S}^{d-1}$ has the property that for any large enough integer N there is an integer q with $1 \le q \le N$ and $p \in \mathbb{Z}^d$ with $\frac{1}{q}p \in \mathbb{S}^{d-1}$ and with

$$\left\| v - \frac{1}{q} p \right\| \leqslant \frac{\lambda}{q^{\frac{1}{2}} N^{\frac{1}{2}}}$$

then v is rational, meaning that $v \in \mathbb{Q}^d \cap \mathbb{S}^{d-1}$.

3.3 Rational Unipotent Subgroups*

[†]In this section we will construct lattices in certain [‡] connected, simply connected nilpotent Lie groups. By Ado's theorem (see Ado [1] or Knapp [87, Th. B.8]) and Engel's theorem (see Knapp [87, Th. 1.35],) such a group can be embedded into the upper triangular subgroup §

 $^{^{\}dagger}$ This section gives more examples of compact quotients of nilpotent groups, but otherwise is not essential for most of what follows. It will, however, become part of our proof of the Borel–Harish-Chandra theorem in Section 7.4.

[‡] Once we have discussed these notions it will be easy to see that the groups we will discuss here are of the form $G = \mathbb{G}(\mathbb{R})$ for a connected unipotent algebraic group \mathbb{G} defined over \mathbb{Q} . As the theorem and its proof does not require this language we leave this fact to the reader.

[§] Ado's and Engel's theorems are usually stated for a nilpotent Lie algebra instead of for the corresponding simply connected group, but the former implies the latter, see Exercise 3.21.

$$N = \left\{ \begin{pmatrix} 1 * * \dots * \\ 1 * \dots * \\ & \ddots \vdots \\ & 1 \end{pmatrix} \right\} \leqslant \operatorname{SL}_{d}(\mathbb{R})$$

$$(3.15)$$

for some d > 1. A subgroup $G < \mathrm{SL}_d(\mathbb{R})$ is called *unipotent* if it is conjugated to a subgroup of N.

Theorem 3.20 (Lattices and Mal'cev basis for unipotent \mathbb{Q} -groups). Let $G \leq \operatorname{SL}_d(\mathbb{R})$ be a connected unipotent subgroup whose Lie algebra \mathfrak{g} is a rational subspace of $\mathfrak{sl}_d(\mathbb{R}) \subseteq \operatorname{Mat}_d(\mathbb{R})$. Then

$$\mathbb{G}(\mathbb{Z}) = G \cap \mathrm{SL}_d(\mathbb{Z})$$

is a uniform lattice in G. Moreover, writing $\ell = \dim \mathbb{G}$, there exist elements

$$v_1, \ldots, v_\ell \in \mathfrak{g} \cap \mathfrak{sl}_d(\mathbb{Q})$$

for which

$$\mathbb{G}(\mathbb{Z}) = \{ \exp(k_1 v_1) \exp(k_2 v_2) \cdots \exp(k_\ell v_\ell) \mid k_1, \dots, k_\ell \in \mathbb{Z} \},$$

$$G = \mathbb{G}(\mathbb{R}) = \{ \exp(s_1 v_1) \exp(s_2 v_2) \cdots \exp(s_\ell v_\ell) \mid s_1, \dots, s_\ell \in \mathbb{R} \},$$

and

$$F = \{ \exp(t_1 v_1) \exp(t_2 v_2) \cdots \exp(t_\ell v_\ell) \mid t_1, \dots, t_\ell \in [0, 1) \}$$

is a fundamental domain for $\mathbb{G}(\mathbb{Z})$ in G. Moreover, the map

$$(s_1,\ldots,s_\ell) \longmapsto \exp(s_1v_1)\exp(s_2v_2)\cdots\exp(s_\ell v_\ell)$$

is a (polynomial) diffeomorphism between \mathbb{R}^{ℓ} and G. The vectors v_1, \ldots, v_{ℓ} in \mathfrak{g} are called a Mal'cev basis.

PROOF. As $\mathfrak{g} \subseteq \mathfrak{sl}_d(\mathbb{R})$ is, by assumption, both a nilpotent Lie algebra and a rational subspace, the same holds for all the elements of the lower central series. In particular, $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ is a rational subspace. By assumption, \mathfrak{g} can be conjugated into the Lie algebra of N. Therefore, the exponential map

$$\exp(v) = I + v + \frac{1}{2}v^2 + \dots + \frac{1}{(d-1)!}v^{d-1}$$

is actually a polynomial map on $\mathfrak g$ with the logarithm map

$$\log(g) = g - I - \frac{1}{2}(g - I)^{2} + \dots + (-1)^{d} \frac{1}{d - 1}(g - I)^{d - 1}$$

as a polynomial inverse (which is defined on all of G). From this it follows that the linear group G is isomorphic to its Lie algebra \mathfrak{g} , if we equip the latter with the polynomial group operation $v*w = \log(\exp(v)\exp(w))$.

Recall that there is a—possibly immersed—Lie subgroup $G' \triangleleft G$ with Lie algebra \mathfrak{g}' . This shows that for sufficiently small $v, w \in \mathfrak{g}'$ the product v * w lies in \mathfrak{g}' . However, using the fact that the group product v * w for $v, w \in \mathfrak{g}$ is a polynomial in v and w, we can now conclude that $\mathfrak{g}' * \mathfrak{g}' \subseteq \mathfrak{g}'$. Indeed, if ψ is a linear function vanishing on \mathfrak{g}' and $v \in \mathfrak{g}'$ is sufficiently small, then the map $w \mapsto \psi(v * w)$ is a polynomial on \mathfrak{g}' which vanishes on all sufficiently small w. It follows that $\psi(v * w) = 0$ for all $w \in \mathfrak{g}'$. Reversing the roles of v and v, and using the fact that a linear subspace is defined by the collection of all linear functions that vanish on it, we see that $\mathfrak{g}' * \mathfrak{g}' \subseteq \mathfrak{g}'$. However, this shows that $G' = \exp(\mathfrak{g}')$ is simply the isomorphic image of the Lie ideal \mathfrak{g}' and so is a normal closed connected subgroup of v. Note furthermore that the Lie algebra of v0 is v0. Hence v0 is abelian and can be identified with its Lie algebra under the exponential map.

As $m = \dim(G') < \ell = \dim(G)$ and the Lie algebra \mathfrak{g}' of G' is rational, we may assume that the theorem already holds for the unipotent subgroup G'. So let v'_1, \ldots, v'_m be the Mal'cev basis for G' and the uniform lattice

$$G'(\mathbb{Z}) = G' \cap \mathrm{SL}_d(\mathbb{Z}).$$

Let $F' \subseteq G'$ be the fundamental domain as in the theorem for $G'(\mathbb{Z})$ in G'. Let $V \subseteq \mathfrak{g}$ be a rational linear complement to $\mathfrak{g}' < \mathfrak{g}$.

We claim that the image of $G(\mathbb{Z})$ in the abelian group $G/G' \cong \mathfrak{g}/\mathfrak{g}' \cong V$ is discrete. For this let $K = \exp(\overline{B_1^V}) \subseteq G/G'$, which is a compact neighbourhood of the identity. Suppose that

$$\gamma G' \in K \cap (G(\mathbb{Z})/G') \subseteq G/G'.$$

Then we may modify the representative γ by elements of $G'(\mathbb{Z})$ on the right to ensure that $\gamma \in \exp(\overline{B_1^V})F'$, so that γ belongs to a fixed compact set. As $G(\mathbb{Z})$ is discrete it follows that there are only finitely many possibilities for $\gamma G'$, and so the image of $G(\mathbb{Z})$ in G/G' is discrete.

Next we claim that the image of $G(\mathbb{Z})$ modulo G' is a lattice in V. To see this, we have to find $\ell - m = \dim V$ linearly independent elements in the image of $G(\mathbb{Z})$ in $G/G' \cong V$. This follows in turn since for every rational element $v \in V$ we have

$$\exp(Nv) = 1 + Nv + \frac{1}{2}N^2v^2 + \dots + \frac{1}{(d-1)!}N^{d-1}v^{d-1} \in G(\mathbb{Z})$$

for a sufficiently divisible N.

We now choose $v_1, \ldots, v_\ell \in \mathfrak{g}$ so that

$$\exp(v_i) \in G(\mathbb{Z})$$

macro: symono.cls

date/time: 10-Nov-2025/10:29

[†] Once we have introduced the notion of Zariski density we will see that this argument uses the fact that the Hausdorff (that is, standard) neighbourhood of $(0,0) \in \mathfrak{g}' \times \mathfrak{g}'$ is Zariski dense in $\mathfrak{g}' \times \mathfrak{g}'$

for $j = 1, \dots, \ell$ and the elements

$$\exp(v_1)G', \ldots, \exp(v_\ell)G'$$

are a basis of the lattice obtained from $G(\mathbb{Z})$ in G/G' (see Exercise 1.43). The elements

$$v_1,\ldots,v_\ell,v_1',\ldots,v_m'$$

are now a Mal'cev basis.

To see this, let $\gamma \in G(\mathbb{Z})$. Considering $\gamma G'$ we find $k_1, \ldots, k_\ell \in \mathbb{Z}$ such that $\gamma G' = \exp(k_1 v_1) \cdots \exp(k_\ell v_\ell) G'$, or equivalently

$$\gamma' = (\exp(k_1 v_1) \cdots \exp(k_\ell v_\ell))^{-1} \gamma \in G'.$$

Applying the inductive assumption it follows that

$$\gamma = \exp(k_1 v_1) \cdots \exp(k_\ell v_\ell) \exp(k_1' v_1') \cdots \exp(k_m' v_m')$$

for some $k_1, \ldots, k_\ell, k'_1, \ldots, k'_m \in \mathbb{Z}$. If $g \in G$ is arbitrary we may argue similarly to obtain unique $s_1, \ldots, s_\ell \in \mathbb{R}$ with

$$g = \exp(s_1 v_1) \cdots \exp(s_\ell v_\ell) \exp(s_1' v_1') \cdots \exp(s_m' v_m').$$

Furthermore, if we consider g as a representative of a coset $gG(\mathbb{Z})$ we may define $k_j = \lfloor s_j \rfloor$ for $j = 1, \ldots, \ell$ and multiply g on the right with the lattice element $(\exp(k_1v_1)\cdots\exp(k_\ell v_\ell))^{-1}$ to obtain

$$g(\exp(k_1v_1)\cdots\exp(k_\ell v_\ell))^{-1} = \exp(t_1v_1)\cdots\exp(t_\ell v_\ell)g'$$

with $g' \in G'$ and uniquely determined $t_1, \ldots, t_\ell \in [0, 1)$. Moreover, by the inductive assumption for g' there exist uniquely determined $t'_1, \ldots, t'_\ell \in [0, 1)$ with

$$g'G'(\mathbb{Z}) = \exp(\exp(t_1'v_1')\cdots\exp(t_\ell'v_\ell')G'(\mathbb{Z}).$$

We deduce that the set F is indeed a fundamental domain.

Exercise 3.21. In Knapp [87, Th. B.8, Th. 1.35] it is shown that any nilpotent Lie algebra can be embedded into the Lie algebra $\mathfrak n$ of N for some d>1 (where N is defined by (3.15)). Use this (and the discussions regarding the exponential map of this chapter applied to G=N) to show that every connected, simply connected nilpotent Lie group can be embedded into N.

Exercise 3.22. Let G be a unipotent connected subgroup of $\mathrm{SL}_d(\mathbb{R})$ (with a rational Lie algebra). Show that G can be defined using polynomial equations (with rational coefficients).

3.4 Algebraic Number Theory and Compact Torus Orbits*

[†]In this section we study another class of examples of orbits of rational stabilizer groups, which are intimately related to algebraic number theory. Let

$$K = \mathbb{Q}(\zeta) \cong \mathbb{Q}[T]/\langle m(T) \rangle$$

be an algebraic number field generated by an algebraic number ζ , with minimal polynomial m of degree $d = [K : \mathbb{Q}] = \deg m(T)$. We may assume that m is monic. Let $\mathcal{O} \subseteq K$ be an order (a subring of K that contains 1 and is isomorphic to \mathbb{Z}^d as a group). Replacing ζ by $n\zeta$ has the effect of multiplying the non-leading coefficients of m(T) by powers of n. Thus we may assume that $m \in \mathbb{Z}[T]$, so that ζ is an algebraic integer[‡], and $\mathbb{Z}[\zeta]$ is an order. Even though K can be embedded into \mathbb{R} or \mathbb{C} , we prefer not to think of K as a subfield of \mathbb{C} but rather as the abstract field $K = \mathbb{Q}[T]/\langle m(T) \rangle$ with $\zeta = T + \langle m(T) \rangle$.

The following represents the first fundamental result⁽¹⁸⁾ within algebraic number theory that we wish to prove.

Theorem 3.23 (Dirichlet unit theorem). Let \mathcal{O} be an order in an algebraic number field K. The group \mathcal{O}^{\times} of units is isomorphic to $F \times \mathbb{Z}^{r+s-1}$, where F is a finite group of roots of unity in K, r is the number of real embeddings $K \hookrightarrow \mathbb{R}$, and s is the number of pairs of complex embeddings $K \hookrightarrow \mathbb{C}$.

The numbers r and s may also be described as follows. Splitting m(T) over $\mathbb C$ gives

$$m(T) = (T - \zeta_1) \cdots (T - \zeta_r)(T - \zeta_{r+1})(T - \overline{\zeta_{r+1}}) \cdots (T - \zeta_{r+s})(T - \overline{\zeta_{r+s}}),$$

with $\zeta_1, \ldots, \zeta_r \in \mathbb{R}$ and $\zeta_{r+1}, \ldots, \zeta_{r+s} \in \mathbb{C} \mathbb{R}$. Using $K = \mathbb{Q}[T]/\langle m(T) \rangle$, the real embeddings $\phi_i \colon K \to \mathbb{R}$ are then all of the form

$$\phi_i(f(T)) = f(\zeta_i)$$

for some i = 1, ..., r, and the complex embeddings are all of the form

$$\phi_{r+i}(f(T)) = f(\zeta_{r+i}),$$

respectively

$$\overline{\phi_{r+i}}(f(T)) = f(\overline{\zeta_{r+i}}),$$

for i = 1, ..., s and $f \in \mathbb{Q}[T]$.

[†] This section provides interesting examples of algebraic groups (more precisely, of torus subgroups) and compact orbits, and connects these to algebraic number theory. It is not essential for most of the later chapters. It will, however, become part of our proof of the Borel–Harish-Chandra theorem in Section 7.4.

 $^{^{\}ddagger}$ An *algebraic integer* is an algebraic number for which the monic minimal polynomial has integer coefficients.

For the second fundamental theorem in algebraic number theory we need two more definitions. For an order \mathcal{O} in a number field we say that an ideal $\mathcal{J} \subseteq \mathcal{O}$ is *proper* if $\mathcal{O} = \{\beta \in K \mid \beta \mathcal{J} \subseteq \mathcal{J}\}$. Note that \mathcal{O} itself is always a proper ideal in \mathcal{O} . Moreover, two ideals $\mathcal{J}, \mathcal{J}' \subseteq \mathcal{O}$ are *equivalent* if there exists some $\beta \in K$ so that $\mathcal{J}' = \beta \mathcal{J}$.

Theorem 3.24 (Finite class number). For a number field K and an order \mathcal{O} there are only finitely many equivalence classes of proper ideals in \mathcal{O} .

3.4.1 Compact Orbits Arising From Number Fields

Another point of view in discussing K and its embeddings is given by studying the map defined by multiplication by $\zeta = T + \langle m(T) \rangle$

$$\begin{aligned} \cdot \zeta \colon \mathbb{Q}[T]/\langle m(T) \rangle &\longrightarrow \mathbb{Q}[T]/\langle m(T) \rangle \\ f(T) + \langle m(T) \rangle &\longmapsto T f(T) + \langle m(T) \rangle. \end{aligned}$$

We consider $\cdot \zeta$ as a linear map over \mathbb{Q} . In this way the characteristic polynomial of $\cdot \zeta$ is a rational polynomial of degree d which annihilates the map. As m is irreducible of degree d it follows that m is the characteristic and also the minimal polynomial of the map. Therefore, the linear map $\cdot \zeta$ has eigenvalues

$$\zeta_1, \ldots, \zeta_r, \zeta_{r+1}, \overline{\zeta_{r+1}}, \ldots, \zeta_{r+s}, \overline{\zeta_{r+s}}.$$

More generally, if $\cdot \beta$ is the linear map defined by multiplication by $\beta \in K$, then its eigenvalues (considered as a \mathbb{Q} -linear map on the vector space K over \mathbb{Q}) are again[†]

$$\phi_1(\beta), \dots, \phi_r(\beta), \phi_{r+1}(\beta), \overline{\phi_{r+1}(\beta)}, \dots, \phi_{r+s}(\beta), \overline{\phi_{r+s}(\beta)}.$$

We now discuss how to obtain a concrete matrix representation of K, which will allow us to use the results of Section 3.1. This is quite similar to how one can consider $\mathbb C$ as a field of 2×2 matrices using the correspondence

$$\mathbb{C}\ni x+\mathrm{i}y\longleftrightarrow \begin{pmatrix}x-y\\y&x\end{pmatrix}\in\mathrm{Mat}_2(\mathbb{R}),$$

and it is helpful to view the construction below simply as an analogue of this. We let ξ_1, \ldots, ξ_d be a \mathbb{Z} -basis of a proper \mathcal{O} -ideal \mathcal{J} . With this basis in mind, we may now identify the linear map $\cdot \beta$ on K with a matrix

$$\psi_{\mathcal{J}}(\beta) \in \mathrm{Mat}_d(\mathbb{Q}).$$

[†] This follows since $\beta = f(\zeta)$ for some polynomial f. If $\beta \in K \setminus \mathbb{Q}$ then none of the eigenvectors are in \mathbb{Q} . In that case the eigenvectors only appear after 'extending the scalars', for example replacing $K \cong \mathbb{Q}^d$ by $K \otimes \mathbb{C} \cong \mathbb{C}^d$.

We are again using column vectors so that $\cdot \beta \colon K \to K$ corresponds to applying $\psi(\beta)$ to column vectors $v \in \mathbb{Q}^n$. By assumption, for $\beta \in K$ we have

$$\beta \in \mathcal{O} \iff (\cdot \beta) (\xi_i) \in \mathcal{J} \text{ for all } i \iff \psi_{\mathcal{I}}(\beta) \in \operatorname{Mat}_d(\mathbb{Z}).$$

Note that for $\beta \in \mathbb{K}^*$ we have $\psi_{\mathcal{I}}(\beta^{-1}) = \psi_{\mathcal{I}}(\beta)^{-1}$ and hence

$$\beta \in \mathcal{O}^{\times} \iff \psi_{\mathcal{I}}(\beta) \in \mathrm{GL}_d(\mathbb{Z}) = \{ g \in \mathrm{Mat}_d(\mathbb{Z}) \mid \det(g) = \pm 1 \}.$$
 (3.16)

Below we will be studying the subgroup

$$\mathcal{O}^1 = \{ \beta \in \mathcal{O}^{\times} \mid \psi_{\mathcal{I}}(\beta) \in \mathrm{SL}_d(\mathbb{Z}) \};$$

this is either \mathcal{O}^{\times} or an index two subgroup of \mathcal{O}^{\times} , and so it suffices for Theorem 3.23 to show the desired description for \mathcal{O}^1 .

Proposition 3.25 (Compact torus orbit). Let $v_{\mathcal{J}} = \psi_{\mathcal{J}}(\zeta) \in \operatorname{Mat}_d(\mathbb{Z})$ and consider the stabilizer subgroup

$$\mathbb{T}_{\mathcal{J}} = \{ g \in \mathrm{SL}_d \mid g v_{\mathcal{J}} g^{-1} = v_{\mathcal{J}} \}$$

for the conjugation action (that is, the centralizer of $v_{\mathcal{I}}$). Then the orbit

$$\mathbb{T}_{\mathcal{J}}(\mathbb{R})(I\operatorname{SL}_d(\mathbb{Z}))$$

is compact, and the corresponding uniform lattice $\mathbb{T}_{\mathcal{J}}(\mathbb{Z}) < \mathbb{T}_{\mathcal{J}}(\mathbb{R})$ satisfies

$$\mathbb{T}_{\mathcal{J}}(\mathbb{Z}) = \mathrm{SL}_d(\mathbb{Z}) \cap \mathbb{T}_{\mathcal{J}}(\mathbb{R}) = \psi_{\mathcal{J}}(\mathcal{O}^1).$$

In more technical language, the subgroup $\mathbb{T}_{\mathcal{J}}$ is a special case of an algebraic torus (it is in fact a \mathbb{Q} -anisotropic \mathbb{Q} -torus). Moreover, the algebraic group $\mathbb{T}_{\mathcal{J}}$ is closely related to the group $\mathrm{Res}_{K|\mathbb{Q}}\mathbb{G}_m$ obtained by applying restriction of scalars to the multiplicative group \mathbb{G}_m —it is the kernel of the \mathbb{Q} -split character $N_{K|\mathbb{Q}}$ on $\mathrm{Res}_{K|\mathbb{Q}}\mathbb{G}_m$. Minding our language we will not use these words often, but we will give a short introduction to these terms in Chapter 7.

The following will be useful for the proposition and for the following discussions.

Lemma 3.26 (Matrix representation of K). For $v_{\zeta} = \psi_{\mathcal{J}}(\zeta)$ we have

$$\psi_{\mathcal{J}}(K) = \{ w \in \operatorname{Mat}_d(\mathbb{Q}) \mid wv_{\zeta} = v_{\zeta}w, \}$$

and this space has dimension d over \mathbb{Q} .

PROOF. As K is a field it follows that $\psi_{\mathcal{J}}$ is injective and hence $\psi_{\mathcal{J}}(K)$ has dimension d over \mathbb{Q} . Moreover, for $\beta \in K$ we have

 $^{^\}dagger$ As the subspace in question is defined by rational equations, the dimension of it as a subspace of $\mathrm{Mat}_d(\mathbb{Q})$ over \mathbb{Q} equals the dimension of it as a subspace of $\mathrm{Mat}_d(\mathbb{R})$ over \mathbb{R} (and similarly for \mathbb{C}).

$$\psi_{\mathcal{J}}(\beta)v_{\mathcal{J}} = \psi_{\mathcal{J}}(\beta)\psi_{\mathcal{J}}(\zeta) = \psi_{\mathcal{J}}(\beta\zeta) = \psi_{\mathcal{J}}(\zeta\beta) = v_{\mathcal{J}}\psi_{\mathcal{J}}(\beta).$$

This gives one inclusion for the rational subspace in the lemma. To prove the second inclusion we show that $wv_{\zeta} = v_{\zeta}w$ also defines a d-dimensional subspace.

However, we equivalently calculate the dimension after 'extending scalars to \mathbb{C} '. In other words, we calculate the dimension of $\{w \in \operatorname{Mat}_d(\mathbb{C}) \mid wv_\zeta = v_\zeta w\}$ over \mathbb{C} . This has the advantage that we may diagonalize v_ζ over \mathbb{C} . For a diagonal matrix a with pairwise distinct eigenvalues a_1, \ldots, a_d the condition wa = aw gives $w_{i,j}a_j = a_iw_{i,j}$ for all $i,j = 1, \ldots, d$, which forces w to be diagonal. It follows that $\{w \in \operatorname{Mat}_d(\mathbb{C}) \mid wv_\zeta = v_\zeta w\}$ has dimension d over \mathbb{C} , which gives the equality in the lemma.

PROOF OF PROPOSITION 3.25. By Proposition 3.11 and our definition of $\mathbb{T}_{\mathcal{J}}$, we know that the orbit is closed. We also note that Lemma 3.26 implies that

$$\mathbb{T}_{\mathcal{J}}(\mathbb{Z}) = \{ w \in \operatorname{Mat}_{d}(\mathbb{Q}) \mid wv_{\zeta} = v_{\zeta}w \} \cap \operatorname{SL}_{d}(\mathbb{Z})$$
$$= \psi_{\mathcal{J}} \left(\{ b \in K \mid \psi(b) \in \operatorname{SL}_{d}(\mathbb{Z}) \} \right) = \psi_{\mathcal{J}}(\mathcal{O}^{1})$$

by (3.16).

We prove compactness along the lines of the proof of Proposition 3.2. For this we need a replacement for the quadratic form, and this is provided by the norm form

$$N_{K|\mathbb{Q}}(\beta) = \det \psi_{\mathcal{J}}(\beta)$$

which is originally defined for $\beta \in K$ (independent of \mathcal{J} or its chosen basis). Since K is a field, $N_{K|\mathbb{Q}}(\beta) = 0$ for $\beta \in K$ if and only if $\beta = 0$, which is similar to the hypothesis in Proposition 3.2. Let us write

$$\iota(v) = v_1 \xi_1 + \dots + v_d \xi_d$$

for $v \in \mathbb{Q}^d$, so that by assumption ι gives an isomorphism between \mathbb{Z}^d and \mathcal{J} as well as between \mathbb{Q}^d and K. We also note that $\psi_{\mathcal{J}} \circ \iota \colon \mathbb{Q}^d \to \operatorname{Mat}_d(\mathbb{Q})$ is linear, and so we can extend it to a linear map

$$\Psi_{\mathcal{J}} \colon \mathbb{R}^d \longrightarrow \mathrm{Mat}_d(\mathbb{R}).$$

Similarly we may think of $\det(\Psi_{\mathcal{J}}(x))$ as a homogeneous polynomial in d variables x_1, \ldots, x_d of total degree d.

Now suppose that $\mathbb{T}_{\mathcal{J}}(\mathbb{R})$ $(I\operatorname{SL}_d(\mathbb{Z}))$ is unbounded. Then for some vector $m\in\mathbb{Z}^d\setminus\{0\}$ and $h\in\mathbb{T}_{\mathcal{J}}(\mathbb{R})$ the vector hm is very small. This implies that $|\det\Psi_{\mathcal{J}}(hm)|<1$. We claim that

$$\Psi_{\mathcal{I}}(hm) = h\Psi_{\mathcal{I}}(m). \tag{3.17}$$

Assuming this for now, and recalling that $h \in \mathrm{SL}_d(\mathbb{R})$, we obtain that (in analogy to (3.5) on page 91) $|\det \Psi_{\mathcal{J}}(m)| = |\det \Psi_{\mathcal{J}}(hm)| < 1$, which forces $\det \Psi_{\mathcal{J}}(m)$ to be 0 (since $\det \Psi_{\mathcal{J}}(m) \in \mathbb{Z}$). However, $m \in \mathbb{Z}^d \setminus \{0\}$ corresponding to some

$$\beta = \iota(m) \in \mathcal{J} \setminus \{0\}$$

cannot have $N_{K|\mathbb{Q}}(\beta) = \det \Psi_{\mathcal{J}}(m) = 0$, proving that $\mathbb{T}_{\mathcal{J}}(\mathbb{R})(I\operatorname{SL}_d(\mathbb{Z}))$ is bounded, and hence compact.

For the claim we take the $\mathbb R\text{-linear}$ hull of the subspaces in Lemma 3.26 and get

$$\Psi_{\mathcal{I}}(\mathbb{R}^d) = \langle \psi_{\mathcal{I}}(K) \rangle_{\mathbb{R}} = \{ w \in \operatorname{Mat}_d(\mathbb{R}) \mid wv_{\mathcal{I}} = v_{\mathcal{I}}w \}. \tag{3.18}$$

Also notice that

$$\psi_{\mathcal{T}}(\alpha\beta) = \psi_{\mathcal{T}}(\alpha)\psi_{\mathcal{T}}(\beta) \tag{3.19}$$

for $\alpha, \beta \in K$, since $\psi_{\mathcal{J}}$ is giving the matrix representation of multiplication by elements of K in the given basis. This may also be phrased as

$$\psi_{\mathcal{J}}(\iota(hm)) = h\psi_{\mathcal{J}}(\iota(m)) \tag{3.20}$$

for $h \in \psi_{\mathcal{J}}(K)$ and $m \in \mathbb{Z}^d$. Indeed, $h = \psi_{\mathcal{J}}(\alpha)$ is the matrix which sends m corresponding to $\beta = i(m)$ to hm corresponding to $\alpha\beta = i(hm)$, so that the left-hand sides of (3.19) and (3.20) agree. The right-hand sides agree tautologically, and so (3.20) follows. Equivalently, we have shown that the identity (3.17) holds for $h \in \psi_{\mathcal{J}}(K)$ and $m \in \mathbb{Z}^d$. However, this is a linear equation in h which therefore also holds for $h \in \Psi_{\mathcal{J}}(\mathbb{R}^d)$ in (3.18). In summary, we obtain the claim (3.17) and the proposition follows.

3.4.2 Proving the Dirichlet Unit Theorem

To finish the proof of Theorem 3.23, we need to analyze the structure of $\mathbb{T}_{\mathcal{J}}(\mathbb{R})$.

Proposition 3.27 (\mathbb{R} -points of the torus subgroup). With the notation as above,

$$\mathbb{T}_{\mathcal{J}}(\mathbb{R}) \cong M \times \mathbb{R}^{r+s-1},$$

where M is a compact linear group with connected component of the identity isomorphic to $(\mathbb{S}^1)^s$.

The pair of numbers (r, s) play a similar role for $\mathbb{T}_{\mathcal{J}}$ as the signature of the associated quadratic form does for an orthogonal group. In this sense, the result above is an analogue of Theorem 3.5.

PROOF OF PROPOSITION 3.27. We already did most of the work for this already. In fact, as in that proof, the group

$$\mathbb{T}_{\mathcal{J}}(\mathbb{R}) = \{ g \in \mathrm{SL}_d(\mathbb{R}) \mid gv_{\mathcal{J}} = v_{\mathcal{J}}g \}$$

is conjugate to[†]

[†] Just as in the theory of Jordan normal forms, this follows quickly from consideration of \mathbb{R}^d as an $\mathbb{R}[T]$ -module, where T acts via $v_{\mathcal{T}}$, which gives

$$\{g \in \mathrm{SL}_d(\mathbb{R}) \mid gv_{\zeta,\mathbb{R}} = v_{\zeta,\mathbb{R}}g\}$$

where $v_{\zeta,\mathbb{R}}$ is the block-diagonal matrix

$$v_{\zeta,\mathbb{R}} = \begin{pmatrix} \zeta_1 & & & & \\ & \ddots & & & \\ & & \zeta_r & & \\ & & & \imath(\zeta_{r+1}) & & \\ & & & \ddots & \\ & & & & \imath(\zeta_{r+s}) \end{pmatrix} \in \operatorname{Mat}_d(\mathbb{R})$$

and i is the map defined by

$$i: x + iy \longrightarrow \begin{pmatrix} x - y \\ y & x \end{pmatrix}.$$

We use $v_{\zeta,\mathbb{R}}$ (instead of v_{diag}) to ensure that the conjugation takes place over \mathbb{R} , which is needed to analyze $\mathbb{T}_{\mathcal{J}}(\mathbb{R})$. It is easy to check (for example, by a dimension argument as in the proof of Lemma 3.26) that

$$\{g \in \operatorname{Mat}_d(\mathbb{R}) \mid gv_{\zeta,\mathbb{R}} = v_{\zeta,\mathbb{R}}g\}$$

$$= \left\{ \begin{pmatrix} a_1 & & & & \\ & \ddots & & & \\ & & a_r & & \\ & & & \imath(b_1) & & \\ & & & \ddots & \\ & & & & \imath(b_s) \end{pmatrix} \middle| a_1, \dots, a_r \in \mathbb{R}, b_1, \dots, b_s \in \mathbb{C} \right\}.$$

Therefore $\mathbb{T}_{\mathcal{I}}(\mathbb{R})$ is isomorphic to the multiplicative group

$$\left\{ \left(a_1, \dots, a_r, b_1, \dots, b_s\right) \in \mathbb{R}^r \times \mathbb{C}^s \mid a_1 \cdots a_r |b_1|^2 \cdots |b_s|^2 = 1 \right\}$$

which contains the non-compact part

$$\big\{(\mathbf{e}^{t_1},\dots,\mathbf{e}^{t_r},\mathbf{e}^{t_{r+1}},\dots,\mathbf{e}^{t_{r+s}})\mid t_1+\dots+t_r+2t_{r+1}+\dots+2t_{r+s}=0\big\},$$

and this is isomorphic (as a Lie group) to \mathbb{R}^{r+s-1} . The subgroup $M \subseteq \mathbb{T}_{\mathcal{J}}(\mathbb{R})$ is then the subgroup isomorphic to the 'group of signs'

$$\frac{\left\{\left(\varepsilon_{1},\ldots,\varepsilon_{r},z_{1},\ldots,z_{s}\right)\mid\varepsilon_{i}\in\{\pm1\},\left|z_{i}\right|=1,\varepsilon_{1}\cdots\varepsilon_{r}=1\right\}.}{\mathbb{R}^{d}\cong\mathbb{R}[T]/\langle T-\zeta_{1}\rangle\times\cdots\times\mathbb{R}[T]/\langle T-\zeta_{r}\rangle\times\mathbb{R}[T]/\langle p_{\zeta_{r+1}}(T)\rangle\times\cdots\times\mathbb{R}[T]/\langle p_{\zeta_{r+s}}(T)\rangle,}$$

where $p_{\zeta_{r+1}}(T), \ldots, p_{\zeta_{r+s}}(T)$ are the quadratic real minimal polynomials of $\zeta_{r+1}, \ldots, \zeta_{r+s}$ in \mathbb{C} . We refer to Hungerford [70, Ch. VII] for the details.

PROOF OF THEOREM 3.23. By Proposition 3.25, \mathcal{O}^1 is isomorphic to a (uniform) lattice in $\mathbb{T}_{\mathcal{J}}(\mathbb{R})$, which by Proposition 3.27 is isomorphic to the abelian group $M \times \mathbb{R}^{r+s-1}$. Taking the quotient by M we obtain a uniform lattice in \mathbb{R}^{r+s-1} , which must be generated by r+s-1 elements. Suppose that $\alpha_1, \ldots, \alpha_{r+s-1} \in \mathcal{O}^1$ are elements that give rise to a \mathbb{Z} -basis of the lattices in \mathbb{R}^{r+s-1} . Then $\alpha_1, \ldots, \alpha_{r+s-1}$ generate \mathcal{O}^1 up to the kernel of the map from \mathcal{O}^1 to \mathbb{R}^{r+s-1} . However, this kernel F maps under ψ and the isomorphism to $M \times \mathbb{R}^{r+s-1}$ to the compact group M (with discrete image) and so must be finite.

3.4.3 Compact Orbits for the Diagonal Subgroup and Finite Class Number*

[†]The set-up used above can be used further to discuss interesting distribution properties of compact orbits arising from number fields. We define for a given number field K the *complete Galois embedding*

$$\phi = (\phi_1, \dots, \phi_r, \phi_{r+1}, \dots, \phi_{r+s}) \colon K \longrightarrow \mathbb{R}^r \times \mathbb{C}^s \cong \mathbb{R}^{r+2s}$$
 (3.21)

where as before r is the number of different real embeddings and s is the number of inequivalent pairs of complex embeddings of K. We note that ϕ is an embedding, since each ϕ_i is injective).

We call (r, s) the *type* of the number field (as mentioned this plays the role of the signature of a quadratic form), and define $\mathbb{T}_{r,s} \leq \mathrm{SL}_d$ to be the centralizer of a regular matrix

$$v_{r,s} = \begin{pmatrix} \alpha_1 & & & \\ & \ddots & & & \\ & & \alpha_r & & \\ & & & \imath(\beta_1) & & \\ & & & \ddots & \\ & & & & \imath(\beta_s) \end{pmatrix}$$

with pairwise different and non-conjugate $\alpha_j \in \mathbb{R}$ and $\beta_j \in \mathbb{C} \setminus \mathbb{R}$ (that is, with $\alpha_i \neq \alpha_j$, $\beta_i \neq \beta_j$, and $\beta_i \neq \overline{\beta_j}$ for $i \neq j$).

For the following result where the number field of type (r, s) is allowed to vary we adopt the following convention. Given K, a complete Galois embedding ϕ as in (3.21), and a nontrivial Galois automorphism $\sigma \colon K \to K$, we note that

$$\phi \circ \sigma \colon K \to \mathbb{R}^r \times \mathbb{C}^s$$

[†] The remainder of Section 3.4 will not be needed again.

is another complete Galois embedding. Moreover, given K and ϕ we obtain other complete Galois embeddings by post-composing ϕ with a permutation of the r real and a permutation and partial conjugation of the s complex embeddings. Given a field K as a representative of its isomorphism class we allow several different complete Galois embeddings (obtained by post-composition) but pick one and only one complete Galois embedding ϕ from any Galois orbit

$$\{\phi \circ \sigma \mid \sigma \colon K \to K \text{ a Galois automorphism}\}.$$

Proposition 3.28 (Ideal classes and torus orbits). For a number field K of type (r, s), an order \mathcal{O} in K, and any proper \mathcal{O} -ideal $\mathcal{J} \subseteq \mathcal{O}$ the normalized lattice

$$x_{\mathcal{J}} = \frac{1}{\operatorname{covol}(\phi(\mathcal{J}))^{1/d}} \phi(\mathcal{J}) \in \mathsf{X}_d$$

has compact orbit under $\mathbb{T}_{r,s}(\mathbb{R})$. Two ideals $\mathcal{J}_1, \mathcal{J}_2$ give rise to the same orbit if and only if they are ideals in the same number field (and order), and are equivalent (that is, there exists some $a \in K \setminus \{0\}$ with $\mathcal{J}_1 = a\mathcal{J}_2$).

PROOF. Let $K=\mathbb{Q}(\zeta)$, ϕ , \mathcal{O} , and $\mathcal{J}\subseteq\mathcal{O}$ be given. We will use the same notation as used in Proposition 3.25. Recall that $\{\xi_1,\ldots,\xi_d\}$ is a basis of \mathcal{J} . Taking the image of this basis under the complete Galois embedding ϕ , we obtain a basis of \mathbb{R}^d . Indeed, if this were not the case then we could find non-zero elements $\beta\in\mathcal{O}$ for which $\phi(\beta)$ is arbitrarily small (see Exercise 1.43). However, this also implies that $|N_{K|\mathbb{Q}}(\beta)|=|\det\psi_{\mathcal{J}}(\beta)|<1$ and so with $\beta\in\mathcal{O}$ a contradiction. Replacing ξ_d with $-\xi_d$ if necessary, we may assume that

$$g_{\mathcal{J}} = \frac{1}{\operatorname{covol}(\phi(\mathcal{J}))^{1/d}} \left(\phi(\xi_1), \dots, \phi(\xi_d) \right)$$

has determinant one. By construction, $x_{\mathcal{J}} = g_{\mathcal{J}}\mathbb{Z}^d$; also notice that $g_{\mathcal{J}}$ is—up to the scalar—the matrix representation of the map ϕ from K (with the basis $\{\xi_1,\ldots,\xi_d\}$) to $\mathbb{R}^r \times \mathbb{C}^s$ (with the standard basis). Furthermore, recall that $v_{\mathcal{J}} = \psi_{\mathcal{J}}(\zeta)$ is the matrix representation of multiplication by ζ on K (with basis ξ_1,\ldots,ξ_d). In $\mathbb{R}^r \times \mathbb{C}^s$ multiplication by ζ corresponds to multiplying the various coordinates by $\phi_1(\zeta),\ldots,\phi_r(\zeta)$ and to applying the matrices corresponding to the complex numbers $\phi_{r+1}(\zeta),\ldots,\phi_{r+s}(\zeta)$ respectively; that is, to an application of a block-diagonal matrix $v_{\zeta,\mathbb{R}}$. This shows that

$$g_{\mathcal{J}}v_{\mathcal{J}} = v_{\zeta,\mathbb{R}}g_{\mathcal{J}}.\tag{3.22}$$

Now $v_{\zeta,\mathbb{R}}$ is of the same type as $v_{r,s}$ and defines the same centralizer $\mathbb{T}_{r,s}$. Therefore,

$$\mathbb{T}_{r,s} = g_{\mathcal{J}} \mathbb{T}_{\mathcal{J}} g_{\mathcal{J}}^{-1}$$

since (3.22) gives for instance that

$$g_{\mathcal{J}}gg_{\mathcal{J}}^{-1}v_{\zeta,\mathbb{R}}=g_{\mathcal{J}}gv_{\mathcal{J}}g_{\mathcal{J}}^{-1}=g_{\mathcal{J}}v_{\mathcal{J}}gg_{\mathcal{J}}^{-1}=v_{\zeta,\mathbb{R}}g_{\mathcal{J}}gg_{\mathcal{J}}^{-1}$$

for $g \in \mathbb{T}_{\mathcal{J}}$. Moreover,

$$\mathbb{T}_{r,s}(\mathbb{R})g_{\mathcal{T}}\operatorname{SL}_d(\mathbb{Z}) = g_{\mathcal{T}}\mathbb{T}_{\mathcal{T}}(\mathbb{R})\operatorname{SL}_d(\mathbb{Z})$$

is compact by Proposition 3.25.

Notice that if we choose a different basis of \mathcal{J} , then this does not change the point $x_{\mathcal{J}} \in \mathsf{X}_d$. Also notice that if $\mathcal{J}' = \beta \mathcal{J}$ for some $\beta \in K^{\times}$ then $\beta \xi_1, \ldots, \beta \xi_d$ is a basis of \mathcal{J}' , and using this basis we see by (3.22) (which, by the same argument, also holds for β instead of ζ) that

$$g_{\mathcal{J}'} = g_{\mathcal{J}} \psi_{\mathcal{J}}(\beta) = v_{b,\mathbb{R}} g_{\mathcal{J}}.$$

Since $v_{b,\mathbb{R}} \in \mathbb{T}_{r,s}(\mathbb{R})$ this shows that

$$x_{\mathcal{J}'} \in \mathbb{T}_{r,s}(\mathbb{R})x_{\mathcal{J}},$$

which is the first direction of the second claim in the proposition.

Let now \mathcal{J} (and \mathcal{J}') be a proper \mathcal{O} (respectively \mathcal{O}')-ideal in a number field K (respectively K'), let $x_{\mathcal{J}}$, $x_{\mathcal{J}'}$ be the corresponding elements of X_d defined by complete Galois embeddings ϕ (respectively ϕ'), and assume that

$$x_{\mathcal{I}'} = tx_{\mathcal{J}}$$

for some $t \in \mathbb{T}_{r,s}(\mathbb{R})$. By the definition of properness for an \mathcal{O} -ideal \mathcal{J} we have

$$\mathcal{O} = \{ \beta \in K \mid \beta \mathcal{J} \subseteq \mathcal{J} \}$$

$$\cong \{ v \in \langle \psi(K) \rangle_{\mathbb{R}} \mid v \mathbb{Z}^d \subseteq \mathbb{Z}^d \} \qquad (\text{via } v = \psi(\beta))$$

$$= \{ v \in \text{Mat}_d(\mathbb{R}) \mid vv_{\mathcal{J}} = v_{\mathcal{J}}v \text{ and } v\mathbb{Z}^d \subseteq \mathbb{Z}^d \}$$

$$\cong \{ v \in \text{Mat}_d(\mathbb{R}) \mid vv_{r,s} = v_{r,s}v \text{ and } vx_{\mathcal{J}} \subseteq x_{\mathcal{J}} \},$$

via conjugation by $g_{\mathcal{J}}$. The latter set comprises all block diagonal matrices with entries $\phi(a)$ for all $a \in \mathcal{O}$. For the lattices $x_{\mathcal{J}'}$ and $x_{\mathcal{J}}$, this implies that $\mathcal{O}' \cong \mathcal{O}$ and hence $K' \cong K$. In fact the isomorphism is given by $\phi^{-1} \circ \phi' = \sigma \colon K' \to K$. By our conventions from just before the proposition this means that K = K', and that the same complete Galois embedding ϕ is used. By the argument above, this also implies that we have $\mathcal{O} = \mathcal{O}'$. Suppose that ξ_1, \ldots, ξ_d is a basis of \mathcal{J} , so that $x_{\mathcal{J}} = g_{\mathcal{J}} \mathbb{Z}^d$ as before. Choosing the basis ξ'_1, \ldots, ξ'_d of \mathcal{J}' correctly gives $x_{\mathcal{J}'} = g_{\mathcal{J}'} \mathbb{Z}^d$ and $g_{\mathcal{J}'} = tg_{\mathcal{J}}$. This shows that $\phi_i(\xi'_j) = t_i \phi_i(\xi_j)$ for $i, j = 1, \ldots, d$ where t_i (in \mathbb{R} or \mathbb{C}) is the ith entry of the block-diagonal matrix $t \in \mathbb{T}_{r,s}(\mathbb{R})$. This implies that

$$t_i = \phi_i \left(\frac{\xi_j'}{\xi_j} \right)$$

is independent of j. Hence there exists some $\beta \in K$ with

$$t_i = \phi_i(\beta)$$

for i = 1, ..., r + s, and it follows that $\mathcal{J}' = \beta \mathcal{J}$.

We now use the above to prove that there are only finitely many equivalence classes of proper ideals.

PROOF OF THEOREM 3.24. Let \mathcal{J} be an ideal with $\Lambda_{\mathcal{J}} = g_{\mathcal{J}}\mathbb{Z}^d \in \mathsf{X}_d$ the associated lattice with compact orbit. Let $a_{\zeta} \in \mathrm{GL}_d(\mathbb{R})$ be the block-diagonal matrix with entries $\phi_1(\zeta), \ldots, \phi_r(\zeta)$ in \mathbb{R} and blocks corresponding to $\phi_{r+1}(\zeta), \ldots, \phi_{r+s}(\zeta)$ in \mathbb{C} . Notice that $\zeta \mathcal{J} \subseteq \mathcal{J}$ implies that $a_{\zeta} \Lambda_{\mathcal{J}} \leqslant \Lambda_{\mathcal{J}}$.

We claim that

$$B = \{ \Lambda \in \mathsf{X}_d \mid a_{\zeta} \Lambda \leqslant \Lambda \}$$

is compact and that there exists some $\eta > 0$ so that if $\Lambda, \Lambda' \in B$ satisfy $\mathsf{d}_{\mathsf{X}_d}(\Lambda, \Lambda') < \eta$ then $\mathbb{T}_{r,s}(\mathbb{R})\Lambda = \mathbb{T}_{r,s}(\mathbb{R})\Lambda'$. Together with Proposition 3.28 this implies the desired finiteness.

COMPACTNESS. That B is closed follows quite directly from its definition and the topology of X_d . Let $\delta > 0$ be so small that for $v \in \mathbb{R}^d$ with $||v|| < \delta$ we have

$$\|a_{\zeta}^{j}v\| < 1 \tag{3.23}$$

for $j=0,1,\ldots,d-1$. This implies that $B\subseteq \mathsf{X}_d(\delta)$. Indeed, if $\Lambda\in B$ and $v\in\Lambda\cap B^{\mathbb{R}^d}_\delta\setminus\{0\}$ then the bound (3.23) together with $\mathrm{covol}(\Lambda)=1$ implies that the vectors $v,a_\zeta v,\ldots,a_\zeta^{d-1}v$ are linearly dependent. However, this gives an invariant Λ -rational subspace which contradicts irreducibility of the minimal polynomial m(T) of ζ .

Transverse directions. We show that for any $\Lambda_0 \in B$ there exists $\eta_0 > 0$ so that

$$B \cap B_{\eta_0}^{\mathsf{X}_d}(\Lambda_0) \subseteq \mathbb{T}_{r,s}(\mathbb{R})\Lambda_0.$$

Compactness of K then implies that there also exists a uniform η as in the previous claim. Let $\Lambda_0 = g_0\mathbb{Z}^d$ and $\Lambda' = h\Lambda$ be elements of B. By definition this shows that $g_0^{-1}a_\zeta g_0 \in \operatorname{Mat}_d(\mathbb{Z})$ and $g_0^{-1}h^{-1}a_\zeta hg_0 \in \operatorname{Mat}_d(\mathbb{Z})$. If now η_0 is sufficiently small and $h \in B_\eta^{\mathrm{SL}_d(\mathbb{R})}$ these two integer matrices have to agree, which implies $h^{-1}a_\zeta h = a_\zeta$ and hence $h \in \mathbb{T}_{r,s}(\mathbb{R})$ as required. \square

The results obtained make the following folklore problem (generalizing results and conjectures of Linnik [100]) well-formulated.

Problem 3.29. For a given order \mathcal{O} in an algebraic number field K of type (r, s), let $\mu_{\mathcal{O}}$ be the probability measure on X_d obtained from normalizing the sum of the $\mathbb{T}_{r,s}(\mathbb{R})$ -invariant probability measures on $\mathbb{T}_{r,s}(\mathbb{R})x_{\mathcal{J}}$ for the various equivalence classes of proper \mathcal{O} -ideals. Find all of the weak*-limit of the measures $\mu_{\mathcal{O}}$ as the discriminant $D = (\operatorname{covol}(\phi(\mathcal{O})))^2$ goes to infinity.

This has been solved for d=2 by Duke [36] (using subconvexity of L-functions, building on a breakthrough of Iwaniec [73]), and for d=3 and

type r = 3, s = 0 by Einsiedler, Lindenstrauss, Michel and Venkatesh [43] (by combining subconvexity bounds for L-functions with ergodic methods). More accessible but weaker results are contained in [42] and [44].

Exercise 3.30. (a) Let $d \geq 2$. Show that the compact orbits of $\mathbb{T}_{(d,0)}(\mathbb{R})$ (of type (d,0)) in X_d are all of the form $\mathbb{T}_{(d,0)}(\mathbb{R})x_{\mathcal{J}}$ for some proper \mathcal{O} -ideal \mathcal{J} and some order $\mathcal{O} \subseteq K$ in a totally real number field.

- (b) Show that this is not necessarily the case for the type (0, d/2) (with d even).
- (c) Decide the same question for the remaining cases.

3.5 Linear Algebraic Groups

In this section (and in Chapter 7) we will introduce linear algebraic groups, and will link this concept to the theory of linear Lie groups, pointing out the obvious similarities as well as some of the more subtle differences between the theories. We start with the basic definitions, but in order to avoid being too diverted by this important (and large) theory, we will be brief at times.

3.5.1 Basic Notions of Algebraic Varieties

Let \mathbb{K} be a field[†] and let $\overline{\mathbb{K}}$ denote an algebraic closure of \mathbb{K} . A subset $Z \subseteq \overline{\mathbb{K}}^d$ is called Zariski closed if $Z = Z(\mathcal{J})$ is the affine variety $Z(\mathcal{J})$ defined by a subset or, without loss of generality, an ideal $\mathcal{J} \subseteq \overline{\mathbb{K}}[x_1, \ldots, x_d]$. The Zariski closed subsets are the closed sets of a topology, which is called the Zariski topology. This is easily shown to be a topology:

- If $Z_1 = Z(\mathcal{J}_1)$ and $Z_2 = Z(\mathcal{J}_2)$ then $Z_1 \cup Z_2 = Z(\mathcal{J}_1\mathcal{J}_2)$.
- If $Z_{\alpha} = Z(\mathcal{J}_{\alpha})$ for $\alpha \in A$, then

$$\bigcap_{\alpha \in A} Z_{\alpha} = Z\left(\bigcup_{\alpha \in A} \mathcal{J}_{\alpha}\right).$$

A subset $S \subseteq \overline{\mathbb{K}}^d$ is also called *Zariski* \mathbb{K} -closed if \mathcal{J} with $Z = Z(\mathcal{J})$ can be chosen in $\mathbb{K}[x_1, \ldots, x_d]$.

If \mathbb{K} is equal to \mathbb{R} , \mathbb{C} , or \mathbb{Q}_p , then clearly every Zariski closed (or Zariski open) subset is also closed (or open) in the usual sense. For most of the derived properties (density, connectedness, and so on) this is not clear and indeed is often false. For instance, if $S \subseteq \overline{\mathbb{K}}$ is infinite then it is already Zariski dense in $\overline{\mathbb{K}}$. We will always say Zariski open, Zariski closed, Zariski dense, and so on, if we refer to properties of the Zariski topology. When we use the words open,

[†] We will generally be interested in the cases \mathbb{R} , \mathbb{Q}_p and \mathbb{Q} , but will only assume that the field has characteristic zero a little later.

closed, dense, and so on, then this will refer to the metric (often also referred to as the $\mathit{Hausdorff}$) topology of \mathbb{R}^d , \mathbb{C}^d , or \mathbb{Q}_p^d derived from the norms on these spaces.

We recall that the polynomial ring $\mathbb{K}[x_1,\ldots,x_d]$ is Noetherian by the Hilbert basis theorem (see Eisenbud [48, Th. 1.2]). That is, every ideal $\mathcal{J}\subseteq\mathbb{K}[x_1,\ldots,x_d]$ is finitely generated. Equivalently, for any increasing chain $\mathcal{J}_1\subseteq\mathcal{J}_2\subseteq\cdots$ of ideals there exists some $N\geqslant 1$ such that $\mathcal{J}_n=\mathcal{J}_N$ for all $n\geqslant N$. This gives a Noetherian descending chain condition for affine varieties: If $Z_1\supseteq Z_2\supseteq\cdots$ is a descending chain of varieties in $\overline{\mathbb{K}}^d$, then there exists some $N\geqslant 1$ such that $Z_n=Z_N$ for $n\geqslant N$.

An affine variety (equivalently, a Zariski closed set) is called *irreducible* or Zariski connected[†] if it is not a union of two proper Zariski closed subsets. Equivalently, a variety Z is irreducible if any two nonempty Zariski open subsets of Z intersect, if $\mathcal{J}(Z)$ is a prime ideal, or if its ring of regular functions

$$\overline{\mathbb{K}}[Z] = \overline{\mathbb{K}}[x_1, \dots, x_d] / \mathcal{J}(Z)$$

is a principal ideal domain (that is, has no zero divisors).

A field extension $\mathbb{F}:\mathbb{K}$ has transcendence degree n if \mathbb{F} contains n mutually transcendental elements $f_1,\ldots,f_n\in\mathbb{F}$ (that is, elements with the property that the evaluation map

$$\mathbb{K}[T_1,\ldots,T_n]\ni g\longmapsto g(f_1,\ldots,f_n)$$

is injective) but does not contain n+1 mutually transcendental elements (see Hungerford [70, Sec. VI.1]). Assuming that $Z=Z(\mathcal{J})$ is an irreducible affine variety, we can form the field of rational functions $\overline{\mathbb{K}}(Z)$ comprising all quotients $\frac{f}{g}$ with $f,g\in\overline{\mathbb{K}}[Z]$ and $g\neq 0$. The transcendence degree of $\overline{\mathbb{K}}(Z):\overline{\mathbb{K}}$ is called the *dimension* dim(Z) of the variety Z. Notice that if $Z=\overline{\mathbb{K}}^d$ then the dimension of Z is d, and if Z is defined by a single irreducible polynomial

$$f \in \overline{\mathbb{K}}[x_1, \dots, x_d]$$

(in which case Z is called a *hypersurface*), then the dimension of Z is (d-1). The following lemma further reinforces our intuition concerning this notion of dimension.

Lemma 3.31 (Strict monotonicity of dimension). Suppose that $Z_2 \subsetneq Z_1$ is a proper irreducible subvariety of an irreducible variety $Z_1 \subseteq \overline{\mathbb{K}}^d$. Then

$$\dim Z_2 < \dim Z_1.$$

PROOF. By definition

 $^{^{\}dagger}$ This definition does not match the topological definition of connectedness in the Zariski topology, but it will in the context of algebraic subgroups.

$$\overline{\mathbb{K}}[Z_1] = \overline{\mathbb{K}}[x_1, \dots, x_d] / \mathcal{J}_1,$$

with $\mathcal{J}_1 = \mathcal{J}(Z_1)$, has transcendence degree $k = \dim Z_1$. By reordering the variables if necessary, we may assume that

$$x_1 + \mathcal{J}_1, \dots, x_k + \mathcal{J}_1 \in \overline{\mathbb{K}}[Z_1]$$
 (3.24)

are algebraically independent, and

$$x_{k+1} + \mathcal{J}_1, \ldots, x_d + \mathcal{J}_1$$

are algebraically dependent on the elements in (3.24). All other regular or rational functions in $\overline{\mathbb{K}}(Z_1)$ are then algebraically dependent on the elements in (3.24). In fact it follows that

$$\overline{\mathbb{K}}(Z_1) \cong \overline{\mathbb{K}}(x_1, \dots, x_k) [x_{k+1} + \mathcal{J}_1, \dots, x_d + \mathcal{J}_1]$$

is a finite field extension of the field of rational functions in the first k variables. Since $Z_2 \subseteq Z_1$ is a proper subvariety, there exists some $f \in \mathcal{J}(Z_2) \setminus \mathcal{J}(Z_1)$. As $f + \mathcal{J}_1$ is non-zero in $\overline{\mathbb{K}}(Z_1)$, there exists some

$$g + \mathcal{J}_1 \in \overline{\mathbb{K}}(x_1, \dots, x_k) [x_{k+1} + \mathcal{J}_1, \dots, x_d + \mathcal{J}_1]$$

such that $fg + \mathcal{J}_1 = 1 + \mathcal{J}_1$. Clearing the denominators (which belong to the subring $\overline{\mathbb{K}}[x_1, \dots, x_k]$) in this relation, we find that there exists some $g_1 \in \overline{\mathbb{K}}[Z_1]$ such that

$$fq_1 + \mathcal{J}_1 = h + \mathcal{J}_1$$

for some non-zero $h \in \overline{\mathbb{K}}[x_1, \dots, x_k] \cap \mathcal{J}(Z_2)$. This shows that the transcendence degree of $\overline{\mathbb{K}}(Z_2)$ is less than or equal to k-1.

The Noetherian property has the following consequence for varieties.

Lemma 3.32 (Decomposition into irreducible components). Let Z be an affine variety. Then Z is a finite union

$$Z = \bigcup_{i=1}^{n} Z_i$$

of irreducible sub-varieties Z_1, \ldots, Z_n , in which we may and will make the assumption that $Z_i \nsubseteq Z_j$ for $i \neq j$. We will refer to Z_1, \ldots, Z_n as the irreducible components of Z. Moreover, the decomposition into irreducible components is (up to their order) unique.

We note that if Z is a hypersurface, then the claimed existence and uniqueness follow quickly from the statement that $\overline{\mathbb{K}}[x_1,\ldots,x_d]$ is a unique factorization domain.

PROOF OF LEMMA 3.32. If Z is not irreducible then by definition we can find two proper subvarieties $Z_1, Z_2 \subseteq Z$ with $Z = Z_1 \cup Z_2$. If these are irreducible,

we have found the irreducible components of Z. If Z_1 is not irreducible, we find proper subvarieties $Z_{1,1}, Z_{1,2} \subseteq Z$ with $Z_1 = Z_{1,1} \cup Z_{1,2}$. We do the same for Z_2 if it is not irreducible, and repeat as necessary. By the Noetherian property this construction has to terminate after finitely many steps, for otherwise an infinite chain of strictly decreasing Zariski closed subsets would be created. In other words, we can always find a finite tree with Z at the top and irreducible varieties at the bottom, as illustrated in Figure 3.1.

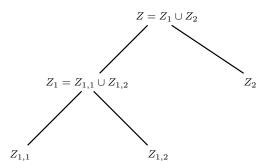


Fig. 3.1: A tree of subvarieties of Z with irreducible varieties at the end nodes.

By construction we then have

$$Z = \bigcup_{i=1}^{m} Z_i$$

where each $Z_i \subseteq Z$ is an irreducible affine variety arising as an end node in the tree. If the list of irreducible subvarieties has repetitions, then we simply remove them. Also, if $Z_i \supseteq Z_j$ for $i \neq j$, we remove Z_j from the list.

Finally, uniqueness follows directly from the definitions: If

$$Z = \bigcup_{i=1}^{m} Z_i = \bigcup_{j=1}^{n} Z_j'$$

are minimal lists then for every $j \in \{1, ..., n\}$ we have

$$Z_j' = \bigcup_{i=1}^m Z_j' \cap Z_i.$$

As Z'_j is irreducible there exists some $i(j) \in \{1, ..., m\}$ with

$$Z'_j = Z'_j \cap Z_{\imath(j)} \subseteq Z_{\imath(j)}.$$

Similarly, for every $i \in \{1, ..., m\}$ there exists some $j(i) \in \{1, ..., n\}$ with

$$Z_i \subseteq Z'_{j(i)}$$
.

Since now $Z_i \subseteq Z'_{\jmath(i)} \subseteq Z_{\imath(\jmath(i))}$ for every i and $Z'_j \subseteq Z_{\imath(j)} \subseteq Z'_{\jmath(\imath(j))}$ for every j, it follows that i and j are inverses of each other, m = n, and $Z_i = Z'_{\jmath(i)}$ for all i.

Assume again that $Z \subseteq \overline{\mathbb{K}}^d$ is an irreducible k-dimensional affine variety. A point $x^{(0)}$ in Z is called smooth if the 'tangent space' in the variables u_1, \ldots, u_d defined by

$$\sum_{j=1}^{d} u_j \partial_{x_j} f(x^{(0)}) = (u_1, \dots, u_d) \cdot \nabla f(x^{(0)}) = 0$$

for all $f \in \mathcal{J}(Z)$, is k-dimensional. The partial derivatives are defined as abstract linear maps on the space of polynomials (so that the definition matches the usual maps if \mathbb{K} is \mathbb{R} or \mathbb{C}). It satisfies the usual properties (the product and chain rules, for example) over any field \mathbb{K} . The reader may quickly decide which points of the variety defined by the equation $y^2 = x^3$ are smooth in this sense (and thus see why the definition makes sense, and that it accords in this case with geometrical intuition; see also Lemma 3.35). An irreducible affine variety is called *smooth* if every point of the variety is a smooth point.

Lemma 3.33 (Most points are smooth). Let $Z \subseteq \overline{\mathbb{K}}^d$ be an irreducible affine variety and suppose the characteristic char \mathbb{K} of the field \mathbb{K} is zero. Then the set of smooth points of Z is a non-empty Zariski open subset of Z. Moreover, the tangent space has at no point of Z a dimension smaller than dim Z.

The lemma should indeed be interpreted as saying that most points of an irreducible variety are smooth. This is because a non-empty Zariski open subset of an irreducible variety is automatically Zariski dense. Moreover, subsets of an affine variety that are both Zariski dense and Zariski open have a strong intersection property: Every finite intersection of Zariski dense and open subsets is again Zariski dense and open (see Exercise 3.34).

PROOF OF LEMMA 3.33. We split the proof into several steps (some of which will also be used later).

A FIRST ZARISKI OPEN SET O_g . We show the existence of a concrete non-empty Zariski open set $O_g \subseteq Z$ so that for all points in O_g the tangent space has dimension at most $k = \dim Z$.

We assume again that

$$x_1 + \mathcal{J}(Z), \dots, x_k + \mathcal{J}(Z) \in \overline{\mathbb{K}}(Z)$$
 (3.25)

are algebraically independent while

$$x_{k+1} + \mathcal{J}(Z), \ldots, x_d + \mathcal{J}(Z)$$

are algebraically dependent on the elements in (3.25). Thus there exists, for every $\ell \in \{k+1,\ldots,d\}$ a non-zero polynomial

$$f_{\ell} \in \overline{\mathbb{K}}[x_1, \dots, x_{\ell}] \cap \mathcal{J}(Z)$$

of minimal degree in x_{ℓ} for which (viewed as a polynomial in x_{ℓ}) the non-zero coefficients do not belong to $\overline{\mathbb{K}}[x_1,\ldots,x_{\ell-1}]\cap\mathcal{J}(Z)$. Since char $\mathbb{K}=0$, we get[†]

$$g_{\ell} = \partial_{x_{\ell}} f_{\ell} \notin \mathcal{J}(Z).$$

We define the Zariksi open set $O_g = Z \setminus Z(g_{k+1} \cdots g_d)$ by the non-vanishing of $g = g_{k+1} \cdots g_d$.

Using the derivative $\nabla(f_{\ell})$ (for $\ell = k+1,\ldots,d$) of these polynomials (as equations that define the tangent space) we see that every point in O_g has a tangent space of dimension less than or equal to k. To see that these points are smooth points of the variety we have to show that the tangent space is indeed k-dimensional. We show this first[‡] on an even smaller Zariski open subset.

SMOOTHNESS ON A SECOND ZARISKI OPEN SET $O_{gh}\subseteq O_g$. It would be tempting to believe that an irreducible variety $Z\subseteq\overline{\mathbb{K}}^d$ of dimension k can be defined by (d-k) polynomials (for example, f_{k+1},\ldots,f_d as above). This would be convenient but fails in general. As a replacement for this we claim that there exists some non-zero $h\in\overline{\mathbb{K}}[x_1,\ldots,x_d]\smallsetminus\mathcal{J}(Z)$ with

$$h\mathcal{J}(Z) \subseteq (f_{k+1}, \dots, f_d). \tag{3.26}$$

As \mathcal{J} is finitely generated and prime, we only have to show that for every polynomial $f \in \mathcal{J}$ there is some $h \notin \mathcal{J}$ with $hf \in (f_{k+1}, \dots, f_d)$. If

$$f \in \overline{\mathbb{K}}[x_1, \dots, x_{k+1}] \cap \mathcal{J},$$

then we can take h to be a power of the leading coefficient of f_{k+1} (considered as a polynomial in x_{k+1} with coefficients in $\overline{\mathbb{K}}[x_1,\ldots,x_k]$). In fact, with this choice of h we ensure that we can apply division with remainder to obtain

$$hf = af_{k+1} + b$$

where b=0 as it has smaller degree in x_{k+1} than f_{k+1} does and belongs to \mathcal{J} . By induction on ℓ and the degree of f with respect to x_{ℓ} the same argument applies for any $f \in \overline{\mathbb{K}}[x_1,\ldots,x_{\ell+1}] \cap \mathcal{J}$. Indeed, if the leading coefficient of f as a polynomial in x_{ℓ} belongs to $\mathcal{J} \cap \overline{\mathbb{K}}[x_1,\ldots,x_{\ell-1}]$ then we use the induction hypothesis on this leading coefficient. If it does not belong to \mathcal{J} we multiply f by the leading coefficient of f_{ℓ} and use division with remainder. The definition of f_{ℓ} ensures that one of the two arguments applies to reduce the degree of f in x_{ℓ} .

[†] If char $\mathbb{K} = p$ and it so happens that f_{ℓ} is a polynomial in $x_1, \ldots, x_{\ell-1}, x_{\ell}^p$ then $\partial_{x_{\ell}} f_{\ell} = 0$. With more care this problem can be dealt with—we refer to Hartshorne [66] for the details.

[‡] We use this step below to show that we can never have a tangent space of dimension strictly less than k, hence we cannot rely on this fact here.

Let $f \in \mathcal{J}(Z)$. By the claim, we see that $hf = h_{k+1}f_{k+1} + \cdots + h_df_d$, for some polynomials h_{k+1}, \ldots, h_d . We note that $\nabla(hf) = \nabla(h)f + h\nabla(f)$. Moreover, on evaluating at a point $x \in Z$ this becomes $\nabla(hf)(x) = h(x)\nabla(f)(x)$. Similarly we get

$$h(x)\nabla(f)(x) = h_{k+1}(x)\nabla(f_{k+1})(x) + \dots + h_d(x)\nabla(f_d)(x)$$

which expresses $\nabla(f)(x)$ as a linear combination of $\nabla(f_i)(x)$ for

$$j = k + 1, \dots, d$$

if only $h(x) \neq 0$. This shows that on the Zariski open set

$$O_{gh} = Z \backslash Z(g_{k+1} \cdots g_d h)$$

every tangent space is exactly k-dimensional. We note that this will be sufficient for our subsequent discussions concerning linear algebraic groups.

SMOOTH POINTS. To prove the lemma it remains to show that the set of smooth points is Zariski open, and that at no point of Z does the tangent space have dimension strictly smaller than k. If now

$$x^{(0)} = (x_1^{(0)}, \dots, x_d^{(0)}) \in Z$$

is an arbitrary smooth point, or more generally a point whose tangent space has dimension $k' \leq k$, then we may reorder the variables so that the tangent space projects onto the subspace spanned by the first k' basis vectors, and so that for each $\ell \in \{k'+1,\ldots,d\}$ there exists some $f_{\ell} \in \mathcal{J}(Z)$ such that

$$(\nabla f_{\ell})_{j} = \delta_{\ell,j}$$

for $\ell, j \in \{k'+1, \ldots, d\}$. It follows that the determinant

$$F = \det (\nabla f_{\ell})_i$$
,

where $\ell, j \in \{k'+1, \ldots, d\}$, does not vanish at the point $x^{(0)}$. Unfolding the definition shows that any other point

$$x \in O_F = Z \backslash Z(F)$$

is also a point at which the tangent space has dimension less than or equal to k', which is less than or equal to k.

If k' < k at some point $x^{(0)}$, then we have found a non-empty Zariski open subset O_F on which all points have tangent spaces of dimension less than or equal to k'. However, as Z is irreducible this set would have to intersect the non-empty Zariski open subset O_{gh} (on which the tangent spaces are known to be k-dimensional) nontrivially, which would give a contradiction.

Therefore, there is no point where the tangent space has dimension strictly less than k, and so applying the argument for k' = k we see that the set of smooth points is Zariski open (and Zariski dense).

A point $x^{(0)} \in Z$ of a (not necessarily irreducible) affine variety is smooth if $x^{(0)}$ belongs to precisely one of the irreducible varieties $Z_i \subseteq Z$ as above, and $x^{(0)}$ is a smooth point of Z_i . Lemma 3.35 now says that inside every variety Z the subset of points that are smooth points of Z is a Zariski open and dense subset of Z.

Exercise 3.34. Let Z be an affine variety. Show that a finite intersection of Zariski dense and open sets is again Zariski dense and open.

3.5.2 Properties Concerning the Field

One smooth \mathbb{K} -point of a variety already gives rise to many other \mathbb{K} -points, if \mathbb{K} is \mathbb{R} , \mathbb{C} , or \mathbb{Q}_p . We only prove the following more restrictive version of this result.

Lemma 3.35 (Neighbourhoods of smooth points). Let $Z \subseteq \mathbb{C}^d$ be a k-dimensional irreducible affine variety defined over \mathbb{R} . There exists a nontrivial Zariski open subset $O \subseteq Z$ consisting of smooth points so that for all $x^{(0)}$ in the set $O \cap Z(\mathbb{R})$ there exists an analytic function defined on an open subset in \mathbb{R}^k which is a diffeomorphism onto a neighbourhood of $x^{(0)} \in Z(\mathbb{R})$. The same holds over \mathbb{C} or over \mathbb{Q}_n for a prime $p < \infty$.

PROOF. Let $O_{gh}\subseteq O_g\subseteq Z$ be the Zariski open subsets from the proof of Lemma 3.33 and let $f_{k+1},\ldots,f_d,\ g=g_{k+1}\cdots g_d,$ and h be as in that proof. Recall that $\nabla(f_j)(x^{(0)})$ are linearly independent for $j=k+1,\ldots,d$ and a point $x^{(0)}\in O_{gh}$ by construction.

Applying the implicit function theorem (over \mathbb{R} , \mathbb{C} , or⁽¹⁹⁾ \mathbb{Q}_p) on a neighbourhood of $x^{(0)}$ to the equations $f_{k+1}(x) = \cdots = f_d(x) = 0$, we obtain (d-k) analytic functions $\phi_j(x_1,\ldots,x_k)$ for $j=k+1,\ldots,d$ which are all defined on a neighbourhood U of $(x_1^{(0)},\ldots,x_k^{(0)})$ such that

$$f_j(x_1, \dots, x_k, \phi_{k+1}(x), \dots, \phi_d(x)) = 0$$

for $j=k+1,\ldots,d$ and $(x_1,\ldots,x_k)\in U$. Moreover, all solutions to the equation $f_{k+1}=\cdots=f_d=0$ near $x^{(0)}$ are of that form.

So far the argument applies to an arbitrary smooth point of Z. The difficulty in general is to show that all points found—at least for (x_1,\ldots,x_k) close to $(x_1^{(0)},\ldots,x_k^{(0)})$ —actually belong to Z (and not just to $Z(\{f_{k+1},\ldots,f_d\})$). This can be shown in general but for $x^{(0)} \in O_{gh} = Z \setminus Z(g_{k+1} \cdots g_d h)$ follows directly from (3.26).

In Section 3.1 we already considered a notion of ' \mathbb{F} varieties': An affine variety Z is defined over \mathbb{F} , for some subfield $\mathbb{F} \subseteq \overline{\mathbb{K}}$, if its complete ideal of relations (as in the Hilbert Nullstellensatz Theorem 3.9) is generated by polynomials with coefficients in \mathbb{F} . On the other, a variety is \mathbb{F} -closed if it can be defined by polynomials with coefficients in \mathbb{F} .

As in any topological space, we can define a notion of *closure*: the Zariski closure of a subset $S \subseteq \overline{\mathbb{K}}^d$ is the smallest Zariski closed subset $Z \subseteq \overline{\mathbb{K}}^d$ containing S. This notion has many convenient properties, including good behaviour with regards to subfields. Note however, that the Zariski closure of a subset in \mathbb{R}^d is frequently much bigger than the closure in the Hausdorff topology.

Lemma 3.36 (Closures of subsets of \mathbb{F}^d). Let $\mathbb{F} \subseteq \overline{\mathbb{K}}$ be any subfield and S be a subset of \mathbb{F}^d . Then the Zariski closure of S is defined over \mathbb{F} .

PROOF. Suppose that f is a polynomial in x_1, \ldots, x_d that vanishes on S. Let V be the vector space generated by the coefficients of f over \mathbb{F} . Let a_1, \ldots, a_n be a basis of V over \mathbb{F} , and write

$$f = \sum_{i=1}^{n} f_i a_i$$

with $f_i \in \mathbb{F}[x_1, \dots, x_d]$. For any $x \in S$ we now have

$$f(x) = \sum_{i=1}^{n} \underbrace{f_i(x)}_{\in \mathbb{K}} a_i = 0,$$

and so $f_i(x) = 0$ for i = 1, ..., n. This shows that the ideal of polynomials that vanish on S is generated by those that have coefficients in \mathbb{F} .

Clearly a variety that is defined over \mathbb{K} is also \mathbb{K} -closed. In general the converse is not true, but fortunately this problem only manifests itself over fields of positive characteristic.

Lemma 3.37 (\mathbb{K} -closed vs. defined over \mathbb{K}). Suppose that \mathbb{K} has characteristic zero. Then a \mathbb{K} -closed affine variety (or a variety that is stable under all Galois automorphisms of $\overline{\mathbb{K}}|\mathbb{K}$) is also defined over \mathbb{K} .

PROOF. Let $Z = Z(\mathcal{J})$ be the variety defined by $\mathcal{J} \subseteq \mathbb{K}[x_1, \dots, x_d]$, and suppose that $f \in \overline{\mathbb{K}}[x_1, \dots, x_d]$ vanishes on Z (that is, suppose that $f \in \mathcal{J}(Z)$). Then there exists a finite Galois field extension $\mathbb{L} : \mathbb{K}$ such that f has coefficients in \mathbb{L} .

Let σ be any Galois automorphism of the extension $\mathbb{L} : \mathbb{K}$. We claim that the polynomial $\sigma(f)$ obtained by applying σ to all coefficients of f also belongs to $\mathcal{J}(Z)$. This may be seen as follows. Since the polynomials in \mathcal{J} have coefficients in \mathbb{K} , any Galois automorphism of $\overline{\mathbb{K}} : \mathbb{K}$ maps $Z = Z(\overline{\mathbb{K}})$ onto Z.

[†] We introduce this extra field for example in order to set $\mathbb{K} = \mathbb{R}$, $\overline{\mathbb{K}} = \mathbb{C}$, and $\mathbb{F} = \mathbb{Q}$.

Extending the automorphism σ of $\mathbb{L} : \mathbb{K}$ in some way to an automorphism of $\overline{\mathbb{K}} : \mathbb{K}$ we get

$$(\sigma(f))(x) = (\sigma(f))\left(\sigma(\sigma^{-1}(x))\right) = \sigma\left(\underbrace{f(\underbrace{\sigma^{-1}(x)})}_{\in Z}\right) = 0$$

for all $x \in Z$.

The claim now implies that $\operatorname{tr}(f) = \sum_{\sigma} \sigma(f)$, where the sum is taken over the finite list of Galois automorphisms of $\mathbb{L} : \mathbb{K}$, belongs to $\mathcal{J}(Z)$. Clearly $\operatorname{tr}(f)$ has coefficients in \mathbb{L} and is fixed by all Galois automorphisms of $\mathbb{L} : \mathbb{K}$. Therefore, $\operatorname{tr}(f) \in \mathbb{K}[x_1,\ldots,x_d]$ (this requires the assumption that $\operatorname{char}(\mathbb{K}) = 0$). If $\mathbb{K} = \mathbb{R}$ and $\mathbb{L} = \mathbb{C}$ then we have $f = \Re f + i\Im f$, where $\Re f = \frac{1}{2}\operatorname{tr}(f)$ and $\Im f = \frac{1}{2}\operatorname{tr}(-if)$. This implies the lemma and the following argument generalizes this simple observation to any $\mathbb{L} : \mathbb{K}$ with characteristic zero.

We claim that there exists a basis $a_1,\ldots,a_{[\mathbb{L}:\mathbb{K}]}$ of \mathbb{L} and a 'dual basis' $a_1^*,\ldots,a_{[\mathbb{L}:\mathbb{K}]}^*$ of \mathbb{L} satisfying

$$\operatorname{tr}(a_i^*a_j) = \delta_{i,j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

for all i, j. We then have

$$a = \sum_{i} \operatorname{tr}(a_i^* a) a_i,$$

which also holds for the polynomial f instead of $a \in \mathbb{L}$. Since

$$\operatorname{tr}(a_i^* f) \in \mathcal{J}(Z) \cap \mathbb{K}[x_1, \dots, x_d]$$

by the argument above, the lemma follows from the claim.

It remains to construct the dual basis. Let $a_1, \ldots, a_{[\mathbb{L}:\mathbb{K}]} \in \mathbb{L}$ be any basis of \mathbb{L} over \mathbb{K} . By linear algebra, there exists a dual basis for the dual vector space \mathbb{L}^* over \mathbb{K} . We claim that the map sending $a \in \mathbb{L}$ to $\phi(a) \in \mathbb{L}^*$ defined by

$$\phi(a)(b) = \operatorname{tr}(ab)$$

is an isomorphism of vector spaces. This may be seen as follows:

- $\phi(1)(1) = \operatorname{tr}(1) = [\mathbb{L} : \mathbb{K}]$, so ϕ is nontrivial (again since $\operatorname{char}(\mathbb{K}) = 0$);
- if $\phi(a) = 0$ then also $\phi(aa')(b) = \operatorname{tr}(a(a'b)) = 0$ for all $a', b \in \mathbb{L}$, so the kernel of ϕ is an ideal, and the field \mathbb{L} has no nontrivial ideals.

Thus the pre-image under ϕ of the dual basis in \mathbb{L}^* gives a dual basis in the above sense in \mathbb{L} .

If the variety Z is only assumed to be invariant under all Galois automorphisms, then once more $\mathcal{J}(Z)$ is invariant under all Galois automorphisms and so the above argument shows again that Z is defined over \mathbb{K} .

In the arguments above there is always an implied coordinate system in $\overline{\mathbb{K}}^d$ (corresponding to the variables x_1,\ldots,x_d). We note that it is customary to write \mathbb{A}^d for the d-dimensional affine space without a preferred origin, coordinate system, or base field. For us the ambient affine space will be $\mathrm{Mat}_d\cong \mathbb{A}^{d^2}$, and on this space very few coordinate changes make sense with regards to the existing (and to us important) multiplicative structure. For that reason and also because we are often interested in subgroups of SL_d (and the orbits of the group of their \mathbb{R} -points), we are happy with choosing one coordinate system and discussing subvarieties and algebraic subgroups of SL_d instead of general varieties and general algebraic groups. We will however, switch frequently from one field to another, and as before will write $Z(\mathbb{F}) = Z(\overline{\mathbb{K}}) \cap \mathrm{Mat}_d(\mathbb{F})$ for the \mathbb{F} -points of a subvariety $Z < \mathrm{Mat}_d$ defined over $\mathbb{F} \subseteq \mathbb{K}$.

3.5.3 Linear Algebraic Groups

An affine variety $\mathbb{G} \subseteq \mathrm{SL}_d$ is a linear algebraic subgroup (of SL_d) if $\mathbb{G}(\overline{\mathbb{K}})$ is a subgroup of $\mathrm{SL}_d(\overline{\mathbb{K}})$.

For a polynomial $f \in \overline{\mathbb{K}}[\mathrm{Mat}_d]$, $g \in \mathrm{SL}_d$, and $x \in \mathrm{Mat}_d$ the left regular representation is defined by

$$(\lambda_a f)(x) = f(g^{-1}x).$$

Note that $\lambda_g f \in \overline{\mathbb{K}}[\mathrm{Mat}_d]$ has the same total degree as f and that the coefficients of $\lambda_g f$ are polynomials in the matrix entries of g. For any subvariety $Z \subseteq \mathrm{Mat}_d$ and $g \in \mathrm{SL}_d(\overline{\mathbb{K}})$ we can now define the translated variety gZ by the ideal

$$\lambda_g \mathcal{J}(Z) = \big\{ f(g^{-1}x) \mid f \in \mathcal{J}(Z) \big\}.$$

Lemma 3.38 (Smoothness). Every point of a linear algebraic subgroup is smooth.

The tangent space of \mathbb{G} at the identity within Mat_d is called the *Lie algebra* of the algebraic subgroup $\mathbb{G} \subseteq \operatorname{SL}_d$.

PROOF OF LEMMA 3.38. Suppose that $g \in \mathbb{G}(\overline{\mathbb{K}})$ is a smooth point of the variety \mathbb{G} . Then one can quickly check that $I = g^{-1}g$ is a smooth point of the left-translate variety $g^{-1}\mathbb{G}$. However, since $g^{-1}\mathbb{G} = \mathbb{G}$ we see that I is a smooth point of \mathbb{G} . By the same argument, any other point is also smooth.

Lemma 3.39 (Connected components). Let $\mathbb{G} \subseteq \operatorname{SL}_d$ be a linear algebraic subgroup. The Zariski connected component $\mathbb{G}^o < \mathbb{G}$ is by definition the unique irreducible component of the affine variety \mathbb{G} that contains the identity. It is an algebraic normal subgroup of \mathbb{G} . There are points $g_1, \ldots, g_n \in \mathbb{G}$ for which

$$\mathbb{G} = \bigsqcup_{i=1}^{n} g_i \mathbb{G}^o$$

is the decomposition into irreducible components of \mathbb{G} and $n = [\mathbb{G}(\overline{\mathbb{K}}) : \mathbb{G}^o(\overline{\mathbb{K}})]$. If \mathbb{G} is defined over \mathbb{K} and \mathbb{K} has zero characteristic then \mathbb{G}^o is also defined over \mathbb{K} .

In particular, the lemma shows that a linear algebraic subgroup is connected in the Zariski topology if and only if it is irreducible. Hence in the following we will frequently use the term 'Zariski connected' instead of 'irreducible'.

As a corollary of the lemma we mention that it makes sense to talk about the dimension of a (not necessarily Zariski connected) algebraic subgroup. Since all Zariski connected components are translates of the connected component \mathbb{G}^o , they all have the same dimension.

PROOF OF LEMMA 3.39. The first statement is essentially an extension of the argument in the previous lemma. If $\mathbb{G} = Z_1 \cup \cdots \cup Z_n$ is the decomposition into connected components, then there exists a point which is contained in only one component. Translating \mathbb{G} by $g \in \mathbb{G}(\overline{\mathbb{K}})$ permutes the connected components and shows that $\mathbb{G} = Z_1 \sqcup \cdots \sqcup Z_n$ is a disjoint union. Suppose that $Z_1 = \mathbb{G}^o$. If now $g \in \mathbb{G}^o$ then $I \in g^{-1}\mathbb{G}^o$, which by uniqueness of the decomposition gives $\mathbb{G}^o = g^{-1}\mathbb{G}^o = g\mathbb{G}$ for all $g \in \mathbb{G}^o$.

We have shown that \mathbb{G}^o is a linear algebraic subgroup. If now $g \in Z_i$ for i > 1, then the same argument gives $g^{-1}Z_i = \mathbb{G}^o = Z_ig^{-1}$. In other words,

$$Z_i = g\mathbb{G}^o = \mathbb{G}^o g$$

is a coset of \mathbb{G}^o in \mathbb{G} . It follows that $\mathbb{G}^o \triangleleft \mathbb{G}$ and that $n = [\mathbb{G} : \mathbb{G}^o]$.

Now suppose that \mathbb{G} is defined over \mathbb{K} , and let σ be a Galois automorphism of $\overline{\mathbb{K}}$ over \mathbb{K} . Then σ induces a permutation of the irreducible components $g_i\mathbb{G}^o(\overline{\mathbb{K}})$ for $i=1,\ldots,n$ with

$$\sigma\left(\mathbb{G}^o(\overline{\mathbb{K}})\right) = \mathbb{G}^o(\overline{\mathbb{K}})$$

since $\sigma(I) = I$. As this holds for all Galois automorphisms we see that \mathbb{G}^o is defined over \mathbb{K} if \mathbb{K} has characteristic zero by Lemma 3.37.

For completeness we mention another (more general but, up to isomorphisms, equivalent) definition: A linear algebraic group is an affine variety equipped with multiplication and inverse maps such that the multiplication and inverse maps are regular functions (from the group to the group). We note that a construction similar to the proof of Chevalley's theorem in Section 3.5.6 then shows that the variety is isomorphic to a subgroup of SL_d for some d. We will speak of a linear algebraic group $\mathbb G$ when the ambient space $\operatorname{SL}_d \subseteq \operatorname{Mat}_d$ will not be important for our purposes.

Example 3.40. We list some standard examples of linear algebraic groups.

(a) \mathbb{G}_a denotes the additive group structure of the field. This is a linear algebraic group because (for example) it is isomorphic to the algebraic subgroup U of SL_2 with

$$U(\overline{\mathbb{K}}) = \left\{ \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} \mid x \in \overline{\mathbb{K}} \right\},\,$$

which we saw earlier is associated to the horocycle flow if $\mathbb{K} = \mathbb{R}$.

(b) \mathbb{G}_m stands for the multiplicative group structure of the field. This is a linear algebraic group because (for example) it is isomorphic to the algebraic subgroup $A < \mathrm{SL}_2$ with

$$A(\overline{\mathbb{K}}) = \left\{ \begin{pmatrix} a \\ a^{-1} \end{pmatrix} \;\middle|\; a \in \overline{\mathbb{K}} \backslash \{0\} \right\},$$

which we saw earlier is associated to the geodesic flow if $\mathbb{K} = \mathbb{R}$.

(c) SL_d , $Stab_{SL_d}(v)$ as in Proposition 3.11, and the groups considered in Sections 3.3–3.4 are further examples of linear algebraic (sub)groups.

Lemma 3.41 (Zariski closures of groups). If $S \subseteq \operatorname{SL}_d(\mathbb{K})$ is a subgroup, then the Zariski closure $\mathbb{G} = \overline{S}^Z$ is a linear algebraic subgroup defined over \mathbb{K} .

PROOF. By Lemma 3.36 we know that \mathbb{G} is defined over \mathbb{K} , so it is enough to show that $\mathbb{G}(\overline{\mathbb{K}})$ is a subgroup.

For any $g \in S$ we have $g^{-1}S = S$ by the assumption on S. This implies in turn that $g^{-1}S \subseteq \mathbb{G}$, $S \subseteq g\mathbb{G}$, $\mathbb{G} \subseteq g\mathbb{G}$, $g^{-1}\mathbb{G} \subseteq \mathbb{G}$, or equivalently $\mathbb{G}^{-1}g \subseteq \mathbb{G}^{-1}$. Fixing some $h \in \mathbb{G}$ we have shown $h^{-1}S \subseteq \mathbb{G}$ or $S \subseteq h\mathbb{G}$, which implies $\mathbb{G} \subseteq h\mathbb{G}$ or $h^{-1}\mathbb{G} \subseteq \mathbb{G}$. Therefore $\mathbb{G}^{-1}\mathbb{G} \subseteq \mathbb{G}$ and \mathbb{G} is a linear algebraic subgroup. \square

Exercise 3.42. Show that the Zariski closure of a connected Lie subgroup of $SL_d(\mathbb{R})$ is a Zariski connected algebraic subgroup defined over \mathbb{R} .

3.5.4 The Lie Algebra of a Linear Algebraic Subgroup

For Lie group we already have an analytic definition of a Lie algebra. Hence for linear algebraic subgroups of SL_d over $\mathbb C$ we now have two definitions: The analytic one as in Chapter 2 and the algebraic one as above.

Lemma 3.43 (Lie algebras). Let $\mathbb{G} < \mathrm{SL}_d(\mathbb{C})$ be a linear algebraic subgroup. Then the analytic Lie algebra of the complex Lie group $\mathbb{G}(\mathbb{C})$ agrees with the algebraic Lie algebra $\mathfrak{g} < \mathrm{Mat}_d(\mathbb{C})$ of \mathbb{G} as a linear algebraic subgroup. If \mathbb{G} is defined over \mathbb{R} , then the Lie algebra of the real Lie group $\mathbb{G}(\mathbb{R})$ is equal to the real subspace $\mathfrak{g}(\mathbb{R}) = \mathfrak{g} \cap \mathrm{Mat}_d(\mathbb{R}) < \mathrm{Mat}_d(\mathbb{R})$. This holds similarly for linear algebraic subgroups defined over \mathbb{Q}_p .

PROOF. Let $k = \dim \mathbb{G}$. By Lemma 3.35 and its proof (relying on the implicit function theorem) there exists a point $x^{(0)} \in \mathbb{G}(\mathbb{C})$ and an analytic function ϕ defined on a nonempty open subset $U \subseteq \mathbb{C}^k$ giving a homeomorphism

between U and an open neighbourhood $O \subseteq \mathbb{G}(\mathbb{C})$ of $x^{(0)}$. Moreover, the total derivative $D\phi(z^{(0)})$ of ϕ at $z^{(0)} = \phi^{-1}(x^{(0)}) \in U$ has full rank. By definition the k-dimensional image of the total derivative is the analytic tangent space of the k-dimensional complex manifold $\mathbb{G}(\mathbb{C})$ at $x^{(0)}$.

On the other hand $f \circ \phi = 0$ for any $f \in \mathcal{J}(\mathbb{G})$ and hence the image of the total derivative belongs to the k-dimensional algebraic tangent space of the variety \mathbb{G} at $x^{(0)}$. It follows that the analytic and algebraic tangent spaces agree. Multiplying by the inverse of $x^{(0)}$ shows the same at I and hence the first part of the lemma.

Suppose now that \mathbb{G} is defined over \mathbb{R} . Note that this implies that the algebraic Lie algebra \mathfrak{g} is defined by linear equations over \mathbb{R} . For $v \in \operatorname{Mat}_d(\mathbb{R})$ we have $\exp(\mathbb{R}v) \subseteq \mathbb{G}(\mathbb{R})$ if and only if $\exp(\mathbb{R}v) \subseteq \mathbb{G}(\mathbb{C})$, which by the argument above is equivalent to $v \in \mathfrak{g}$. Hence the analytic Lie algebra of $\mathbb{G}(\mathbb{R})$ is given by $\mathfrak{g}(\mathbb{R}) = \mathfrak{g} \cap \operatorname{Mat}_d(\mathbb{R})$.

The p-adic case is similar: We note that $x^{(0)}$ as above may belong to a finite field extension \mathbb{K} of \mathbb{Q}_p . Applying the implicit function theorem over \mathbb{K} and arguing as above (with \mathbb{R} replaced by an open subgroup of \mathbb{Z}_p) this does not create any difficulty.

A linear algebraic subgroup $\mathbb{G} < \operatorname{SL}_d$ is semisimple if it is Zariski connected and its Lie algebra is semisimple. We note that this does not imply that $\mathbb{G}(\mathbb{R})$ is connected as a manifold. For instance, $\operatorname{SO}_{2,1}$ is Zariski connected while the (Hausdorff) connected component $\operatorname{SO}_{2,1}(\mathbb{R})^o \lhd \operatorname{SO}_{2,1}(\mathbb{R})$ has index 2.

Exercise 3.44. Let $\mathbb{G} < \mathrm{SL}_d$ be a semisimple linear algebraic group. Show that \mathbb{G} has finite centre.

3.5.5 K-points of Linear Algebraic Groups

As noted before, an affine variety Z defined over a field \mathbb{K} does not have to contain any \mathbb{K} -points (that is, $Z(\mathbb{K})$ may be empty), and even if it is non-empty it may not be Zariski dense in the variety. Since a subgroup always contains the identity the former problem cannot arise for linear algebraic subgroups. Even more is true, as a result of the following lemma.

Lemma 3.45 (Density of \mathbb{R} -points and \mathbb{Q}_p -points). If $\mathbb{G} \subseteq \operatorname{SL}_d$ is a Zariski connected linear algebraic subgroup defined over \mathbb{R} , then $\mathbb{G}(\mathbb{R})$ is Zariski dense in \mathbb{G} . The same holds for $\mathbb{K} = \mathbb{Q}_p$ for a prime number $p < \infty$.

We note that the above holds much more generally (see Borel [7, Th. 18.3]). We will come back to this problem for the special case $\mathbb{K} = \mathbb{Q}$ later.

PROOF OF LEMMA 3.45. Let $k = \dim \mathbb{G}$. By Lemma 3.43 we have

$$\exp(\mathfrak{g}(\mathbb{R})) \subseteq \mathbb{G}(\mathbb{R}).$$

Let $\pi \colon \operatorname{Mat}_d(\mathbb{R}) \to \mathbb{R}^k$ be a projection map using k matrix entries such that $\pi|_{\mathfrak{g}(\mathbb{R})}$ is a linear isomorphism. It follows that $\pi \circ \exp \colon \mathfrak{g}(\mathbb{R}) \to \mathbb{R}^k$ has a total derivative at 0 of full rank. Applying the inverse mapping theorem gives a local inverse defined on an open set $U \subseteq \mathbb{R}^k$. It follows that $\phi \colon U \to \mathbb{G}(\mathbb{R})$ defined by $\phi = \exp \circ (\pi \circ \exp)^{-1}$ satisfies $\pi \circ \phi = \operatorname{id}_U$.

Let Z be the Zariski closure of $\phi(U) \subseteq \mathbb{G}(\mathbb{R})$. By Lemma 3.32 we may write

$$Z = \bigcup_{i=1}^{n} Z_i$$

as a union of irreducible varieties. By Lemma 3.31, either $Z=\mathbb{G}$ or

$$\dim Z_i < k = \dim \mathbb{G}$$

for $i=1,\ldots,n$. However, the latter case cannot happen since a finite union of varieties of dimension strictly less than k cannot contain all points in $\phi(U)$. Specifically, in this case each $\mathcal{J}(Z_i)$ must contain some non-zero polynomial f_i in the matrix variables defining π so that every point in U would have to satisfy the equation $f_1\cdots f_n=0$. This is a contradiction, since every non-empty open subset of \mathbb{R}^k in the Hausdorff topology is Zariski dense (since all the partial derivatives, including the 0th, of a polynomial at a point determine the polynomial). The p-adic case is similar.

The following discussion is not essential for later developments, but it may be useful to bear it in mind. By Shafarevich [141, Ch. VII, Sect. 2.2, Th. 1] the set of \mathbb{C} -points $Z(\mathbb{C})$ of an irreducible affine variety Z is connected in the Hausdorff topology. For the \mathbb{R} -points $Z(\mathbb{R})$ of an irreducible variety Z over \mathbb{R} this is not true. However, for algebraic groups \mathbb{G} defined over \mathbb{R} , the connected component $\mathbb{G}(\mathbb{R})^o$ (in the Hausdorff topology) only has finite index. We will discuss this again for particular algebraic subgroups later (where it will usually be easy to see). For now, notice that $A(\mathbb{R})^o < A(\mathbb{R})$ for A as in Example 3.40(b) has index two. Over \mathbb{Q}_p the analogous question does not make sense, so Zariski connected is a priori the only sensible notion of connectedness.

3.5.6 Chevalley's Theorem, Subgroups, and Representations

Clearly, every algebraic representation gives rise to many algebraic subgroups by defining stabilizer subgroups (as in Section 3.1.2). Chevalley's theorem⁽²⁰⁾ almost turns this construction around: Given an algebraic subgroup there exists an algebraic representation so that the subgroup can be defined via the representation as a stabilizer of a line (instead of a point as in Section 3.1.2) or equivalently of a point in the associated projective space.

Theorem 3.46 (Chevalley). Let $\mathbb{G} < \operatorname{SL}_d$ be an algebraic subgroup. Then there exists an algebraic representation $\rho \colon \operatorname{SL}_d \to \operatorname{SL}_D$ and a D-dimensional

vector v such that

$$\mathbb{G} = \{ g \in \mathrm{SL}_d \mid \rho(g)v \sim v \},\$$

where \sim denotes proportionality.[†] If \mathbb{G} is defined over \mathbb{K} , then the algebraic representation ρ is also defined over \mathbb{K} , and we may choose $v \in \mathbb{K}^D$.

As we will see, the theorem is proved by transforming the defining ideal of \mathbb{G} (which is finitely-generated) into a single vector in a high-dimensional vector space.

PROOF OF THEOREM 3.46. For any $q \in \mathbb{G}$ we have $q\mathbb{G} = \mathbb{G}$ and, equivalently,

$$\lambda_q \mathcal{J}(\mathbb{G}) = \mathcal{J}(\mathbb{G}).$$

Moreover, if $\lambda_g \mathcal{J}(\mathbb{G}) = \mathcal{J}(\mathbb{G})$ for some $g \in \mathrm{SL}_d$ then $g \in \mathbb{G}$. As the ring of polynomials and the ideal are infinite-dimensional we cannot use them directly. However, by the Noetherian property we know that $\mathcal{J}(\mathbb{G}) \subseteq \overline{\mathbb{K}}[\mathrm{Mat}_d]$ is finitely generated (as an ideal). Thus we can assume it is generated by polynomials of degree less than or equal to m for some m. Write $\mathcal{P}_{\leqslant m}$ for the space of all polynomials in $\overline{\mathbb{K}}[\mathrm{Mat}_d]$ of degree $\leqslant m$, and define

$$\mathcal{J}_{\leqslant m} = \mathcal{J}(\mathbb{G}) \cap \mathcal{P}_{\leqslant m}.$$

Now notice that $\lambda_g \mathcal{P}_{\leqslant m} = \mathcal{P}_{\leqslant m}$ for all $g \in \operatorname{SL}_d$ and that $\lambda_g \mathcal{J}_{\leqslant m} = \mathcal{J}_{\leqslant m}$ is equivalent to $g \in \mathbb{G}$ (since $\mathcal{J}_{\leqslant m}$ generates $\mathcal{J}(\mathbb{G})$). In other words, we have found a finite-dimensional representation of SL_d and a subspace so that \mathbb{G} is precisely the subgroup of SL_d that sends the subspace into itself. The representation is also an algebraic representation (which the reader can quickly check).

What is not quite as in the theorem is that the subspace might not be a single line. However, even that can quickly be rectified. Let $\ell = \dim \mathcal{J}_{\leqslant m}$ and define $V = \bigwedge^\ell \mathcal{P}_{\leqslant m}$ and let $v \in \bigwedge^\ell \mathcal{J}_{\leqslant m} \setminus \{0\}$. The algebraic representation of SL_d on $\mathcal{P}_{\leqslant m}$ induces an algebraic representation ρ on V (check this) and for any $g \in \mathrm{SL}_d$ the condition $\rho(g)v \sim v$ is equivalent to $\lambda_g \mathcal{J}_{\leqslant m} = \mathcal{J}_{\leqslant m}$ and hence to $g \in \mathbb{G}$.

If \mathbb{G} is now additionally defined over \mathbb{K} , then $\mathcal{J}_{\leq m} \cap \mathbb{K}[\mathrm{Mat}_d]$ generates $\mathcal{J}(\mathbb{G})$ and we can choose v as the wedge of ℓ elements in $\mathcal{J}_{\leq m} \cap \mathbb{K}[\mathrm{Mat}_d]$. Since the regular representation (and its ℓ th wedge power) are defined over any field, this proves the last claim of the theorem.

[†] Notice that proportionality is itself a polynomial condition, defined by requiring the vanishing of all 2×2 determinants corresponding to pairs of components of $\rho(g)v$ and of v.

3.5.7 Jordan Decomposition, Algebraic Subgroups and Representations

Algebraic groups and algebraic representations have some striking differences to the theory of Lie groups, which we will now start to discuss.

Let ρ be an algebraic representation of SL_d (or more generally of an algebraic subgroup \mathbb{G}). Then we have the following facts:

- if $u \in SL_d$ ($u \in \mathbb{G}$) is nilpotent, then so is $\rho(u)$;
- if $a \in \mathrm{SL}_d(\mathbb{R})$ $(a \in \mathbb{G})$ is diagonalizable (when considered as an element a of SL_d) and has only real and positive eigenvalues, then the same holds for $\rho(a)$.

The first property is readily proved for the case SL_d and $\mathbb{K} = \mathbb{Q}$ or \mathbb{K} a local field. Indeed, if $u \in \mathrm{SL}_d(\overline{\mathbb{K}})$ is unipotent, then there exists some $a \in \mathrm{SL}_d(\overline{\mathbb{K}})$ with $a^n u a^{-n} \to I$ as $n \to \infty$, which implies that

$$\rho(a)^n \rho(u) \rho(a)^{-n} = \rho(a^n u a^{-n}) \longrightarrow I$$

as $n \to \infty$, so the eigenvalues of $\rho(u)$ (which are not changed by conjugation) must all be 1, and hence $\rho(u)$ must be unipotent.

The second property requires a bit more work. We also note that if the algebraic representation is only defined on the subgroup $\mathbb G$ then neither claim would be correct in the context of Lie theory. For this notice that the Lie groups $U(\mathbb R)$ and $A(\mathbb R)$ from Exercise 3.40 are not that much different. On the one hand, the former is connected and the latter is not, so they are not isomorphic. However, there is a surjective group homomorphism from $A(\mathbb R)$ onto $U(\mathbb R)$, and an injective homomorphism from $U(\mathbb R)$ into $A(\mathbb R)^o < A(\mathbb R)$. This does not contradict the above claims, since the two maps are basically the logarithm and the exponential map, which are not algebraic homomorphisms.

We start by recalling the Jordan decomposition in a form convenient for our purposes.

Lemma 3.47 (Jordan decomposition). Let \mathbb{K} be a field of characteristic zero and let $g \in \operatorname{GL}_d(\mathbb{K})$. Then there exist uniquely determined $g_{\operatorname{ss}}, g_{\operatorname{u}} \in \operatorname{GL}(\mathbb{K})$ such that g, g_{ss} , and g_{u} commute, g_{ss} is diagonalizable over $\overline{\mathbb{K}}$ (also referred to as being semisimple), g_{u} is unipotent, and $g = g_{\operatorname{ss}}g_{\operatorname{u}}$. Any eigenvector of g is also an eigenvector of g_{ss} and of g_{u} .

If \mathbb{K} is \mathbb{R} or \mathbb{C} , there also exist uniquely determined matrices $g_{\text{pos}}, g_{\text{comp}}$ in $GL_d(\mathbb{K})$ such that g, g_{pos} , g_{comp} , g_{u} commute, g_{pos} is semisimple and only has real positive eigenvalues, g_{comp} is semisimple and only has eigenvalues in \mathbb{S}^1 , and $g_{\text{ss}} = g_{\text{pos}}g_{\text{comp}}$. Finally any eigenvector of g is also an eigenvector of g_{pos} and of g_{comp}

PROOF. Let $g \in \mathrm{GL}_d(\overline{\mathbb{K}})$. By factorising the characteristic polynomial of g we find its eigenvalues $\lambda_1, \lambda_2, \ldots$ and a direct sum decomposition

$$\overline{\mathbb{K}}^d = \bigoplus_j V_j, \tag{3.27}$$

where $V_j = \ker(g - \lambda I)^d$ is the generalized eigenspace of g for eigenvalue λ_j . We define $g_{\rm ss}$ as the (matrix corresponding to the) linear map whose restriction to V_j is multiplication by the eigenvalue λ_j for all j. From this it follows quickly that $g_{\rm ss}$ commutes with g and that $g_{\rm u} = g_{\rm ss}^{-1} g$ is unipotent. This establishes the existence within $\operatorname{GL}_d(\overline{\mathbb{K}})$.

Now let $h \in GL_d(\overline{\mathbb{K}})$ commute with g. Then $h(V_j) \subseteq V_j$ for all j, which implies that h also commutes with g_{ss} (and with g_u) as defined above. Suppose now that $g = \widetilde{g}_{ss}\widetilde{g}_u$ is a decomposition of g into two commuting matrices such that \widetilde{g}_{ss} is semisimple and \widetilde{g}_u is unipotent. Then $g_{ss}g_u = \widetilde{g}_{ss}\widetilde{g}_u$ and so

$$\widetilde{q}_{ss}^{-1}q_{ss}=\widetilde{q}_{11}q_{11}^{-1}$$

Moreover, using the above comment for $h=\widetilde{g}_{\rm ss}$ and $h=\widetilde{g}_{\rm u}$ we see that the matrices $g_{\rm ss}$, $g_{\rm u}$, $\widetilde{g}_{\rm ss}$, and $\widetilde{g}_{\rm u}$ all commute. This in turn implies that $\widetilde{g}_{\rm ss}^{-1}g_{\rm ss}$ is semisimple and $\widetilde{g}_{\rm u}g_{\rm u}^{-1}$ is unipotent. Hence

$$\widetilde{g}_{\mathrm{ss}}^{-1}g_{\mathrm{ss}} = I = \widetilde{g}_{\mathrm{u}}g_{\mathrm{u}}^{-1}$$

and uniqueness of the Jordan decomposition within $GL_d(\overline{\mathbb{K}})$ follows.

Now suppose $g \in GL_d(\mathbb{K})$ and $g = g_{ss}g_u$ with $g_{ss}, g_u \in GL_d(\overline{\mathbb{K}})$ is the Jordan decomposition of g. Applying any Galois automorphism σ of $\overline{\mathbb{K}}$ over \mathbb{K} gives another such decomposition $g = \sigma(g) = \sigma(g_{ss})\sigma(g_u)$. It follows that both g_{ss} and g_u must belong to $GL_d(\mathbb{K})$.

For $g \in \mathrm{GL}_d(\mathbb{C})$ decompose \mathbb{C}^d into generalized eigenspaces as in (3.27). Define g_{pos} so that its restriction to V_j is multiplication by $|\lambda_j|$. Then the restriction of $g_{\mathrm{comp}} = g_{\mathrm{pos}}^{-1} g_{\mathrm{ss}}$ to V_j is multiplication by $|\lambda_j|^{-1} \lambda_j \in \mathbb{S}^1$. As above, the definition ensures that g_{pos} and g_{comp} commute with any $h \in \mathrm{GL}_d(\mathbb{C})$ that commutes with g. This implies uniqueness similarly to the argument above, which also implies $g_{\mathrm{pos}}, g_{\mathrm{comp}} \in \mathrm{GL}_d(\mathbb{R})$ for $g \in \mathrm{GL}_d(\mathbb{R})$.

The following two results contain the claims made in the beginning of this section in greater generality.

Proposition 3.48 (Jordan decomposition and subgroups). Let \mathbb{G} be an algebraic subgroup of SL_d , and let g be an element of \mathbb{G} . If $g=g_{\operatorname{ss}}g_{\operatorname{u}}$ is the Jordan decomposition of g in $\operatorname{SL}_d(\overline{\mathbb{K}})$, then $g_{\operatorname{ss}},g_{\operatorname{u}}\in\mathbb{G}$ also. If \mathbb{G} is defined over $\mathbb{K}=\mathbb{R}$ (or $\mathbb{K}=\mathbb{C}$) and $g_{\operatorname{ss}}=g_{\operatorname{pos}}g_{\operatorname{comp}}$ is the decomposition into positive semisimple and compact semisimple parts, then once again $g_{\operatorname{pos}},g_{\operatorname{comp}}\in\mathbb{G}$.

Proposition 3.49 (Jordan decomposition and representations). Let \mathbb{G} be an algebraic subgroup of SL_d , and let $\rho \colon \mathbb{G} \to \mathrm{GL}_D$ be an algebraic representation. Then $\rho(g)_{\mathrm{u}} = \rho(g_{\mathrm{u}})$ and $\rho(g)_{\mathrm{ss}} = \rho(g_{\mathrm{ss}})$ for all $g \in \mathbb{G}$. If \mathbb{K} is \mathbb{R} or \mathbb{C} , then we also have $\rho(g)_{\mathrm{pos}} = \rho(g_{\mathrm{pos}})$ and $\rho(g)_{\mathrm{comp}} = \rho(g_{\mathrm{comp}})$.

The proof of these results is intertwined. We will first prove Proposition 3.49 in a special case, then prove Proposition 3.48, and finally obtain Proposition 3.49 as a corollary.

PROOF OF PROPOSITION 3.49 FOR A CHEVALLEY REPRESENTATION. Suppose that ρ is the representation of SL_d obtained in the proof of Theorem 3.46 for a subgroup $\mathbb{G} \leqslant \operatorname{SL}_d$. Let $g = g_{\operatorname{ss}}$ be semisimple, and assume (without loss of generality, by applying any necessary conjugation to \mathbb{G} and g) that g is diagonal. Then it is easy to see that λ_g restricted to $\mathcal{P}_{\leqslant m}$ is diagonal, with eigenvectors given by monomials in the diagonal entries of g. Therefore all eigenvalues of λ_g are simply products of powers of eigenvalues of g. Taking the ℓ th wedge representation, the same holds for $\rho(g) = \bigwedge^{\ell} \lambda_g$. Let $g = g_u$ be unipotent. If \mathbb{K} is $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Q}_p for a prime p (which is where our main interest lies), we have already shown that $\rho(g)$ is unipotent. In general we may argue again step by step as above. First, show that λ_g restricted to $\mathcal{P}_{\leqslant m}$ is unipotent by considering monomials corresponding to the eigendirections (resp. generalized eigendirections). Then we can show that $\rho(g) = \bigwedge^{\ell} \lambda_g$ is also unipotent.

If now $g = g_{\rm ss}g_{\rm u}$ is any element of ${\rm SL}_d$, then $\rho(g_{\rm ss})$ is semisimple, $\rho(g_{\rm u})$ is unipotent, $\rho(g) = \rho(g_{\rm ss})\rho(g_{\rm u})$, and $\rho(g_{\rm ss})$, $\rho(g_{\rm u})$ commute with each other. This proves the claim by the uniqueness of the Jordan decomposition.

If \mathbb{K} is \mathbb{R} or \mathbb{C} , then the argument above also shows that the eigenvalues of $\rho(g_{\text{pos}})$ are positive and the eigenvalues of $\rho(g_{\text{comp}})$ have absolute value one, giving the theorem.

PROOF OF PROPOSITION 3.48. Let $\mathbb{G} \leqslant \operatorname{SL}_d$ be an algebraic subgroup and let $\rho, v \in \overline{\mathbb{K}}^D$ be as in Theorem 3.46. Let $g \in \mathbb{G}$ have the property that $v \in \overline{\mathbb{K}}^D$ is an eigenvector of $\rho(g)$ for the Chevalley representation. By the properties of the Jordan decomposition, v is therefore also an eigenvector of $\rho(g)_{\operatorname{ss}} = \rho(g_{\operatorname{ss}})$ and of $\rho(g)_{\operatorname{u}} = \rho(g_{\operatorname{u}})$. It follows that $g_{\operatorname{ss}}, g_{\operatorname{u}} \in \mathbb{G}$. If \mathbb{K} is \mathbb{R} or \mathbb{C} , and $g_{\operatorname{ss}} = g_{\operatorname{pos}} g_{\operatorname{comp}}$ then $\rho(g)_{\operatorname{pos}} = \rho(g_{\operatorname{pos}})$ has v as an eigenvalue. Thus $g_{\operatorname{pos}}, g_{\operatorname{comp}} \in \mathbb{G}$ as well.

PROOF OF PROPOSITION 3.49. Let $\mathbb{G} \leqslant \operatorname{SL}_d$ and let $\rho \colon \mathbb{G} \to \operatorname{GL}_D$ be an arbitrary algebraic representation. Then

$$\mathbb{L} = \operatorname{Graph}(\rho) \subseteq \mathbb{G} \times \operatorname{GL}_D \subseteq \operatorname{SL}_{d+D+1}$$

is an algebraic subgroup in the following way. We require the elements of $\mathbb L$ to be of block form

$$\begin{pmatrix} h & & \\ g & & \\ \det(g)^{-1} \end{pmatrix}$$

with $h \in SL_d$ and $g \in GL_D$ (by using linear equations, the condition det h = 1, and the polynomial equation that the last entry should be the inverse of the

 $^{^{\}dagger}$ We use the notation from the proof of Theorem 3.46.

determinant of the middle block), require $h \in \mathbb{G}$ (by the known relations of \mathbb{G}), and finally $g = \rho(h)$ (which is a polynomial condition by assumption on ρ). Now let $h = h_{ss} \in \mathbb{G}$ be semisimple, so that

$$g = \begin{pmatrix} h \\ \rho(h) \\ \det(\rho(h))^{-1} \end{pmatrix} \in \mathbb{L}$$

and hence by Proposition 3.48 we also have

$$g_{\mathbf{u}} = \begin{pmatrix} h_{\mathbf{u}} \\ \rho(h)_{\mathbf{u}} \\ 1 \end{pmatrix} \in \mathbb{L}.$$

However, since $h_{\rm u}=I_d$ and $\mathbb L$ is a graph of a homomorphism, we also have $\rho(h)_{\rm u}=I_D$. This shows that $\rho(h)$ is semisimple if h is semisimple. The same argument also applies to unipotent elements (respectively, to positive or compact semisimple elements if $\mathbb K$ is $\mathbb R$ or $\mathbb C$). The proposition follows from the uniqueness of the Jordan decomposition.

3.6 Borel Density Theorem

We will show in this section a version of the Borel density theorem, $^{(21)}$ which will show another relationship between finite volume orbits and rationally defined subgroups. It is the generalization of the basic observation that a lattice $\Lambda < \mathbb{R}^d$ cannot be contained in a proper subspace to the setting of lattices in linear algebraic groups.

For the proof we will need two basic theorems, each of them fundamental to its own subject. However, the two subjects concerned are often—in the context of this book, wrongly—considered far from each other. Concretely, we will need Poincaré recurrence from ergodic theory (in some sense the pigeonhole principle for ergodic theory, see Theorem 1.30 and Exercise 1.34), and Chevalley's theorem from the theory of algebraic groups (see Theorem 3.46), and will combine these with the facts derived in Section 3.5.7. This approach goes back to work of Furstenberg [57] and Dani [17].

Theorem 3.50 (Borel density theorem). Suppose that $\mathbb{G} < \operatorname{SL}_d$ is an algebraic subgroup defined over \mathbb{R} and suppose that $\Gamma < \mathbb{G}(\mathbb{R})$ is a lattice. Then

(1) If \mathbb{G} is semisimple and $\mathbb{G}(\mathbb{R})^o$ has no compact factors then Γ is Zariski dense in \mathbb{G} . If \mathbb{G} is only assumed to be semisimple then the Zariski closure of Γ contains all non-compact factors of $\mathbb{G}(\mathbb{R})^o$ (and possibly some or all of the compact factors).

(2) In the general case, the Zariski closure $\mathbb{L} < \mathbb{G}$ of Γ contains all unipotent elements of $\mathbb{G}(\mathbb{R})$ and more generally all elements of $\mathbb{G}(\mathbb{R})$ that only have positive real eigenvalues.

For the proof we will also need the following simple observation from linear algebra.

Lemma 3.51 (Convergence to some eigenvector). Let $g \in \mathrm{SL}_d(\mathbb{R})$ have the property that all its eigenvalues are real and positive, and let

$$\rho \colon \operatorname{SL}_d(\mathbb{R}) \to \operatorname{SL}_D(\mathbb{R})$$

be a finite-dimensional algebraic representation (obtained, for example, from Chevalley's theorem). Then for any $w \in \mathbb{R}^D \setminus \{0\}$ there is some $v \in \mathbb{R}^D$ with

$$\frac{1}{\|\rho(g^n)w\|}\rho(g^n)w \longrightarrow v \in \mathbb{R}^D$$

as $n \to \infty$, and v is an eigenvector of $\rho(g)$.

PROOF. By Proposition 3.48 if g is unipotent then $\rho(g)$ is also, and if g has only positive eigenvalues then the same holds for $\rho(g)$. Given $w \in \mathbb{R}^D \setminus \{0\}$, we may write

$$w = \sum_{\lambda > 0} w_{\lambda} \neq 0,$$

where each w_{λ} is a generalized eigenvector for the eigenvalue λ and the map $\rho(g)$. Then there is some largest eigenvalue λ_L with $w_{\lambda_L} \neq 0$ (and hence $w_{\lambda} = 0$ for any $\lambda > \lambda_L$). Also notice that $\|\rho(g^n)w_{\lambda}\|$ is asymptotic to $\lambda^n n^{k(\lambda)}$ for some $k(\lambda) \geqslant 0$ (this may be seen by looking at the Jordan normal form of $\rho(g)$, see also the argument below). Thus

$$\frac{1}{\|\rho(g^n)w\|}\rho(g^nw) - \frac{1}{\|\rho(g^n)w_{\lambda_L}\|}\rho(g^nw_{\lambda_L}) \longrightarrow 0$$

as $n \to \infty$. This reduces the problem to the case of a single eigenvalue, and hence (by canceling the eigenvalue) to the case of a unipotent matrix

$$A = \frac{1}{\lambda_L} \rho(g)|_{V_{\lambda_L}}$$

acting on the generalized eigenspace V_{λ_L} of $\rho(g)$ for the eigenvalue λ_L . Choosing a Jordan basis of A, we may assume that A is a block matrix

$$A = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_\ell \end{pmatrix}$$

where each

$$A_i = \begin{pmatrix} 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \\ & & & 1 \end{pmatrix}.$$

We split $w=w_{\lambda_L}$ into components $\sum_i w^{(i)}$ corresponding to this block decomposition, and apply A_i to the vector

$$w^{(i)} = \begin{pmatrix} w_1^{(i)} \\ \vdots \\ w_k^{(i)} \end{pmatrix}$$

to obtain

$$A_i^n \begin{pmatrix} w_1^{(i)} \\ \vdots \\ w_k^{(i)} \end{pmatrix} = \begin{pmatrix} w_1^{(i)} + w_2^{(i)} n + w_3^{(i)} \binom{n}{2} + \dots + w_k^{(i)} \binom{n}{k} \\ \vdots \\ w_{k-1}^{(i)} + w_k^{(i)} n \\ w_k^{(i)} \end{pmatrix}.$$

If now $w^{(i)} \neq 0$, then the above is a vector-valued polynomial whose entry of highest degree is in any case the first row corresponding to the eigenspace of A_i . Since this holds for each i, the lemma follows.

PROOF OF THEOREM 3.50, PART (2). Let $g \in \mathbb{G}(\mathbb{R})$ have only positive real eigenvalues, let \mathbb{L} be the Zariski closure of $\Gamma \leq \mathbb{G}(\mathbb{R}) \leq \mathrm{SL}_d(\mathbb{R})$, and let

$$\rho \colon \operatorname{SL}_d \longrightarrow \operatorname{SL}_D$$

and $w \in \mathbb{R}^D$ be the Chevalley representation for $\mathbb{L} = \operatorname{Stab}_{\operatorname{SL}_d}(\mathbb{R}w)$ as in Theorem 3.46. By Poincaré recurrence we have for almost every $x \in \mathbb{G}(\mathbb{R})/\Gamma$ a sequence $n_k \to \infty$ with $g^{n_k}x \to x$ as $k \to \infty$. We now switch this convergence to the group level as follows: For almost every $h \in \mathbb{G}(\mathbb{R})$ there exist sequences $n_k \to \infty$ and $\varepsilon_k \to I$ as $k \to \infty$, with $\gamma_k \in \Gamma$ with $g^{n_k}h = \varepsilon_k h \gamma_k$ for all $k \geqslant 1$, or equivalently with

$$\gamma_k = \underbrace{h^{-1}\varepsilon_k h}_{\to I} h^{-1} g^{n_k} h.$$

Applying this group element to w gives

$$\frac{1}{\|w\|}w = \frac{1}{\|\rho(\gamma_n)w\|}\rho(\gamma_n)w = \lim_{k \to \infty} \frac{1}{\|\rho(h^{-1}g^{n_k}h)w\|}\rho(h^{-1}g^{n_k}h)w,$$

where we have used the fact that $\Gamma \leqslant \mathbb{L}(\mathbb{R})$ fixes $\mathbb{R}w$ by definition, and Lemma 3.51. It follows by the same lemma that w is an eigenvector of $\rho(h^{-1}gh)$

for almost every h. Taking $h \to I$ shows that w is an eigenvector of $\rho(g)$ also. By definition of ρ and w this gives $g \in \mathbb{L}(\mathbb{R})$.

PROOF OF THEOREM 3.50, PART (1). Let $G^o = \mathbb{G}(\mathbb{R})^o$ be the connected component of the set of real points of \mathbb{G} . Let F be a non-compact almost direct simple factor of G^o . Then F contains a one-parameter unipotent subgroup U, and we can apply Part (2) of the theorem to U and to all its conjugates, which together generate a normal connected subgroup of F (and hence all of F). Thus $\mathbb{L}(\mathbb{R})$ contains F. We may apply this for all non-compact almost direct factors of \mathbb{G} , which then proves the second claim in Part (1).

This also proves the first claim in Part (1) since by the above \mathbb{L} and \mathbb{G} have the same Lie algebra and hence have the same dimension. However, \mathbb{G} is by assumption Zariski connected and so $\mathbb{L} = \mathbb{G}$ follows.

Exercise 3.52. Let Q be a real non-degenerate quadratic form of signature (p,q) in d variables with $p \geqslant q \geqslant 1$. Suppose the orbit $\mathrm{SO}_Q(\mathbb{R})\big(I\,\mathrm{SL}_d(\mathbb{Z})\big)$ has finite volume. Show that a multiple of Q has integer coefficients.

3.7 Irreducible Lattices and Quotients

In this section we classify lattices in semisimple groups into reducible and irreducible lattices, and derive interesting density results (in the standard topology) from the Borel density theorem (which gives only Zariski density).

Definition 3.53. Let G be a connected semisimple Lie group. A lattice $\Gamma < G$ is called *reducible* if $G = H_1 \cdot H_2$ can be written as an almost direct product of nontrivial connected semisimple Lie subgroups $H_1, H_2 \leq G$ with the property that $\Gamma_1 = \Gamma \cap H_1$ is a lattice in H_1 and $\Gamma_2 = \Gamma \cap H_2$ is a lattice in H_2 . The lattice is called *irreducible* if it is not reducible.

Examples of reducible lattices are of course very easy to find, for example $SL_2(\mathbb{Z}) \times SL_2(\mathbb{Z})$ is a reducible lattice in $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$. Irreducible lattices in semisimple but not simple groups are a bit more difficult to find.[†] For example, $SL_2(\mathbb{Z}[\sqrt{2}])$ can be made into an irreducible lattice in $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$, see Exercise 3.58.

We note that every reducible lattice can be 'reduced', or 'almost decomposed' into irreducible lattices as follows. If $\Gamma < G = H_1 \cdot H_2$ is a reducible lattice such that $\Gamma \cap H_i < H_i$ is a lattice for i = 1, 2, then

$$(\Gamma \cap H_1)(\Gamma \cap H_2) \subseteq \Gamma$$

is also a lattice in $G = H_1 \cdot H_2$ and so has finite index in Γ . Studying now

$$\Gamma \cap H_i < H_i$$

macro: symono.cls

date/time: 10-Nov-2025/10:29

[†] By definition any lattice in a simple Lie group is irreducible.

we may obtain an irreducible lattice, and if not we may repeat the decomposition step as before. Ultimately we find finitely many irreducible lattices (that are potentially lattices in simple groups). In this context the following notion is useful.

Definition 3.54. Let $\Gamma, \Lambda < G$ be two subgroups of a group. Then we say that Γ and Λ are *commensurable* if $\Gamma \cap \Lambda$ has finite index in both Γ and Λ .

Corollary 3.55 (Dense projections of irreducible lattices). Let \mathbb{G} be a semisimple algebraic group defined over \mathbb{R} . We suppose that $G = \mathbb{G}(\mathbb{R})^o$ has no compact factors and that $G = H_1 \cdot H_2 \subseteq \operatorname{SL}_d(\mathbb{R})$ is an almost direct product of semisimple subgroups $H_1, H_2 \subseteq \operatorname{SL}_d(\mathbb{R})$. Let $\Gamma < G$ be an irreducible lattice in G, and suppose that H_2 is nontrivial. Then the projection of Γ to[†]

$$G/H_2 \cong H_1/H_1 \cap H_2$$

is dense in $H_1/H_1 \cap H_2$.

PROOF. If $F \triangleleft G$ is a connected normal subgroup then $F = \mathbb{F}(\mathbb{R})^o$ for a Zariski connected normal algebraic subgroup $\mathbb{F} \triangleleft \mathbb{G}$. In fact, suppose that $\mathfrak{g} = \mathfrak{f} \oplus \mathfrak{f}'$ is a decomposition of the Lie algebra \mathfrak{g} of G into the Lie algebra \mathfrak{f} of F and a transversal Lie ideal \mathfrak{f}' of \mathfrak{g} . Then we define $\mathbb{F} = C_{\mathbb{G}}(\mathfrak{f}')^o$ where

$$C_{\mathbb{G}}(\mathfrak{f}') = \{ g \in \mathbb{G} \mid \operatorname{Ad}_g|_{\mathfrak{f}'} = I \}$$

is defined over \mathbb{R} and has Lie algebra \mathfrak{f} . In particular $H_j = \mathbb{H}_j(\mathbb{R})^o$ for a semisimple algebraic subgroup $\mathbb{H}_j \triangleleft \mathbb{G}$ for j = 1, 2. Therefore we may apply the Borel density theorem (Theorem 3.50(1)) for \mathbb{G} or any of its normal subgroups.

Write

$$\pi_1: G \longrightarrow G/H_2 \cong H_1/H_1 \cap H_2$$

for the projection map. There are two cases to consider: Either $\pi_1(\Gamma)$ is discrete or it is not.

DISCRETE IMAGE IMPLIES REDUCIBILITY. If $\pi_1(\Gamma)$ is discrete then its pre-image under the map $H_1 \to H_1/H_1 \cap H_2$ is also discrete. Now let $B_1 \subseteq H_1$ be a fundamental domain for the discrete pre-image of $\pi_1(\Gamma)$ in H_1 and $B_2 \subseteq H_2$ a fundamental domain for $\Gamma \cap H_2$ in H_2 . Then we claim that $B_1B_2 \subseteq G$ is an injective domain for Γ . Indeed, if $\gamma \in \Gamma$, $b_1, b_1' \in B_1$, and $b_2, b_2' \in B_2$ satisfy $b_1b_2\gamma = b_1'b_2'$, then this identity modulo $H_2 \triangleleft G$ gives

$$(b_1(H_1 \cap H_2)) (\gamma(H_1 \cap H_2)) = b_1'(H_1 \cap H_2).$$

Taking pre-images to H_1 and applying our assumption that B_1 is a fundamental domain, it follows that $b_1 = b'_1$. Multiplying

[†] The statement and proof simplify if $G = H_1 \times H_2$ is a direct product of two non-compact simple subgroups $H_1, H_2 \triangleleft G$. The reader is invited to first consider this simpler case.

$$b_1 b_2 \gamma = b_1' b_2'$$

with b_1^{-1} we get $b_2 \gamma = b_2'$ and $\gamma \in H_2$. Now $b_2 = b_2'$ and $\gamma = I$ by the injectivity assumption on B_2 . Hence $B_1B_2\subseteq G$ is an injective domain for Γ , and has finite Haar measure since Γ is a lattice by assumption. This also implies that † each of B_1 and B_2 has finite Haar measure. In particular, $\Gamma \cap H_2$ is a lattice in H_2 .

By the Borel density theorem (Theorem 3.50) applied to $\Gamma \cap H_2 \subseteq H_2$ there is a finite collection $\{\gamma_1, \ldots, \gamma_n\} \subseteq \Gamma \cap H_2$ such that

$$C(\gamma_1, \dots, \gamma_n) = \{ h \in H_2 \mid \gamma_i h = h \gamma_i \text{ for } i = 1, \dots, n \}$$

is the centre $C(H_2)$ of H_2 . In fact, we may choose $\gamma_1 \in \Gamma \cap H_2 \setminus C(H_2)$ and then successively choose γ_2, \ldots so that at each stage

$$C(\gamma_1, \ldots, \gamma_m) \subsetneq C(\gamma_1, \ldots, \gamma_{m-1}).$$

By the Noetherian property of subvarieties, this construction must stop and we find some n with

$$C(\gamma_1,\ldots,\gamma_n)=C(\Gamma\cap H_2).$$

Since $\Gamma \cap H_2$ is Zariski dense in H_2 we deduce that

$$C(\gamma_1,\ldots,\gamma_n)=C(H_2)$$

as required.

We claim that this implies for the projection $\pi_2 \colon G \to G/H_1 \cong H_2/H_1 \cap H_2$ that

$$\pi_2(\Gamma) \subseteq H_2/H_1 \cap H_2$$

must be discrete as well. In fact, if $\pi_2(\gamma)$ is sufficiently small but nontrivial, then by construction

$$[\pi_2(\gamma), \pi_2(\gamma_i)] \neq I$$

for some $j \in \{1, ..., n\}$. This implies that

$$[\gamma, \gamma_i] \in H_2 \cap \Gamma$$

is very close to an element of $H_1 \cap H_2$ but does not belong to it. However, $H_1 \cap H_2$ is finite (it is zero-dimensional because its Lie algebra is trivial). This contradicts the assumed discreteness of Γ , so $\pi_2(\Gamma)$ must be discrete as claimed.

The claim establishes a symmetry between H_1 and H_2 in the above discussion. Applying the argument above again we also see that $\Gamma \cap H_1$ is a lattice in H_1 . In other words, we have shown that Γ is a reducible lattice.

Showing density. We assume now that $\pi_1(\Gamma)$ is not discrete. Let

 $^{^{\}dagger}$ As G is the almost direct product of H_1 and H_2 the Haar measure m_G is, in the same sense, also almost the product of the Haar measures $m_{H_1} \times m_{H_2}$.

$$F = \pi_1^{-1} \left(\overline{\pi_1(\Gamma)} \right) \cap H_1$$

be the pre-image in H_1 of the closure of $\pi_1(\Gamma)$. Clearly Γ stabilizes the Lie algebra \mathfrak{f} of F. By the Borel density theorem (Theorem 3.50) applied to the lattice Γ in G, the same holds for $G \geqslant H_1$ (see Exercise 3.59). It follows that $\mathfrak{f} \lhd \mathfrak{h}_1$ is a Lie ideal in the Lie algebra \mathfrak{h}_1 of H_1 . If $\mathfrak{f} = \mathfrak{h}_1$, then we get the desired density of $\pi_1(\Gamma)$ in the connected group $H_1/H_1 \cap H_2$.

So suppose that $\mathfrak{f} \neq \mathfrak{h}_1$. We define H_1' to be the almost direct product of all factors of H_1 whose Lie algebras are not contained in \mathfrak{f} . Also define $H_2' = F^o \cdot H_2$ to be the almost direct product of all factors in F and H_2 . Note that

$$G = H_1 \cdot H_2 = H_1' \cdot F^o \cdot H_2 = H_1' \cdot H_2'.$$

Since $\mathfrak{f} \neq \mathfrak{h}_1$, the group H_1' is nontrivial. Let $\pi_1' \colon G \to G/H_2'$ denote the analogous projection for the almost direct product $G = H_1' \cdot H_2'$. Note that π_1' is the composition of $\pi_1 \colon G \to H_1/H_1 \cap H_2$ with the quotient by $\pi_1(F^o) = (\overline{\pi_1(\Gamma)})^o$. It follows that

$$\pi_1'(\Gamma) \subseteq H_1'/H_1' \cap H_2'$$

is discrete. By the first argument in the proof, this implies that Γ is a reducible lattice in $G = H'_1 \cdot H'_2$. Therefore irreducibility of the lattice implies that $\mathfrak{f} = \mathfrak{h}_1$ and the result follows.

Our interest in the notion of irreducibility is clearly explained in the following corollary. We note in particular that irreducibility is necessary for the conclusions to hold (see Exercise 3.57).

Corollary 3.56 (Mixing of semisimple groups). Let G be the connected component of the group of \mathbb{R} -points of a semisimple algebraic group defined over \mathbb{R} . Suppose that G has no compact factors. Let $X = G/\Gamma$ be the quotient by an irreducible lattice of G. Then every almost direct factor of G acts ergodically and the action of G is mixing with respect to the Haar measure m_X on X.

PROOF. By the Howe–Moore theorem for semisimple groups (Theorem 2.44), it is sufficient to show that every simple factor acts ergodically.

So let $H \triangleleft G$ be a (nontrivial) simple factor of G, and suppose that the set

$$H \cdot B = B \subseteq X$$

is H-invariant.

Let

$$\pi_X \colon G \longrightarrow X = G/\Gamma$$

be the natural factor map, and let $B_G = \pi_X^{-1}(B) \subseteq G$ be the set in G corresponding to B. By the properties of B we have $HB_G = B_G$, or equiva-

[†] By Proposition 2.1 we may assume the strict invariance $H \cdot B = B$ rather than the *a priori* weaker invariance in the measure algebra $m_X(g \cdot B \triangle B) = 0$ for all $g \in H$.

lently $B_G = \pi^{-1}(\pi(B_G))$ if $\pi: G \to G/H$ denotes the projection map. By construction, $B_G \Gamma = B_G$ and so $\pi(B_G)\pi(\Gamma) = \pi(B_G)$.

Recall from [45, Prop. 8.6] that, for any two Borel sets $B_1, B_2 \subseteq G/H$ with $m_{G/H}(B_1)m_{G/H}(B_2) > 0$, the set

$$\left\{gH\in G/H\;\big|\;m_{G/H}\big((B_1(gH))\cap B_2\big)>0\right\}$$

is non-empty and open.

We may apply this to the set $B_1 = \pi(B_G)$ and its complement B_2 . Since $\pi(\Gamma)$ is dense in G/H by Corollary 3.55, we deduce that either $\pi(B_G)$ has zero measure or its complement does. Since G is the almost direct product of H and a group locally isomorphic to G/H, the Haar measure on G can be obtained from the Haar measures on H, the Haar measure on G/H, finite-to-one covers, and quotients. Hence either B_G or its complement has zero measure in G. It follows that either $m_X(B) = 0$ or $m_X(X \setminus B) = 0$ as required.

Exercise 3.57. Let G be as in Corollary 3.56 but let $\Gamma < G$ be a reducible lattice. Show that no almost direct factor of G acts ergodically on $X = G/\Gamma$.

Exercise 3.58. Let D > 1 be a non-square integer, and for

$$\alpha = a + b\sqrt{D} \in \mathbb{Q}(\sqrt{D})$$

let $\overline{\alpha} = a - b\sqrt{D}$ denote its Galois conjugate. Now let

$$\mathrm{SL}_2(\mathbb{Z}[\sqrt{D}]) = \left\{g = \begin{pmatrix} \alpha_{1,1} \ \alpha_{1,2} \\ \alpha_{2,1} \ \alpha_{2,2} \end{pmatrix} \ \middle| \ \alpha_{1,1}, \alpha_{1,2}, \alpha_{2,1}, \alpha_{2,2} \in \mathbb{Z}[\sqrt{D}], \det(g) = 1 \right\},$$

and consider $\mathrm{SL}_2(\mathbb{Z}[\sqrt{D}])$ as a subgroup of $\mathrm{SL}_2(\mathbb{R}) \times \mathrm{SL}_2(\mathbb{R})$ using the diagonal embedding

$$i: \operatorname{SL}_{2}(\mathbb{Z}[\sqrt{D}]) \longrightarrow \operatorname{SL}_{2}(\mathbb{R}) \times \operatorname{SL}_{2}(\mathbb{R})$$
$$g = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2} \end{pmatrix} \longmapsto (g, \overline{g})$$

where

$$\overline{g} = \begin{pmatrix} \overline{\alpha}_{1,1} \ \overline{\alpha}_{1,2} \\ \overline{\alpha}_{2,1} \ \overline{\alpha}_{2,2} \end{pmatrix}.$$

- (a) Show that $\Gamma = i\left(\operatorname{SL}_2(\mathbb{Z}[\sqrt{D}])\right) \leqslant \operatorname{SL}_2(\mathbb{R}) \times \operatorname{SL}_2(\mathbb{R})$ is a discrete subgroup.
- (b) Show that Γ is a lattice in $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$.

Exercise 3.59. Let $\mathbb{G} < \mathrm{SL}_d$ be an algebraic group and $\mathfrak{f} \subseteq \mathfrak{sl}_d$ a subspace (defined over \mathbb{K}). Show that $Ad_a f = f$ is a polynomial condition (with coefficients in \mathbb{K}).

Notes to Chapter 3

(14) (Page 92) Almost any algebra text will cover this material, for example Gerstein [58] or, for the more sophisticated aspects of the algebraic theory, see Lam [93].

 $^{(15)}({
m Page}\ 92)$ The word signature is used in various ways, all meaning that the number of +1s, -1s (and in the degenerate case 0s) can be reconstructed from the signature (and the

- dimension). The fact that the signature is a property of the form itself is Sylvester's law of inertia [148] (see Lang [95, XV, Sec. 4] for a modern treatment).
- (16) (Page 94) Hilbert [68] proved this in his development of invariant theory.
- ⁽¹⁷⁾(Page 99) This kind of approximation was studied by Dickinson and Dodson [30] and by Druţu [35] (implicitly), by Fukshansky [53] for n=2, and by Schmutz [135] and Ghosh, Gorodnik, and Nevo [59, 60] for all $n\geqslant 2$ and in more general settings.
- ⁽¹⁸⁾(Page 107) This was shown by Dirichlet [32] in 1846 for the ring $\mathbb{Z}[\zeta]$ (the understanding that this may not be the ring of integers in $\mathbb{Q}(\zeta)$ for an algebraic integer ζ came later, and of course the rank is not affected as $\mathbb{Z}[\zeta]$ has finite index in the ring of integers). We refer to the paper of Elstrodt [50] for an account of the history.
- ⁽¹⁹⁾(Page 124) The history, and various generalizations, of the implicit function theorem may be found in the account by Krantz and Parks [92]. The p-adic implicit function theorem may be found in the notes of Serre [138, p. 83].
- ⁽²⁰⁾(Page 131) A modern proof from a sophisticated point of view is given by Conrad [15], and the original proof in Chevalley [13]. Any book on algebraic groups will contain a version of the theorem (possibly not under this name).
- ⁽²¹⁾(Page 136) Borel [6] proved this for semisimple Lie groups without compact factors; generalizations and simplifications have been provided by Furstenberg [57], Moskowitz [114] and Dani [17] among others.