
Chapter 3

Normal Abelian Subgroups and some
Metabelian Groups

We discuss in this chapter the unitary duals of a few solvable non-compact
non-abelian groups G. In some cases we will find a complete description of
the unitary dual Ĝ. This will give us a chance to see how the results of
Chapter 2 can be of importance for other groups, to see concrete instances
of infinite-dimensional irreducible unitary representations, and to see that
the Fell topology on Ĝ (to be introduced in Section 4.4) can have exotic
properties. Moreover, we will use here (in an ad hoc manner) a new type of
construction that lifts a unitary representation from a subgroup of G to a
unitary representation of G. This construction will also appear in other forms
of increasing complexity in the following chapters. The first cases considered
here should help the reader to become more familiar with this ‘induced rep-
resentation’ construction.

However, we will also see that for some solvable groups G a complete
description of the unitary dual is not a reasonable goal. As a result our
focus will be on giving examples of both behaviours instead of a complete
abstract discussion. Consequently, the only section of this chapter that will be
important for later core developments (the above mentioned insights arising
from examples notwithstanding) is Section 3.1.

3.1 Normal Abelian Subgroups

The results of Chapter 2 will be important in this chapter and also in later
discussions concerning a non-abelian group G. In fact, if G has a closed nor-
mal abelian subgroup H ⊳ G then we will often be able to obtain useful
information about a unitary representation π of G by restricting π to H , ap-
plying the results of Chapter 2, and using information about how the action
of G on H ⊳ G (or rather, on its dual group Ĥ) and the spectral theory
of π|H interact (as discussed in Section 1.3.6 and in Exercise 1.90 in simple
instances). Here π|H denotes the unitary representation of H on Hπ by re-
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132 3 Normal Abelian Subgroups and some Metabelian Groups

stricting the homomorphism π : G→ B(Hπ) to H . We will see applications of
this approach even for simple groups G, where one first restricts to subgroups
of G that themselves have a normal abelian subgroup.

So suppose that G is a locally compact, σ-compact, metric group, and
that H ⊳ G is a closed normal abelian subgroup of G. In this case any g ∈ G
induces an automorphism θg : H → H defined by θg(h) = ghg−1. Using
Lemma 2.29 for the abelian group H we obtain for each g ∈ G an automor-

phism θ̂g : Ĥ → Ĥ . We recall that θ̂g1g2 = θ̂g1θg2 = θ̂g2 θ̂g1 for g1, g2 ∈ G.
For a unitary representation π of G, we will simply write µv (or µv,w)

for the spectral measure µ
π|H
v on Ĥ obtained from Corollary 2.11 for π|H

and v ∈ Hπ (resp. µ
π|H
v,w obtained from Proposition 2.52 for v, w ∈ Hπ).

Proposition 3.1 (Spectral measures for normal subgroups). Let G
be a locally compact σ-compact metric group, and suppose that H ⊳ G is a
closed normal abelian subgroup. Let π be a unitary representation of G. Then
for v, w ∈ Hπ and g ∈ G we have

µπgv =
(
θ̂−1
g

)
∗µv

and
µπgv,πgw =

(
θ̂−1
g

)
∗µv,w.

Proof. Let g ∈ G and h ∈ H . Then

∫

Ĥ

〈h, t〉 dµπgv,πgw(t) =
〈
πhπgv, πgw

〉
=
〈
πg−1hgv, w

〉

=

∫

Ĥ

〈
θg−1(h), t

〉
dµv,w(t)

=

∫

Ĥ

〈
h, θ̂−1

g t
〉
dµv,w(t) =

∫

Ĥ

〈h, s〉 d
(
θ̂−1
g

)
∗µv,w(s)

for all v, w ∈ Hπ, which proves the proposition by uniqueness of the non-
diagonal spectral measure in Proposition 2.52. For v = w ∈ Hπ we also
obtain the case of the principal matrix coefficient in Corollary 2.11. �

We will now study the functional calculus for π|H in Proposition 2.56,
which gives the Hilbert spaceHπ for a unitary representation π of G a module
structure over L ∞(Ĥ) by letting F ∈ L ∞(Ĥ) act via πFC(F ) = (π|H)FC(F ).

Corollary 3.2 (Functional calculus for normal subgroups). Using the
same assumptions as in Proposition 3.1, we have

πgπFC(F )π
−1
g = πFC(F ◦ θ̂g)

for all F ∈ L ∞(Ĥ) and g ∈ G.
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3.1 Normal Abelian Subgroups 133

Proof. For v, w ∈ Hπ we have by the definition of the functional calculus
for π|H in Proposition 2.56, Proposition 3.1 and the definition again that

〈
πFC(F ◦ θ̂g)v, w

〉
=

∫

Ĥ

F ◦ θ̂g dµv,w =

∫

Ĥ

F d(θ̂g)∗µv,w

=

∫

Ĥ

F dµπ−1
g v,π−1

g w =
〈
πFC(F )π

−1
g v, π−1

g w
〉

=
〈
πgπFC(F )π

−1
g v, w

〉
,

which proves the corollary. �

It will also be convenient to use the projection-valued measures

ΠB = πFC(1B)

for measurable subsets B ⊆ Ĥ as introduced in Section 2.6.1. Recall that
these are orthogonal projections satisfying

ΠB1
ΠB2

= ΠB2
ΠB1

= ΠB1∩B2

for all measurable B1, B2 ⊆ Ĥ, and by Exercise 2.61 (see also the hint
on p. 507) we also have

Π⊔∞
n=1Bn

=

∞∑

n=1

ΠBn
,

with the sum converging in the strong operator topology whenever B1, B2, . . .
are measurable mutually disjoint subsets of Ĥ .

We will be using the abbreviation

G× Ĥ ∋ (g, t) 7−→ g.t = θ̂−1
g (t) ∈ Ĥ (3.1)

for the natural action of g ∈ G on t ∈ Ĥ . With this Corollary 3.2 applied
to F = 1B for a measurable subset B ⊆ Ĥ gives the conjugacy formula

Πg.B = πgΠBπ
−1
g (3.2)

since

Πg.B = πFC

(
1θ̂−1

g B

)
= πFC

(
1B ◦ θ̂g

)
= πgπFC

(
1B

)
π−1
g = πgΠBπ

−1
g

by definition. We will use this identity frequently. It may help to remember
thatΠB is the projection to the subspace ‘corresponding to generalized eigen-
values in B’. Hence (3.2) states how generalized eigenvalues for π|H behave
when πg is applied.
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134 3 Normal Abelian Subgroups and some Metabelian Groups

We leave the continuity of the action of G on Ĥ as an exercise, since it
will be quite obvious in the concrete cases we wish to study.

Exercise 3.3. Assume as above that G is a locally compact, σ-compact, metric group and
that H ⊳ G is a closed normal abelian subgroup. Show that the action of G on Ĥ defined
in (3.1) is continuous.

We conclude this section with another general observation, this time con-
cerning the maximal spectral measure obtained in Proposition 2.62 for the
restriction π|H .

Lemma 3.4 (Quasi-invariance). Using the same assumptions as in Propo-
sition 3.1, we have that a maximal measure is quasi-invariant under the
action of G on Ĥ. That is, if µmax is a maximal measure on Ĥ then for
any g ∈ G the push-forward measure g∗µmax under the action of g on Ĥ lies
in the same measure class as µmax.

Proof. Let vmax ∈ Hπ be a vector of maximal spectral type, µmax = µvmax
,

and g ∈ G. Then πgvmax ∈ Hπ and Proposition 3.1 implies that

g∗µmax =
(
θ̂−1
g

)
∗µvmax

= µπgvmax
≪ µmax,

since µmax is a maximal spectral measure (see Proposition 2.62). Applying
this to g−1 gives g−1

∗ µmax ≪ µmax, hence µmax ≪ g∗µmax, and the lemma
follows. �

3.2 A Construction Using Invariant Measures

We assume now that G is a locally compact, σ-compact, metric group,
that H ⊳ G is a closed normal abelian subgroup, that A < G is a closed
subgroup with H ∩ A = {e}, and that

H ×A ∋ (h, a) 7−→ ha ∈ G

is a homeomorphism of topological spaces. In other words, G is the semi-
direct product A⋉H (which may also be written H ⋊A) of its subgroups H
and A. We will refer to H as the normal abelian subgroup, and to A as the
complementary subgroup. We note that if in addition A is abelian, then G is
called metabelian. We also note that Lemma 3.4 already shows a connection
between unitary representations and quasi-invariant measures.

Making our life a bit easier, we assume in the following that µ is an A-
invariant σ-finite measure on Ĥ with respect to the action introduced in (3.1).
In order to have the standing assumption of Section 1.1.2 satisfied, we let X
be a measurable subset of Ĥ with µ(ĤrX) = 0, and assume that one of the
following two conditions holds:
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3.2 A Construction Using Invariant Measures 135

• X = A.t0 is a single A-orbit for some t0 ∈ Ĥ , and we will equip X with
the quotient topology induced by the orbit map A ∋ a 7→ a.t0 ∈ X .
This makes X into a locally compact, σ-compact, metric space, and the
Borel σ-algebra of X agrees with the Borel σ-algebra of X viewed as a
subset of Ĥ . We assume that µ is locally finite on X , which then makes
it into the Haar measure on

X = A.t0 ∼= A/ StabA(t0).

• X has the property that the induced topology of X as a subset of Ĥ is
locally compact, σ-compact, and µ is locally finite when considered as a
measure on X .

We will see that these assumptions on G ∼= A ⋉ H , X ⊆ Ĥ , and the
measure µ are a good compromise. They will allow us to give a quite general
framework for the construction of (irreducible) unitary representations that
is still relatively easy to work with. Moreover, in some cases we will obtain
from this construction all irreducible unitary representations of G.

Lemma 3.5 (Representations arising from invariant measures). Ev-

ery A-invariant σ-finite measure µ on Ĥ as above gives rise to a unitary
representation πµ of G on Hµ = L2

µ(X) by letting the elements of the nor-
mal abelian subgroup H act as multiplication operators and elements of the
complementary subgroup A act via Koopman operators. More formally, we
define

(
πµhf

)
(t) = 〈h, t〉f(t),

(
πµaf

)
(t) = f(a−1

.t) = f
(
θ̂at
)
, and

(
πµhaf

)
(t) =

(
πµhπ

µ
af
)
(t) = 〈h, t〉f(θ̂at)

for all h ∈ H, a ∈ A, f ∈ L2(Ĥ, µ), and t ∈ Ĥ.

Proof. Since 〈h, t〉 ∈ S1 for every h ∈ H and t ∈ Ĥ , it is clear that πµh
defines a unitary operator on L2(Ĥ, µ) = L2

µ(X). Moreover, for a convergent
sequence (hn) in H with hn → h ∈ H as n → ∞ and f ∈ L2

µ(X) we also
have

‖πµhnf − π
µ
hf‖22 =

∫
|〈hn, t〉 − 〈h, t〉|2|f(t)|2 dµ(t) −→ 0

as n→∞, by dominated convergence.
For elements a ∈ A we have that A ∋ a 7→ πµa defines a unitary represen-

tation of A by Proposition 1.3 (or by the more general Proposition 1.5).

For h ∈ H , a ∈ A and f ∈ L2
µ(X), we define πµhaf = πµhπ

µ
af . For t ∈ Ĥ

this means that

πµh
(
πµaf

)
(t) = 〈h, t〉

(
πµaf

)
(t) = 〈h, t〉f

(
θ̂at
)
.
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136 3 Normal Abelian Subgroups and some Metabelian Groups

To see that πµ is indeed a representation of G ∼= A ⋉H , we use the above
for h and a−1, and calculate

(
πµaπ

µ
hπ

µ
a−1f

)
(t) =

(
πµhπ

µ
a−1f

)(
θ̂at
)

=
〈
h, θ̂at

〉
f
(
θ̂−1
a θ̂at

)

= 〈θah, t〉 f
(
θ̂a−1 θ̂at

)

=
〈
aha−1, t

〉
f(t) =

(
πµaha−1f

)
(t).

For a1, a2 ∈ A and h1, h2 ∈ H this now implies

πµh1a1
πµh2a2

= πµ
h1

πµ
a1
πµ
h2

πµ
a2

= πµ
h1

πµ
a1
πµ
h2

πµ
a−1
1︸ ︷︷ ︸

=πµ
a1h2a

−1
1

πµ
a1
πµ
a2

= πµ
h1a1h2a

−1
1

πµ
a1a2

= πµ
h1a1h2a2

by definition, as required.
To see continuity of the representation πµ of G, let f ∈ L2

µ(X) and suppose
that (hn) and (an) are sequences in H and A, with hn → h and an → a
as n→∞. Then

‖πµhnanf − π
µ
haf‖ 6 ‖π

µ
hn

(
πµanf − π

µ
af
)
‖+ ‖πµhnπ

µ
af − πµhπµaf‖ −→ 0

as n→∞, as required. �

We recall that a non-zero A-invariant measure µ on Ĥ is called A-ergodic
if any measurable subset B ⊆ Ĥ with µ(B△a.B) = 0 for all a ∈ A must

satisfy µ(B) = 0 or µ(ĤrB) = 0. We note that the Haar measure on a single

orbit A.t0 for some t0 ∈ Â is always A-ergodic.†

Lemma 3.6 (Ergodicity implies irreducibility). If µ is an A-invariant

ergodic locally finite measure on X ⊆ Ĥ as above, then the unitary represen-
tation πµ is irreducible.

Proof. Suppose that V ⊆ Hµ is a non-trivial πµ-invariant closed subspace.
Let vmax be a vector in V with maximal spectral type as in Proposition 2.62
for πµ restricted to H and restricted to V . We note that the spectral mea-
sure µmax of vmax is given by |vmax|2 dµ. Let B = {t ∈ Ĥ | vmax(t) 6= 0}. We
claim that B is (up to sets of measure zero) invariant under A. Indeed,

πµavmax = vmax ◦ θ̂a ∈ V
† It is tempting to think that this is tautological, but in fact it is an elementary consequence
of properties of Haar measures (see [24, Lem. 10.3] or [22, Prop. 8.6] in the case of the
Haar measure on A).
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3.2 A Construction Using Invariant Measures 137

has an absolutely continuous spectral measure |vmax|2 ◦ θ̂a dµ with respect
to the spectral measure dµmax = |vmax|2 dµ. This implies that almost ev-

ery t ∈ θ̂−1
a B belongs to B. Using πµa−1vmax ∈ V in the same way, we see

that µ(B△θ̂−1
a B) = 0 as claimed.

By ergodicity of µ, this implies that µ(B) = 0 or µ(ĤrB) = 0. As V is

a non-trivial subspace we have vmax 6= 0, and so µ(ĤrB) = 0. Applying

the measurable functional calculus for πµ|H , we see that L ∞(Ĥ)vmax ⊆ V .
However, since vmax(t) 6= 0 for µ-almost every t ∈ X the subspace

L
∞(Ĥ)vmax ⊆ L2

µ(X)

is dense. Hence V = Hµ is irreducible, and the lemma follows. �

Lemma 3.7 (No isomorphisms). Let µ1 and µ2 be two A-invariant and

ergodic measures on Ĥ as above that are not multiples of each other. Then πµ1

and πµ2 are not isomorphic.

We note that in the concrete cases of the above framework that we will
consider, the proof of Lemma 3.7 will be significantly easier than in the
general case considered here.

Proof of Lemma 3.7. By assumption, both measures are σ-finite. Hence we
can apply the Lebesgue decomposition theorem to µ1 and µ2, which allows
us to write µ2 = µabs + µsing for two uniquely determined measures

µabs = µ2|Babs
≪ µ1,

µsing = µ2|Bsing
⊥ µ1,

and a measurable partition Ĥ = Babs ⊔Bsing. Applying the push-forward by
some a ∈ A, invariance of µ1 and µ2, and the uniqueness of the Lebesgue
decomposition, we see that µabs and µsing are also invariant under A.

We claim that the Radon–Nikodym derivative dν
dµ of an A-invariant mea-

sure ν that is absolutely continuous with respect to another A-invariant and
ergodic measure µ is almost surely constant. Applying the claim to

ν = µabs ≪ µ = µ1

(and µabs ≪ µ2), we deduce that µabs is a multiple of µ1 (and of µ2). Thus
if µabs 6= 0, then µ1 and µ2 are multiples of each other and so by our assump-
tion (and the claim) we have µ1 ⊥ µ2.

To prove the claim, we define F = dν
dµ and we let B ⊆ Ĥ . Then

∫

B

F dµ = ν(B) = ν(a−1B) =

∫

a−1B

F dµ

=

∫

a−1B

(F ◦ a−1) ◦ a dµ =

∫

B

F ◦ a−1 dµ.

Page: 137 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



138 3 Normal Abelian Subgroups and some Metabelian Groups

As B ⊆ Ĥ was arbitrary, this shows that F = F ◦a−1 almost everywhere with
respect to µ. Ergodicity of µ now implies that F must be constant µ-almost
everywhere, which proves the claim.

Returning to the unitary representations, we note that the spectral mea-
sure of v ∈ Hµ1

= L2(Ĥ, µ1) for πµ1 |H is given by |v|2 dµ1, which applies
similarly to elements of Hµ2

. Since µ1 ⊥ µ2, the spectral measures for ele-
ments of Hµ1

and Hµ2
are mutually singular, and hence the lemma follows

from the claim. �

To summarize, we have shown (under mild technical assumptions) that

a σ-finite A-invariant and ergodic measure on Ĥ gives rise to an irreducible
unitary representation of G = A⋉H , and that these unitary representations
are non-isomorphic for any two non-proportional ergodic measures. There
might be other irreducible representations (see, for example, Sections 3.2.1
and 3.6).

Exercise 3.8. Let G = A ⋉H and let µ1, µ2 be two A-invariant σ-finite measures on Ĥ
as above. Show that if µ1 ≪ µ2 then πµ1 < πµ2 .

3.2.1 An Impossibly Complicated Dual

We wish to apply the above results to a concrete solvable group to see that
sometimes it is more or less impossible to classify all irreducible unitary
representations for a given group. For these negative results we will rely on
some background in ergodic theory (see [22], for example). We define the
normal abelian subgroup as

H =

{(
1 h
0 1

)
∈ Mat2,2(R)

∣∣∣∣ h ∈ R
}

where R = F2[T, T
−1], and the complementary subgroup as the diagonal

subgroup A ∼= Z in

G = Z ⋉R =

{(
T n h
0 1

)
∈Mat2,2(R)

∣∣∣∣ n ∈ Z, h ∈ R
}

to simplify some discussions. This group can also be described using the
wreath product as F2 ≀ Z and is called the lamplighter group.† With some

† The name of this group comes from the following image. Envision an infinite street
with lamps at each integer coordinate, with a lamplighter moving along the street. In this
picture elements of G can be interpreted as instructions to the lamplighter to move along

the street Z by distance one (corresponding to

(
T 0

1

)
) and to light or extinguish the lamp

at that position (corresponding to

(
1 1

1

)
).

Page: 138 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



3.2 A Construction Using Invariant Measures 139

modifications, the discussion also holds for

G2 = Z⋉ Z[ 12 ] =
{(

2n h
0 1

)
∈Mat2,2(Z[

1
2 ])

∣∣∣∣ n ∈ Z, h ∈ Z[ 12 ]
}

and

GM = Z ⋉ Z2 =

{(
Mn h
0 1

)
∈ GL3(Z)

∣∣∣∣ n ∈ Z, h ∈ Z2

}

for some fixed hyperbolic M ∈ GL2(Z) and many other groups.
For

H ∼= R = F2[T, T
−1] ∼=

⊕

n∈Z

F2

the Pontryagin dual is given by Ĥ ∼= FZ
2 (see Proposition 2.27). In other

words, in the language of ergodic theory Ĥ is the full shift on 2 symbols. The
automorphism θ of H defined by θ(h) = Th featuring in the definition of G
can be written as

θ
(
(cn)n∈Z

)
= (cn−1)n∈Z

if we identify the polynomial h =
∑

n∈Z cnT
n ∈ H with the finitely sup-

ported sequence (cn) ∈
⊕

n∈Z F2 of its coefficients. The dual automorphism
is therefore given by the left shift, so

θ̂
(
(tn)n∈Z

)
= (tn+1)n∈Z

for (tn)n∈Z ∈ Ĥ .
We will now show that the space of ergodic measures for the full shift is

ridiculously large and that such measures cannot be meaningfully classified.
We indicate a few ways to find invariant ergodic probability measures, and
ask the reader to take on faith the fact that these are very far from exhaustive:

• (Periodic points and orbits) The full shift has many periodic points which
may be obtained by taking any finite block of 0s and 1s and concatenating
it infinitely often, and each such point gives rise to a finitely supported
ergodic invariant measure simply by averaging along its orbit. Precisely,
if x ∈ FZ

2 has θ̂nx = x for some n > 1 then 1
n

∑n−1
k=0 δθ̂kx is such a measure,

where δx denotes the point mass at x. Moreover, if the orbit of x ∈ FZ
2 is

infinite, then we can also use the σ-finite measure µ =
∑
k∈Z δθ̂kx for the

construction of the irreducible unitary representation.
• (Bernoulli measures) For any p ∈ (0, 1) we can define the product measure
using probabilities p and 1− p for the symbols 0 ∈ F2 and 1 ∈ F2 respec-
tively. The resulting shift-invariant ergodic measure is called a Bernoulli
measure.
• (Markov and Parry measures) For any finite set S of finite words (or

blocks) in the alphabet F2 = {0, 1}, one can define a closed θ̂-invariant

subset XS ⊆ Ĥ of all sequences that do not contain any word from S.
Under mild conditions on S one can find a natural ergodic invariant prob-
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140 3 Normal Abelian Subgroups and some Metabelian Groups

ability measure on XS , called the Parry measure, which is in some sense
the most uniformly distributed measure on XS . Varying the set S gives
another collection of ergodic invariant probability measures, a countable
collection in this case. Allowing more general constructions gives uncount-
ably many different ergodic invariant probability measures called Markov
measures.
• (Coding a measure-preserving system) Given an ergodic measure-pre-
serving system T : X → X on a probability space (X,B, ν) we can define,
for any measurable set A ⊆ X , a map

ΦA : X → FZ
2

by sending x ∈ X to the sequence
(
1A(T

nx)
)
n∈Z

. Then µT,A = (ΦA)∗ν

is an ergodic invariant probability measure on FZ
2 . For this rather gen-

eral construction it is very hard to see when precisely one gets different
ergodic measures (though this is certainly going to happen often). So let
us specialize this setup in the following construction.
• (Torus rotations) Let d > 1, X = T and T = Rα : x 7→ x+α be a rotation
defined by some α = (α1, . . . , αd) ∈ Rd. Assuming that 1, α1, . . . , αd are
linearly independent over Q, this defines an ergodic measure-preserving
system with respect to Lebesgue measure m. For any measurable set A
in Td we now obtain a map ΦA and an ergodic invariant probability mea-
sure µα,A on FZ

2 . As T has ‘very few factors’, we can find a variety of
ergodic measures by varying α and A. Using the spectral theory of the
associated Koopman operators or entropy theory (see [21, Sec. 1.3]), we
also see that these measures are all different from the Bernoulli, Parry,
or Markov measures above, and it is clear that they cannot coincide with
any periodic point measure unless m(A) ∈ {0, 1}. Using X = T2, from
any ‘picture with a frame’ A ⊆ T2, we can construct a new irreducible
unitary representation of the lamplighter group in such a way that dif-
ferent pictures (when considered modulo the Lebesgue measure) give rise
to different irreducible unitary representations; see Figure 3.1 and Exer-
cise 3.9.

The above selection of examples is influenced by the mathematical interests
of the authors. Many other examples and constructions of ergodic measures
or irreducible unitary representations are possible (see also Section 3.6.1).

In the following exercise, we invite the reader to prove the mentioned
‘constructions of irreducible unitary representations via pictures’.

Exercise 3.9. Let X = T2, ν = mT2 be the Haar measure, and define T : T2 → T2

by T : T2 ∋ x 7→ x + α ∈ T2 for some α = (α1, α2) ∈ R2. We suppose throughout
that 1, α1, α2 are linearly independent over Q.
(a) Prove that mT2 is an ergodic invariant measure for T . Show that any orbit

{x+ nα | n ∈ Z}

is dense in T2.
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3.3 Characterization of some Unitary Duals 141

Fig. 3.1: For the purpose of Exercise 3.9, we say that a subset A of T2 ‘has a
frame’ is there exists some ε > 0 with the property that [0, 1]× [−ε, ε] + Z2 ⊆ A
and [−ε, ε]× [0, 1] +Z2 ⊆ A but the sets (ε, 1− ε)×

(
(ε, 2ε)∪ (1− 2ε, 1− ε)

)
+Z2

and
(
(ε, 2ε) ∪ (1− 2ε, 1− ε)

)
× (ε, 1− ε) + Z2 are disjoint from A. These pictures

define irreducible unitary representations of the lamplighter group that have no
better description than that given by Exercise 3.9 and the pictures themselves.

(b) Now suppose that A ⊆ T2 is an arbitrary measurable subset with a ‘frame’ as illus-
trated in Figure 3.1. Use A to define a factor map ΦA : T2 → FZ

2 sending x ∈ T2 to the
sequence

(
1A(x+ nα)

)
n∈Z

. Show that ΦA is injective.

(c) Show that for two measurable subsets A1, A2 ⊆ T2 with frames, we have µT,A1
= µT,A2

if and only if m(A1△A2) = 0.
(d) Now conclude, together with the results of this section, that any black and white picture
on [0, 1]2 with a frame gives rise to an irreducible unitary representation of the lamplighter
group uniquely associated to that picture.

3.3 Characterization of some Unitary Duals

We show in this section in a couple of concrete examples how a complete
description of the unitary duals of metabelian groups can look like.

3.3.1 The Isometry Group of the Plane

We define the orientation-preserving isometry group G = SO2(R) ⋉ R2 of
the plane as the semi-direct product of SO2(R) and R2. More concretely, we
define

G =

{(
k h
0 1

) ∣∣∣∣ k ∈ SO2(R), h ∈ R2

}

and will consider the subgroups

K =

{(
kφ 0

1

) ∣∣∣∣ kφ =

(
cosφ − sinφ
sinφ cosφ

)
with φ ∈ R

}
= SO2(R)

and
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142 3 Normal Abelian Subgroups and some Metabelian Groups

H =

{(
I h
1

) ∣∣∣∣ h =

(
h1
h2

)
∈ R2

}
∼= R2,

satisfying G = HK, H ⊳ G, and K ∩ H = {I}. We will identify the com-
plementary subgroup K with SO2(R) and the normal abelian subgroup H
with R2. We note that conjugation of h ∈ H by k ∈ K simply corre-
sponds to application of k ∈ SO2(R) to h ∈ R2. By the discussion in Sec-
tion 2.4.2, the homomorphism dual to the conjugation map θk is therefore
given by θ̂k = kt = k−1. Adapting the notation of Section 3.1 and (3.1), we

have k.t = kt for k ∈ SO2(R) and t ∈ Ĥ ∼= R2.

The Irreducible Representations

We will roughly classify the unitary representations depending on whether H
acts trivially or not.

(Old) Every irreducible unitary representation of

K ∼= G/H

gives rise to a unitary representation of G, which we will refer to as an old
representation. Since G/H ∼= SO2(R) ∼= T we see that for every n ∈ Z there is
an associated old irreducible unitary representation defined by the character

χn : G ∋



cosφ − sinφ h1
sinφ cosφ h2

1


 7−→ einφ.

(New) We will refer to an irreducible unitary representation π of G for
which π|H is a non-trivial representation of H as a new representation. As
we have seen in Corollary 1.79, such representations must exist.

We now define for every r > 0 a new representation πr onHr = L2(R2, µr),
where µr is the normalized arc length measure on the circle

rS1 = {t ∈ R2 | ‖t‖ = r}

of radius r. We will think of rS1 as a subset of the dual group Ĥ ∼= R̂2 ∼= R2.
In fact µr is a K-invariant and ergodic probability measure on

X = rS1 = K.
(
r
0

)
.

As discussed in Section 3.2, we can now define πr|H simply by the multipli-
cation representation (

πrhf
)
(t) = 〈h, t〉f(t)
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for h ∈ H , f ∈ L2(Ĥ, µr), and t ∈ Ĥ . On the subgroup K we define

(
πrkf

)
(t) = f

(
θ̂kt
)
= f(k−1t)

for k ∈ K, f ∈ L2(Ĥ, µr), and t ∈ Ĥ . Lemmas 3.5 and 3.6 show that this
gives rise to an irreducible unitary representation πr on Hr = L2(R2, µr).

Lemma 3.10 (Non-isomorphic). Let r and s be different positive real
numbers. Then the new representations πr and πs are not isomorphic.

Proof. This follows from Lemma 3.7, but as the case at hand is so much eas-
ier we also give a direct argument. For any f ∈ Hr the spectral measure of f
with respect to πr|H has support in rS1, while for f ∈ Hs the spectral mea-
sure of f with respect to πs|H has support in sS1 (see Proposition 2.51(2)).
The lemma follows since rS1 ∩ sS1 = ∅. �

The reader may benefit from analysing alongside our discussion a different
but slightly easier semi-direct product. Hence we fix for the following exercises
an integer d > 2, and define

Kd =







cosφ − sinφ 0
sinφ cosφ 0

1


 ∈ K

∣∣∣∣∣∣
φ ∈ 2π

d Z




∼= Z/dZ

and Gd = KdH < G. As before, we will distinguish between old representa-

tions (which correspond to elements of K̂d
∼= Z/dZ) and new representations.

Exercise 3.11. (a) Construct for every t0 ∈ Ĥr{0} a new representation π of Gd on Cd

such that for some v ∈ Cd we have πhv = 〈h, t0〉v for all h ∈ H.
(b) Show that the new representation defined in (a) is indeed a unitary representation
of Gd. Also show directly that the representation is irreducible.
(c) Characterize the pairs t0, t1 ∈ Ĥr{0} with the property that the new unitary repre-
sentations from (a) associated to t0 and t1 are isomorphic.

Exercise 3.12. Prove the analogue to Proposition 3.13 for the group Gd.

Classification of the Unitary Dual

Proposition 3.13 (Description of Ĝ). Let G = K ⋉ H = SO2(R) ⋉ R2

be the isometry group of the plane as above. Then the set of old representa-
tions χn for n ∈ Z and of new irreducible representations πr for r ∈ (0,∞)
constructed above comprise the complete set of irreducible representations.

We note that this proposition also follows quite easily from our main tech-
nical result of the chapter, namely Theorem 3.20, but we believe it is worth-
while to prove the case at hand directly as a warm up.
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144 3 Normal Abelian Subgroups and some Metabelian Groups

Proof of Proposition 3.13. Let π be an irreducible representation of G.
If π|H is trivial, then π induces a representation of G/H ∼= K = SO2(R) ∼= T
and so equals an old representation defined by some weight n ∈ Z = T̂.

So let us assume that π|H is non-trivial. Let µmax = µvmax
with vmax ∈ Hπ

be a maximal spectral measure as in Proposition 2.62 for π|H , and let

S = suppµmax ⊆ Ĥ

be its support. We claim that S = rS1 for some r > 0.
For the proof of the claim we first show that S ⊆ Ĥ is invariant under

the compact subgroup K = SO2(R). Indeed, applying πk for some k ∈ K
to vmax we obtain by Lemma 3.4 that µπkvmax

= k∗µvmax
defines the same

measure class as µvmax
. This implies that kS = S for all k ∈ K for all k ∈ K.

To prove the claim, we define the function R : Ĥ ∼= R2 ∋ t 7→ ‖t‖ and note

that R(kt) = R(t) for all k ∈ K and t ∈ Ĥ . Together with Corollary 3.2,
this shows that B = πFC(R) is equivariant for π restricted to K. Since B is
equivariant for π restricted to H by construction of the measurable functional
calculus in Proposition 2.56, B is equivariant for π. By irreducibility of π and
Schur’s lemma (Theorem 1.29), it follows that B = πFC(R) = rI for some
constant r. By the spectral theorem (Corollary 2.63) and the measurable
functional calculus (Proposition 2.56(6)), this amounts to the claim that

S = suppµmax = rS1.

Moreover, we must have r > 0 since π|H is assumed to be non-trivial.
Having found the right candidate for r, we still need to prove that π is

isomorphic to πr. For this we first notice that there exists some weight n ∈ Z
and some eigenvector v ∈ Hπ for π|K of weight n (since K ∼= T is compact

and abelian with K̂ ∼= Z).
We define the measurable map D ∈ L ∞(Ĥ) by taking the direction of the

argument; that is,

Ĥ ∋ t 7−→ D(t) =





1 if t = 0,

eiφ if t = ‖t‖kφ
(
1

0

)
for some kφ ∈ K.

We will use D together with the functional calculus in Proposition 2.56 for
the restriction π|H . By Corollary 3.2, we have

πFC(D ◦ktψ) = πkψπFC(D)π−1
kψ

for kψ ∈ K, where

D ◦ktψ(t) = D

(
‖t‖kφ−ψ

(
1
0

))
= ei(φ−ψ) = e−iψ D(t)
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for all

t = ‖t‖kφ
(
1
0

)
∈ Ĥ. (3.3)

This now implies for πFC(D)v that w is an eigenvector for π|K of weight (n−1).
Indeed,

πkψπFC(D)v = πkψπFC(D)π−1
kψ
πkψv = πFC

(
e−iψ D

)
einψv = ei(n−1)ψπFC(D)v

for all kψ ∈ K. Similarly, πFC(D)v is an eigenvector of weight (n+1). In other

words, πFC(D) lowers, and πFC(D) raises, the K-weight of any eigenvector.
We also note that πFC(D) and πFC(D) = πFC(D)∗ are unitary, since |D(t)| = 1

for all t ∈ Ĥ . In particular, we have

‖v‖ = ‖πFC(D)v‖ = ‖πFC(D)v‖.

Hence we may and will assume that v = v0 ∈ Hπ is an eigenvector for π|K
of weight 0 with ‖v‖ = 1. For every m ∈ Z we also define vm = πFC(D

m)v0
and notice that this implies that ‖vm‖ = 1, πFC(D

n)vm = vm+n, vm has
weight −m, and hence 〈vm, vn〉 = δm,n for all m,n ∈ Z. We define the closed
subspace

V = 〈vm | m ∈ Z〉 ⊆ Hπ
and

U : V ∋
∑

m∈Z

amvm 7−→
∑

m∈Z

amDm ∈ Hr = L2(rS1, µr).

We claim that V = Hπ and that U is an equivariant isomorphism from Hπ
to Hr, which will imply the proposition.

Since µr is the normalized arc length measure on rS1, it follows that the
functions Dm form ∈ Zmake up an orthonormal basis ofHr. In particular, U
is a unitary isomorphism between V and Hr. Moreover,

πrkψ Dm(t) = πrkψ Dm
(
‖t‖kφ

(
1
0

))

= Dm
(
k−1
ψ ‖t‖kφ

(
1
0

))
= eim(φ−ψ) = e−imψ Dm(t)

for all t as in (3.3) shows that Dm is also an eigenvector for πr|K of weight−m.
Therefore

U : V −→ Hr
is already equivariant for π|K as well as for the operators πFC(D

n) on Hπ,
respectively MDn = πrFC(D

n) on Hr for all n ∈ Z.
For the proof that V is invariant under π|H and that U is also equivariant

for π|H (which are both unclear at this point) we will again use the functional
calculus for π|H . In fact, using the fact that π|H and πr |H have their spectral
measures supported on the same circle rS1, we will show that πh for h ∈ H
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146 3 Normal Abelian Subgroups and some Metabelian Groups

can be expressed in terms of the operators πFC(D
n) for n ∈ Z which we used

to define V .
More precisely, on rS1 we have the identities

t1 = r
2

(
D(t) + D−1(t)

)
,

t2 = r
2

(
D(t)−D−1(t)

)
,

e2πih1t1 =

∞∑

n=0

1
n!

(
2πih1

r
2

(
D(t) + D−1(t)

))n
,

e2πih2t2 =

∞∑

n=0

1
n!

(
2πih2

r
2

(
D(t)−D−1(t)

))n
,

where the two sums converge uniformly on rS1 for every

h =

(
h1
h2

)
∈ H.

By the properties of the functional calculus in Proposition 2.56, this implies

πh1e1
= πFC

(
t 7−→ e2πih1t1

)
=

∞∑

n=0

1
n!

(
2πih1

r
2

)n n∑

ℓ=0

(
n
ℓ

)
πFC

(
Dn−2ℓ

)

πh2e2
= πFC

(
t 7−→ e2πih2t2

)
=

∞∑

n=0

1
n!

(
2πih2

r
2

)n n∑

ℓ=0

(
n
ℓ

)
(−1)ℓπFC

(
Dn−2ℓ

)

for all h = h1e1+h2e2 ∈ H . This shows that we can express πh for any h ∈ H
in terms of h, the number r, and πFC(D

n) for n ∈ Z. Since V is invariant under
the latter and U is equivariant for the latter, it follows that V is invariant
under π|H and U is equivariant for π|H . As V is closed and invariant, and π is
assumed to be irreducible, it follows that V = Hπ. This concludes the proof.

�

One may wonder why we had to work quite so hard to obtain the iso-
morphism above, and in particular to obtain spectral multiplicity one for the
restriction to the normal abelian subgroup H ⊳ G. The following exercise
shows that the latter is not automatic for cyclic representations.

Exercise 3.14 (Infinite spectral multiplicity of cyclic representations). Let G be
the group SO2(R) ⋉R2 be as above and r > 0. Show that (πr)∞ is cyclic.

The reader may wonder why we restricted our attention in this section to
the two-dimensional case. Indeed it is possible to extend the above to higher
dimensions, but the complete description of irreducible representations in
these cases is a bit more involved. We will discuss this briefly in Section 3.5.1.
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The Full Isometry Group of the Plane

We will now discuss, through a series of exercises, the unitary dual Ĝ of the
full isometry group

G = O2(R)⋉R2 =

{(
k h
1

) ∣∣∣∣ k ∈ O2(R), h ∈ R2

}
.

Exercise 3.15 (Old representations). Show that the unitary dual of O2(R) is given by

Ô2(R) = {1,det} ∪ {δn | n ∈ N},

where 1 is the trivial representation of O2(R), det is the unitary character defined by the
determinant map, and δn for each n ∈ N is an irreducible unitary representation of O2(R)
on C2 so that δn|SO2(R)

has eigenspaces for weights n,−n.

Exercise 3.16 (New representations). Let r > 0. Show that the new representation πr

of SO2(R) extends, by the same formulas, to a new representation πr,+ of O2(R) on Hr.
Show that πr,− = det⊗πr,+ defined by

G ∋ g 7−→ πr,−(g) = det(g)πr,+(g)

defines an irreducible new representation πr,− that is not unitarily equivalent to πr,+.

Exercise 3.17 (Completeness). Prove that

̂O2(R) ⋉R2 = Ô2(R) ⊔ {πr,+, πr,− | r ∈ (0,∞)}.

3.3.2 The Affine Group in One Dimension

As our next solvable group, we wish to study the affine group in one dimen-
sion, known colloquially as the ‘ax + b’ group. In fact we have a choice of
either studying the connected group

G>0 =

{(
a b
0 1

) ∣∣∣∣ a ∈ R>0, b ∈ R
}
∼= R>0 ⋉R

or the full affine group

G× =

{(
a b
0 1

) ∣∣∣∣ a ∈ R×, b ∈ R
}
∼= R× ⋉R.

We will start with G = G>0 and explain below how to adopt the results
to G×. We will use the letter a for elements of R×, and the letter b for
elements of R. For convenience, we will use the abbreviations

ga =

(
a 0
1

)
, hb =

(
1 b
1

)
,
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148 3 Normal Abelian Subgroups and some Metabelian Groups

and define the abelian complementary subgroup A = {ga | a ∈ R>0} and the
normal abelian subgroup H = {hb | b ∈ R} so that G = AH = HA and every
element

g =

(
a b
1

)
∈ G

can be written in a unique way as the product g = hbga.

The Irreducible Representations

We will use the same terminology as was used in Section 3.3.1.

(Old) Every irreducible unitary representation of R>0
∼= A ∼= G/H gives rise

to an irreducible unitary representation of G = G>0 by letting the normal
subgroup H act trivially. Since R>0 ∋ a 7→ log a ∈ R is an isomorphism, we
see that every such old representation is given by a unitary character

χα : G ∋ hbga 7−→ a ∈ R>0 7−→ e2πiα log a = a2πiα ∈ S1

for some (uniquely determined) α ∈ R.

(New) We now define two new representations π+ and π− for which the
normal subgroup R ∼= H ⊳ G acts non-trivially.

To define π+, we will use the measure µ+ on Ĥ defined by

dµ+ = 1(0,∞)

dt

t
,

where we use the isomorphism Ĥ ∼= R, the variable t (or s) to denote elements

of Ĥ , and dt to denote the Lebesgue measure on Ĥ. Along with µ+ we define
the Hilbert space

H+ = L2(Ĥ, µ+).

We note that the action of ga ∈ A on Ĥ defined by

Ĥ ∋ t 7−→ ga.t = a−1t ∈ Ĥ

preserves µ+, since for any measurable B ⊆ R>0 we have

µ+(a
−1B) =

∫ ∞

0

1a−1B(t)
dt

t
=

∫ ∞

0

1B(at)
dt

t
=

∫ ∞

0

1B(s)
ds

s
= µ+(B)

via the substitution s = at. As in Section 3.2, we now define the unitary
representation on H by using the multiplication representation

(
π+
hb
f
)
(t) = e2πibtf(t)
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for hb ∈ H , f ∈ H+, and t ∈ R. On A we use the Koopman representation
to define (

π+
ga
f
)
(t) = f(at)

for a ∈ R>0, f ∈ H+, and t ∈ Ĥ . Putting these definitions together, we define
once more

π+
g f = π+

hbga
f = π+

hb
π+
ga
f

for g = hbga =

(
a b
1

)
∈ G.

Similarly, we define π− on H− = L2(R̂, µ−) using the measure µ− defined

by dµ− = 1(−∞,0)
dt
|t| on Ĥ ∼= R.

Lemmas 3.5 and 3.6 now show that π+ and π− are both irreducible unitary
representations of G, and Lemma 3.7 shows that these are not isomorphic to
each other (this also follows from the fact that supp(π+|H) 6= supp(π−|H)).

Classification of the Unitary Dual

Proposition 3.18 (Description of Ĝ). Let

G = G>0 =

{(
a b
1

) ∣∣∣∣ a ∈ R>0, b ∈ R
}

be as above. Then the set of old representations defined by characters on A
and the two new representations π+ and π− comprise the complete set of
irreducible representations of G.

Proof. Let π be an irreducible unitary representation of G and let µmax be
a maximal spectral measure on Ĥ for π|H .

We note that
Ĥ ∼= R = (−∞, 0) ⊔ {0} ⊔ (0,∞)

and that each of the sets B = (−∞, 0), B = {0}, or B = (0,∞) satisfies the
property a.B = B for all a > 0. Hence (3.2) implies that ΠB is equivariant
for A. As it is defined by the functional calculus for π|H it is also equivariant
for π|H . By Schur’s lemma (Theorem 1.29) and since ΠB is an orthogonal
projection, we therefore obtain ΠB = I or ΠB = 0. For µmax this implies
that µmax(ĤrB) = 0 or µmax(B) = 0.

If µmax is supported on {0}, then π|H is trivial and π can be thought of
as a representation of G/H ∼= A, and hence is defined by a character of A by
Schur’s lemma (Theorem 1.29).

Suppose now that
µmax

(
ĤrA.t0

)
= 0

for t0 = 1. Applying Theorem 3.20 below now shows that π is isomorphic
to π+.
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If, on the other hand µmax

(
ĤrA.t0

)
= 0 for t0 = −1, then applying

Theorem 3.20 shows that π is isomorphic to π−. �

The Full Affine Group

For the full affine group G = G× we define

H =

{
hb =

(
1 b
1

) ∣∣∣∣ b ∈ R

}

and

A× =

{
ga =

(
a 0
1

) ∣∣∣∣ a ∈ R×
}
.

The ‘old representations’ are in this case given by characters of the abelian
group G/H ∼= A× ∼= R × C2. The ‘new representation’ π× is in this case

defined by the Haar measure µ++µ− on the orbit A×.1 = R× inside Ĥ ∼= R.
In fact Lemmas 3.5 and 3.6 show that π× is an irreducible unitary repre-

sentation. Moreover, applying Theorem 3.20 below shows that any irreducible
representation π of G× for which π|H is non-trivial is isomorphic to π×.

Exercise 3.19. Fill in the details of the extension sketched above.

3.3.3 Characterization of some Irreducible Representations

We will prove in this section the technical result needed for classifying the
irreducible representations of the affine group, and of the Heisenberg group,
in the next section. We would like to apply the same method of proof as
in Section 3.3.1 for the isometry group of the plane, but are faced with the
technical complication that the group A = R appearing in the affine group
is not compact, while the group K = SO2(R) appearing in the isometry
group of the plane was compact. In fact we used the latter in Section 3.3.1
to produce an eigenvector for K, and for a unitary representation of A this
vector may not exist. To handle this we will use below the fact that R has a
compact quotient R/Z = T.

To make the result more generally applicable to semi-direct products of
abelian groups we make the following assumptions on G = A⋉H :

• G is a locally compact, σ-compact, metric group.
• H ⊳ G is a closed normal abelian subgroup.
• A < G is a closed abelian subgroup.
• The map H × A ∋ (h, a) 7→ ha ∈ G is a homeomorphism of topological
spaces.
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• A has a discrete co-compact subgroup.

We note that the last assumption is satisfied by Rd, Zd, Td, and products of
these.

Theorem 3.20 (Characterizing an irreducible representation). Let G
be as above. Assume that π is an irreducible unitary representation of G such
that the maximal spectral measure µmax for π|H has µmax

(
Ĥr(A.t0)

)
= 0

for a single A-orbit A.t0 with t0 ∈ Ĥ for which the orbit map A ∋ a 7→ a.t0
is injective. Then π is isomorphic to the representation πµ constructed in
Lemma 3.5 for the push-forward image µ of the Haar measure mA on A.t0
under the orbit map.

The proof of the proposition will again rely heavily on spectral measures
and the functional calculus for π|H . We note that the technical assumption
on A0 < A will be used in the form of the conclusion of the next lemma.

Lemma 3.21 (Fundamental domain). Let A be a locally compact σ-
compact metric abelian group, let Λ < A be a discrete co-compact subgroup,
and let µ be a finite measure on A. Then there exists a measurable funda-
mental domain BA ⊆ A for Λ with non-empty interior, compact closure, and
a µ-null set as boundary.

Proof. We will use additive notation in the abelian group A throughout
the proof of this lemma. Recall that a measurable fundamental domain in A
for Λ is a measurable subset B ⊆ A with the property that |B ∩ (a+Λ)| = 1
for every a ∈ A. By discreteness of Λ and local compactness of A there exists,
for every a0 ∈ A, some ε0 > 0 for which the map

Bε0(a0) ∋ a 7−→ a+ Λ ∈ A/Λ

is injective, and Bε0(a0) is compact. Since µ
(
∂Bε(a0)

)
> 0 can only take place

for countably many values of ε > 0, we may choose for each a0 some ε0 > 0
as above so that we also have µ

(
∂Bε0(a0)

)
= 0.

By compactness of A/Λ, there exist a1, . . . , an ∈ A and ε1, . . . , εn > 0
with these properties for which

A =

n⋃

k=1

(
Bεk(ak) + Λ

)
.

A fundamental domain with the desired properties is now given by

BA=Bε1(a1)⊔
(
Bε2(a2)r

(
Bε1(a1)+Λ

))
⊔· · ·⊔

(
Bεn(an)r

(n−1⋃

k=1

Bεk(ak)+Λ
))
.

�
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Proof of Theorem 3.20. We let Λ < A be a discrete co-compact sub-
group of A and BA ⊆ A a fundamental domain for Λ as in Lemma 3.21. By
assumption, the maximal spectral measure µmax for π|H satisfies

µmax

(
ĤrA.t0

)
= 0

for a single A-orbit A.t0 of some t0 ∈ Ĥ . Moreover, the map A ∋ a 7→ a.t0 is
assumed to be bijective, so we may move this µmax to a measure νmax on A.
By Lemma 3.21 we may also assume that νmax

(
∂BA

)
= 0.

Decomposing the Hilbert space. We define

B0 = BA.t0 = {a.t0 | a ∈ BA}
and will also frequently use the sets λ.B0 = (λBA).t0 for λ ∈ Λ. By our
assumptions, this shows

Ĥ =
⊔

λ∈Λ
λ.B0 ⊔

(
ĤrA.t0

)
,

where ĤrA.t0 is a null set with respect to µmax. Notice that the latter implies
that

Π
ĤrA.t0 = 0,

and hence
I = ΠA.t0 =

∑

λ∈Λ
Πλ.B0

. (3.4)

We also define
Hρ = ΠB0

Hπ
and note that

Πλ.B0
Hπ = πλΠB0

Hπ = πλHρ
for all λ ∈ Λ by the conjugacy formula in (3.2). This gives

Hπ =
⊕

λ∈Λ
πλHρ (3.5)

by (3.4).

Defining the representation ρ of K = A/Λ. Using the decomposi-
tion above, we will now define a unitary representation ρ of K = A/Λ on
the π|H -invariant closed subspace Hρ. This will lead to a K-fixed vector

inHρ corresponding to the function 1B0
∈ L2(Ĥ, µ) under the desired isomor-

phism, and then in turn to the desired equivariant isomorphism between Hπ
and L2(Ĥ, µ).
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3.3 Characterization of some Unitary Duals 153

We define ρav for a ∈ A and v ∈ Hρ by the following steps. For this it may
be helpful to compare these steps to the measurable action of A on BA = A/Λ
by translation, as depicted in Figure 3.2.

• First apply πa to v to obtain πav ∈ Hπ .
• Next decompose

πav =
∑

λ∈Λ
Πλ.B0

πav

into the components
Πλ.B0

πav ∈ πλHρ
for λ ∈ Λ corresponding to the orthogonal sum in (3.5).
• Finally, modify the terms of the sum using πλ−1 for λ ∈ Λ to obtain the
definition

ρav =
∑

λ∈Λ
π−1
λ Πλ.B0

πav︸ ︷︷ ︸
=ΠB0

π−1
λ
πav

∈ Hρ, (3.6)

where the second formula for the summands follows from the conjugacy
formula (3.2) for λ and B0.

We will now show that ρa is a unitary operator on Hρ for all a ∈ A and ρ
indeed defines a unitary representation of K = A/Λ on Hρ.

BA

a.BA

Fig. 3.2: The natural translation action of a ∈ A on BA ∼= A/Λ consists of
applying a to an element b ∈ BA and finding the unique λ ∈ Λ with λ−1ab ∈ BA.
In the figure λ is either the identity or one of three other elements of Λ. In the

proof of Theorem 3.20 we are ‘translating this picture’ into subspaces of Hπ and
a unitary representation of K = A/Λ.

Unitarity of ρa. To see that ρav as in (3.4) defines a vector of Hρ
with ‖ρav‖ = ‖v‖, we start by noting that ΠB0

v = v by definition
of Hρ = ΠB0

Hπ ∋ v. Using the conjugacy formula (3.2) for a and B0, this
gives

Πa.B0
πav = πaΠB0

v = πav, (3.7)
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154 3 Normal Abelian Subgroups and some Metabelian Groups

meaning (roughly speaking) that the application of πa to v shifts the ‘H-
spectral type’ from B0 to a.B0 (see Figure 3.2). Applying (3.7) for λ−1a
instead of a, and noting that

ΠB0∩λ−1a.B0
= ΠB0

Πλ−1a.B0

gives
ΠB0∩λ−1a.B0

π−1
λ πav = ΠB0

π−1
λ πav (3.8)

for all λ ∈ Λ. We note that compactness of the closure BA of the fundamental
domain BA implies that B0 ∩ λ−1a.B0 6= ∅ for only finitely many λ ∈ Λ
(namely for those λ in Λ ∩ aBAB−1

A ). Therefore, the sum in (3.6) has only
finitely many non-zero summands. Moreover, for λ1 6= λ2 in Λ we have

λ−1
1 a.B0 ∩ λ−1

2 a.B0 = λ−1
1 a.(B0 ∩ λ1λ−1

2
.B0

)
= ∅.

Hence (3.8) implies that the vectors appearing in the sum (3.6) defining ρav
have disjoint spectral measures, and so are mutually orthogonal. Therefore,
unitarity of πλ for λ ∈ Λ and (3.4) give

‖ρav‖2 =
∑

λ∈Λ
‖π−1

λ Πλ.B0
πav‖2 =

∑

λ∈Λ
‖Πλ.B0

πav‖2 = ‖πav‖2 = ‖v‖2. (3.9)

As linearity of ρa is clear, we have therefore shown that ρa : Hρ → Hρ is a
unitary operator.

Unitary representation of K. Let a1, a2 ∈ A. Then, for all v ∈ Hρ, we
have

ρa1(ρa2v) = ρa1

∑

λ2∈Λ
ΠB0

π−1
λ2
πa2v

=
∑

λ1,λ2∈Λ
ΠB0

π−1
λ1
πa1ΠB0

π−1
λ2
πa2v

=
∑

λ1,λ2∈Λ
ΠB0

π−1
λ1λ2

Πλ2a1.B0
πa1a2v

=
∑

λ∈Λ
ΠB0

π−1
λ

∑

λ2∈Λ
Πa1λ2

.B0
πa1a2v

by definition of ρa2 , resp. ρa1 in (3.6), the conjugacy formula (3.2) for λ2a1
and B0, commutativity of A, and the substitution λ = λ1λ2 for λ1. Next we
note that the sets a1λ2.B0 for λ2 ∈ Λ are disjoint with union A.t0. Hence

∑

λ2∈Λ
Πa1λ2

.B0
= I,

and we obtain
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ρa1(ρa2v) =
∑

λ∈Λ
ΠB0

π−1
λ πa1a2v = ρa1a2v

by the definition of ρa1a2 in (3.6).
We also note that for a ∈ Λ we have

ρav =
∑

λ∈Λ
ΠB0

π−1
λ πav = v

since for λ ∈ Λr{a} we have B0 ∩ λ−1aB0 = ∅ and so ΠB0
π−1
λ πav = 0

by (3.8). This shows that ρ defines a representation of K = A/Λ on Hρ.
It remains to see continuity of the representation. So suppose that

v ∈ Hρ = ΠB0
Hπ ⊆ Hπ.

By the properties of the maximal spectral measure and the construction of
the fundamental domain BA we have µv(∂B0) = 0. Here and below, we use
the topology on A.t0 for which the bijective orbit map A ∋ a 7→ a.t0 is a
homeomorphism. Now let ε > 0. Then there exists a compact subset K ⊆ B0

contained in the interior Bo0 of B0 with µv(B0rK) < ε2. Let U ⊆ A be
a neighbourhood of the identity so that a.K ⊆ B0 and ‖πav − v‖ < ε for
all a ∈ U . We now decompose v into the sum

v = ΠKv +ΠB0rK
v

and note that
‖ΠB0rK

v‖ = µv(B0rK)
1
2 < ε.

We claim that
ρaΠKv = πaΠKv, (3.10)

which implies

‖ρav − v‖ 6 ‖ρaΠKv −ΠKv‖+ 2ε = ‖πaΠKv −ΠKv‖+ 2ε < 3ε

for all a ∈ U .
To see (3.10), we first note that by the conjugacy formula (3.2) for a andK

we have
ΠB0

πaΠKv = ΠB0∩a.Kπav = Πa.Kπav = πaΠKv.

However this implies, by unitarity of ρa, that the other terms in the or-
thogonal sum (3.6) defining ρav must vanish (which can also be checked
directly using the conjugacy formula), and therefore (3.10) as claimed. This
implies continuity of the representation, and hence ρ is a unitary representa-
tion of K = A/Λ on Hρ = ΠB0

Hπ.
Finding a fixed vector for K in Hρ. We claim that there exists a non-
zero vector v0 ∈ Hρ with ρkv0 = v0 for all k ∈ K. We will assume in addition
that v0 is normalized so that ‖v0‖2 = mA(BA).
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156 3 Normal Abelian Subgroups and some Metabelian Groups

Towards the claim, we first note that, since K is a compact abelian group,
there exists a character χ ∈ K̂ = Λ⊥ < Â and a non-zero vector v ∈ Hρ with
the property that ρkv = χ(k)v. Once more using the bijective property of
the orbit map A ∋ a 7→ a.t0 ∈ A.t0, we can extend χ to a bounded function
on Ĥ . In fact we define F ∈ L ∞(Ĥ) by

F (t) =

{
1 if t /∈ A.t0,
χ(a) if t = a.t0 for a ∈ A.

Using the functional calculus for π|H we see that πFC(F ) is a unitary operator,
and define v0 = πFC(F )v. With this definition, we now obtain for any a ∈ A
that

ρav0 =
∑

λ∈Λ
π−1
λ Πλ.B0

πaπFC(F )︸ ︷︷ ︸
=πFC(F◦θ̂a)πa

v

=
∑

λ∈Λ
π−1
λ πFC(F ◦ θ̂a)Πλ.B0

πav,

where we used Corollary 3.2 and the fact that the functional calculus defines
commuting operators. Next we recall that χ ∈ Λ⊥, which implies that

F ◦ θ̂a ◦ θ̂−1
λ = F ◦ θ̂−1

λ ◦ θ̂a = F ◦ θ̂a

and, together with Corollary 3.2 and the above, also

ρav0 =
∑

λ∈Λ
πFC(F ◦ θ̂a)π−1

λ Πλ.B0
πav = πFC(F ◦ θ̂a)ρav

for all a ∈ A. Finally, we calculate for t = a′.t0 ∈ A.t0 that

F ◦ θ̂a(t) = F (a−1a′.t0) = χ(a−1a′) = χ(a)F (t).

Together with ρav = χ(a)v, this gives ρav0 = v0 for all a ∈ A as claimed.

Constructing the Haar measure on A from v0.We claim that the fixed
vector v0 ∈ Hρ for K = A/Λ has spectral measure for π|H given by µ|B0

,
where µ is the push-forward to A.t0 of the Haar measure mA on A. To see
this, we will instead use v0 to construct a Haar measure on A, which by the
uniqueness of the Haar measure up to scalar multiples and the normaliza-
tion ‖v0‖2 = mA(BA) will have to agree with mA.

In fact, we note that

πηv0 ∈ πηHρ = Πη.B0
Hπ

for all η ∈ Λ, and define the measure ν on Ĥ by
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ν(B) =
∑

η∈Λ
µπηv0(B ∩ η.B0)︸ ︷︷ ︸

=µπηv0
(B)

=
∑

η∈Λ
‖ΠBπηv0‖2

for all measurable B ⊆ Ĥ. For λ ∈ Λ we then have

ν(λ.B) =
∑

η∈Λ
‖Πλ.Bπηv0‖2 =

∑

η∈Λ
‖πλΠBπλ−1ηv0‖2︸ ︷︷ ︸

=‖ΠBπη′v0‖2

= ν(B)

by the conjugacy formula (3.2) for λ and B and the substitution η′ = λ−1η.
This shows the invariance of ν under Λ.

To see invariance of ν under an arbitrary a ∈ A we again let B ⊆ Ĥ be
measurable and will show that ν(a.B) = ν(B). Due to the established Λ-

invariance and the fact that ν(ĤrA.t0) = 0 we may assume B ⊆ A.t0,
decompose B into the disjoint union

B =
⊔

λ∈Λ
(B ∩ λ.B0),

and reduce to the case of a measurable subset B ⊆ B0. Using ρav0 = v0 we
see that

ν(B) = µv0(B) = ‖ΠBv0‖2 = ‖ΠBρav0‖2 =
∥∥∥
∑

λ∈Λ
ΠB∩B0︸ ︷︷ ︸
=ΠB

π−1
λ πav0

∥∥∥
2

.

We recall from the discussion leading to (3.9) that the terms

ΠB0
π−1
λ πav0 = wλ

in the definition (3.6) of ρav0 are mutually orthogonal, since

Πλ−1a.B0
wλ = wλ

by (3.8), and the sets λ−1a.B0 for λ ∈ Λ are mutually disjoint. Since the
projection operator ΠB commutes with the projection operator Πλ−1a.B0

for λ ∈ Λ, it follows that the terms in the sum above are still orthogonal.
Therefore, we can take the sum out, apply the conjugacy formula (3.2) for a
and a−1.B and the substitution η = λ−1 to obtain

ν(B) =
∑

η∈Λ
‖ ΠBπa︸ ︷︷ ︸
=π

a
Π
a−1.B

πηv0‖2

=
∑

η∈Λ
‖Πa−1.Bπηv0‖2 = ν(a−1.B),

as required.
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Using the bijective orbit map A ∋ a 7→ a.t0 ∈ A.t0, we can move ν to
a measure νA on A, which by the argument above is translation invariant.
Moreover, the fundamental domain BA has measure

νA(BA) = ν(B0) = ‖v0‖2 = mA(BA) <∞.

As BA ⊆ A has non-empty interior, it follows that any compact subsetM ⊆ A
can be covered by finitely many Λ-translates of the fundamental domain BA.
This implies νA(M) < ∞ and as M ⊆ A was an arbitrary compact sub-
set we see that νA is locally finite. Therefore, νA is a Haar measure on A
satisfying νA(BA) = mA(BA) and hence νA = mA. As µ is defined as the
push-forward of mA under the orbit map, we see that ν = µ. Therefore we
deduce that µv0(B) = ν(B) = µ(B) for any measurable B ⊆ B0. As

µv0
(
ĤrB0

)
=
∥∥ΠĤrB0

v0
∥∥2 =

∥∥ΠĤrB0
ΠB0

v0
∥∥2 = 0,

this shows that µv0 = µ|B0
as claimed.

Defining the isomorphism (on a dense subspace). We will now con-

struct the equivariant unitary isomorphism U between Hπ and L2
µ(Ĥ). For

this it suffices to define U on a dense π-invariant subspace V < Hπ.
To define V we again use v0 and the decomposition of Hπ in (3.5). In fact

we define

V0 = πFC

(
L

∞(Ĥ)
)
v0 = πFC

(
L

∞(Ĥ)1B0

)
v0 ⊆ Hρ,

and obtain V by applying πλ for λ ∈ Λ and taking the linear hull

V =
∑

λ∈Λ
πλV0

of the resulting subspaces. We note that

πλV0 = πλπFC

(
L

∞(Ĥ)
)
v0 = πFC

(
L

∞(Ĥ)
)
πλv0

for any λ ∈ Λ by Corollary 3.2 and the conjugacy formula (3.2). We de-

fine L ∞
c (A.t0) to consist of all bounded measurable functions on Ĥ that

vanish outside of A.t0 and outside of finitely many of the translates λ.B0

for λ ∈ Λ. Using this notation, we can also define V equivalently by

V =

{
vF =

∑

λ∈Λ
πFC(F )πλv0

∣∣∣∣∣ F ∈ L
∞
c (A.t0)

}
.

We wish to define U : V → L2
µ(A.t0) by sending vF for F ∈ L ∞

c (A.t0)
to F ∈ L2

µ(A.t0). To see that this gives a well-defined isometry we calculate
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‖vF ‖2 =
∑

λ∈Λ
‖πFC(F )πλv0‖2

=
∑

λ∈Λ

∫
|F |2 dµπλv0

=
∑

λ∈Λ

∫
|F |2 dλ∗µv0

=
∑

λ∈Λ

∫
|F |2 dλ∗µ|B0

=
∑

λ∈Λ

∫
|F |2 dµ|λ.B0

= ‖F‖2
L2(Ĥ,µ)

by using in turn the definition of vF ∈ V , the properties of the spectral mea-
sures, Proposition 3.1, the previous claim that µv0 = µ|B0

, and the invariance

of µ under the action of Λ < A. In other words, U : V → L2
µ(Ĥ) is indeed an

isometry.
As V is defined by an arbitrary function F in L ∞

c (A.t0), which is an ideal

in L ∞(Ĥ), and the unitary representation π|H can be recovered from its
functional calculus, we see that V is invariant under π|H . Moreover, for h ∈ H
and F ∈ L ∞

c (A.t0) we have

U(πhvF ) = U
(∑

λ∈Λ
πFC(MhF )πλv0

)
=MhF = πµ(h)F,

which shows that U is equivariant for π|H .
From the definition of V it is also clear that V is invariant under π|Λ.

Moreover, for λ0 ∈ Λ and F ∈ L ∞
c (A.t0) we have by Corollary 3.2 that

U(πλ0
vF ) = U

(
πλ0

∑

λ∈Λ
πFC(F )πλv0

)

= U
(∑

λ∈Λ
πFC

(
F ◦ θ̂λ0

)
πλ0λ

v0

)

= F ◦ θ̂λ0
= πµ(λ0)F,

which shows that U is equivariant for π|Λ.
To see the invariance of V and the equivariance of U under any a ∈ A, we

will again use ρav0 = v0. Indeed, using the Λ-invariance and Λ-equivariance,
we restrict ourselves to considering F ∈ L ∞(B0) ⊆ L ∞

c (A.t0) and a ∈ A.
Then
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160 3 Normal Abelian Subgroups and some Metabelian Groups

πavF = πaπFC(F )v0

= πFC

(
F ◦ θ̂a

)
πaρ

−1
a v0

=
∑

λ∈Λ
πFC

(
F ◦ θ̂a

)
πaΠB0︸ ︷︷ ︸

=Πa.B0
πa

π−1
λ π−1

a v0

=
∑

η∈Λ
πFC

(
F ◦ θ̂a1a.B0︸ ︷︷ ︸

=F◦θ̂a

)
πηv0 = vF◦θ̂a ∈ V

by the definition of vF , the assumption F ∈ L ∞(B0), Corollary 3.2, the fact
that ρav0 = v0, the definition of ρa in (3.6), the conjugacy formula (3.2) for a
and B0, the substitution λ = η−1, and the assumption that F ∈ L ∞(B0)
once more. Applying U now gives again

U(πavF ) = F ◦ θ̂a = πµaF.

It follows that V is π-invariant and by irreducibility that V = Hπ. The
equivariant isometric embedding U : V → L2

µ(Ĥ) now extends uniquely to an
equivariant isomorphism between π and πµ. �

We want to mention that the construction of an irreducible unitary rep-
resentation arising from an orbit A.t0 with trivial centralizer as considered
above is a special case of the induced representation. Starting with the unitary
representation χt0 ofH corresponding to t0 ∈ Ĥ , the representation πµ corre-
sponding to the Haar measure µ on the orbit A.t0 in the sense of Lemma 3.5
is therefore also denoted by

πµ = IndGH χt0 .

We will not pursue this now, but will encounter the notion of induced repre-
sentation again in Section 8.5.

We will upgrade Theorem 3.33 to a complete classification of unitary duals
of certain semi-direct product groups in Section 3.5.

Exercise 3.22 (Other fields). Let K be a local field (that is, R, C, a finite extension
of Qp for some prime p, or a finite extension of Fp((t)) for some prime p). Extend the results
of Section 3.3.2 to describe the relationship between the unitary dual of K× and of the

affine group

G =

{(
a b
0 1

) ∣∣∣∣ a ∈ K×, b ∈ K
}
.

Exercise 3.23 (The group Sol). Define the group Sol = R ⋉R2 as the matrix group

Sol =







a 0 x1
0 a−1 x2
0 0 1




∣∣∣∣∣∣
a > 0, x =

(
x1
x2

)
∈ R2



 .

Describe Ŝol, and prove that your description is complete.

Exercise 3.24. Prove Theorem 3.20, replacing the assumption ‘A has a discrete co-
compact subgroup’ by ‘A has a compact open subgroup’.

Page: 160 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



3.3 Characterization of some Unitary Duals 161

3.3.4 The Heisenberg Group

We recall that the 3-dimensional Heisenberg group G is defined by

G =







1 x z
0 1 y
0 0 1



∣∣∣∣∣∣
x, y, z ∈ R





and that the multiplication is given by



1 a c
1 b
1





1 x z
1 y
1


 =



1 a+ x c+ z + ay

1 b+ y
1




for all 

1 a c
1 b
1


 ,



1 x z
1 y
1


 ∈ G.

More generally, for any d > 1 the (2d + 1)-dimensional Heisenberg group is
defined as the set G = R2d+1 whose elements we denote by

(a, b, c), (x, y, z) ∈ Rd × Rd × R,

equipped with the multiplication

(a, b, c) · (x, y, z) = (a+ x, b + y, c+ z + 〈a, y〉).

This coincides with matrix multiplication if (x, y, z) is identified with the
matrix 



1 x1 x2 · · · xn z
1 0 · · · 0 y1

. . .
. . .

...
...

1 0 yn−1

1 yn
1



∈ SLn+2(R).

We note that the centre of G is given by the subgroup

C(G) = {(0, 0, z) | z ∈ R}.

The Irreducible Representations

(Old) We say that a unitary representation is an old representation of G if
the centre C(G) acts trivially. Since G/C(G) ∼= R2d is abelian, it follows that
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162 3 Normal Abelian Subgroups and some Metabelian Groups

any old irreducible representation of G is given by a character of

G/C(G) ∼= R2d.

(New) We say that a unitary representation is a new representation of G
if the centre C(G) acts non-trivially. To construct the irreducible new repre-
sentations of G, we define the normal subgroup

H = {(0, y, z) | y ∈ Rd, z ∈ R} ⊳ G

corresponding to the ‘last column’ of the matrix group, and the ‘complemen-
tary group’

A = {(a, 0, 0) | a ∈ Rd} < G

so that once again G = AH ∼= A⋉H .
To apply the results of Section 3.1 we calculate the effect of the auto-

morphism θa = θ(a,0,0) of H for all a ∈ Rd. Indeed, for (0, y, z) ∈ H we
have

θa
(
(0, y, z)

)
= (a, 0, 0)(0, y, z)(−a, 0, 0)
= (a, y, z + 〈a, y〉)(−a, 0, 0)
= (0, y, z + 〈a, y〉).

Using the standard basis of H ∼= Rd+1 with the centre corresponding to the
last coordinate, the automorphism θa has the matrix representation

(
Id 0
a 1

)
,

so the dual automorphism θ̂a on Ĥ ∼= Rd+1 has the matrix representation

(
Id a

t

0 1

)
.

Now let ξ ∈ R× and define

t0 =

(
0
ξ

)
∈ Rd+1 ∼= Ĥ.

Then the A-orbit of t0 is given by

A.t0 =

{(
Id a

t

0 1

)(
0
ξ

) ∣∣∣∣ a ∈ Rd
}

= Rd × {ξ} (3.11)

and gives rise via Lemmas 3.5 and 3.6 to an irreducible representation πξ of
the Heisenberg group.
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3.3 Characterization of some Unitary Duals 163

Classification of the Unitary Dual

Theorem 3.25 (Stone–von Neumann(6)). Let d > 1. The unitary dual Ĝ
of the (2d + 1)-dimensional Heisenberg group consists of the old represen-
tations given by unitary characters on G/C(G) ∼= R2d and the infinite-
dimensional new irreducible representations πξ for ξ ∈ R×. The represen-
tation πξ for ξ ∈ R× can also be defined for (x, y, z) ∈ G by

(
πξ(x,y,z)f

)
(t) = e2πi(〈y,t〉+zξ)f(t+ ξx) (3.12)

for f ∈ L2(Rd) and t ∈ Rd.

Proof. By the discussion above (relying on Lemmas 3.5 and 3.6), we al-
ready constructed the new representations and know that they are irreducible.
Moreover, it is clear that different ξ ∈ R× give rise to inequivalent irreducible
representations as ξ is uniquely determined as being the character obtained
by restriction to the centre C(G).

Let π now be an arbitrary irreducible unitary representation of G. If π|C(G)

is trivial, then π induces a representation of G/C(G) ∼= R2d and so it is given
by a character of R2d. Hence we may now assume that π|C(G) is non-trivial.
By Corollary 1.32, we have π|C(G) = χI for a unitary character χ on C(G).
Since C(G) ∼= R, we see that χ is represented by a real number ξ ∈ R×. We
define the abelian subgroup H ⊳ G as above, and consider π|H . Since the
subgroup C(G) ⊆ H corresponds to the last co-ordinate in H ∼= Rd+1, we
see that the maximal spectral measure µmax for π|H satisfies

µmax

(
Ĥr(Rd × {ξ})

)
= 0.

However, (3.11) shows that Rd×{ξ} = A.t0 is a single orbit of the complemen-
tary subgroup A < G as above. Moreover, the stabilizer of t0 in A is trivial.
Thus Theorem 3.20 implies that π is isomorphic to πµ for the A-invariant
measure µ on the orbit A.t0.

We now identify the A-orbit A.t0 = Rd × {ξ} with Rd by sending the
element (t, ξ) ∈ A.t0 to t. This implies the formula (3.12) for x = 0. The
unitary operator πµ(x,0,0) for (x, 0, 0) ∈ A is defined by

(
πµ(x,0,0)f

)
(t, ξ) = f

(
θ̂x(t, ξ)

)
= f

(
(t+ xξ, ξ)

)

for f ∈ L2
µ(Ĥ) and (t, ξ) ∈ A.t0. Under the isomorphism to L2(Rd) this

becomes the formula (3.12) for (y, z) = (0, 0). Putting these together gives
the description of πξ in the theorem. �

Exercise 3.26 (Other fields). Let K be a local field as in Exercise 3.22 and let d > 1.
Extend Theorem 3.25 to describe the unitary dual Ĝ of the (2d+1)-dimensional Heisenberg
group G over K (which is defined by the same formulas, using elements in K2d+1).
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164 3 Normal Abelian Subgroups and some Metabelian Groups

3.4 A Plancherel-type Theorem*

We wish to show here that it is quite straightforward to derive a Plancherel
type theorem for the concrete groups considered in Section 3.3.(7) Once again
we will not try to give the most general result of this type, but instead
try to give a convenient framework able to handle the isometry group in
Section 3.3.1, the affine group in Section 3.3.2, and the Heisenberg groups in
Section 3.3.4.

We continue to assume that G = A ⋉ H is the semi-direct product of a
closed normal abelian subgroupH ⊳ G and a closed abelian subgroup A < G.
We assume in addition the following structure for the action of A < G on Ĥ
introduced in Section 3.1:

• There exists a measurable cross-section S ⊆ Ĥ such that

A× S ∋ (a, s) 7−→ a.s ∈ A.S ⊆ Ĥ
is a measurable isomorphism, and mĤ

(
ĤrA.S) = 0.

Exercise 3.27. Describe a choice of S for the isometry group in Section 3.3.1, the affine
group in Section 3.3.2, the group Sol from Exercise 3.23, and the Heisenberg group in
Section 3.3.4.

For every s ∈ S we use the isomorphism

A ∋ a 7−→ t = a.s ∈ A.s ⊆ Ĥ
to push the Haar measure mA to an A-invariant measure µs on A.s, which
then defines an irreducible unitary representation of G by Lemmas 3.5
and 3.6. For the following it will be more convenient to instead define this
representation on L2(A) by the formulas

(
πshf

)
(a) = 〈h, a.s〉f(a),

(
πsa0f

)
(a) = f(a−1

0 a)

for all h ∈ H , a, a0 ∈ A, and f ∈ L2(A).

Exercise 3.28. Show that πs ∼= πµs .

Proposition 3.29 (Plancherel). Let the semi-direct product G = A ⋉ H

and the cross-section S ⊆ Ĥ be as above. We let X = S × A and write s(·)
for the projection X → S onto the first coordinate. Then there exists a σ-
finite measure ν on X and an equivariant unitary isomorphism between the
regular representation λ of G on L2(G) and the unitary representation πX

defined on L2(A×X,mA × ν) by
(
πXh f

)
(a, x) = 〈h, a.s(x)〉f(a, x),

(
πXa0f

)
(a, x) = f(a−1

0 a, x)
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for all h ∈ H, a, a0 ∈ A, and f ∈ L2
ν(X).

We note that the description above should be thought of as an integral
decomposition

λG ∼=
∫

X

πs(x) dν(x)

of the regular representation λG into irreducible representations πs for s ∈ S,
where ν plays the role of the spectral measure and the second factor A in X
creates multiplicity in the decomposition.

Proof of Proposition 3.29. Let mG be the left Haar measure on G. Us-
ing the coordinate system ah ∈ G for a ∈ A and h ∈ H , we may normalize
the Haar measures so that mG

∼= mA ×mH in these coordinates (see Exer-
cise 3.30).

Using the fact that mG is a product measure, we can apply the Plancherel
theorem (Theorem 2.15) for a given f ∈ L2(G) and mA-almost every a ∈ A
and mĤ -almost every t ∈ Ĥ to define the partial transform f 7→ f̃ by

f̃(a, t) =

∫
f(ah)〈h, t〉dmH(h), (3.13)

which satisfies
‖f̃‖L2(A×Ĥ,mA×m

Ĥ
) = ‖f‖L2(G)

(see Exercise 3.31). Recalling that mĤ

(
ĤrA.S) = 0 and

A× S ∋ (a, s) 7−→ a.s ∈ A.S
is a bijection, we restrict in the following to elements t ∈ Ĥ of the form t = a.s
with a ∈ A and s ∈ S. For a1, a2 ∈ A and s ∈ S we set

U(f)(a1, s, a2) = f̃(a1a
−1
2 , a2.s)

where this is defined. For h0 ∈ H we then have

U(λGh0
f)(a1, s, a2) = (̃λGh0

f)(a1a
−1
2 , a2.s)

=

∫
f(h−1

0 a1a
−1
2 h)〈h, a2.s〉dmH(h)

=

∫
f(a1a

−1
2 θa−1

1 a2
(h−1

0 )h
︸ ︷︷ ︸

=h′

)〈h, a2.s〉dmH(h)

=

∫
f(a1a

−1
2 h′)〈θa−1

1 a2
(h0)h

′, a2.s〉dmH(h′)

= 〈h0, a1.s〉
∫
f(a1a

−1
2 h)〈h, a2.s〉dmH(h)

= 〈h0, a1.s〉U(f)(a1, s, a2)
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and for a0 ∈ A we have

U(λGa0f)(a1, s, a2) = λ̃Ga0f(a1a
−1
2 , a2.s)

=

∫
f(a−1

0 a1a
−1
2 h)〈h, a2.s〉dmH(h)

= U(f)(a−1
0 a1, s, a2)

where defined. Now let X = S ×A, define ν to be the pull-back of the Haar
measure mĤ to S ×A, and obtain

∥∥U(f)
∥∥2
L2(A×S,mA×ν) =

∫ ∣∣f̃(a1a−1
2 , a2.s)

∣∣2 dmA(a1) dν(s, a2)

=

∫ ∣∣f̃(a, a2.s)
∣∣2 dmA(a) dν(s, a2)

=
∥∥f̃
∥∥2
L2(A×Ĥ,mA×m

Ĥ
)
= ‖f‖2L2(G)

for any f ∈ L2(G), as required. �

Exercise 3.30. Verify that mG = mA ×mH defines a left Haar measure on G = A⋉H.

Exercise 3.31. Verify that (3.13) defines a unitary isomorphism.

3.5 Metabelian Groups with Countable Separation of
Orbits*

In this section we summarize the framework we have been working with.
Moreover, we state and prove a description of the unitary dual of semi-direct
products of abelian groups under a necessary technical conditions that will
help us to avoid the existence of ergodic measures other than Haar measures
on orbits.

We assume once more that:

• G is a locally compact, σ-compact, metric group;
• H ⊳ G is a closed normal abelian subgroup;
• A < G is a closed abelian subgroup; and
• the map H × A ∋ (h, a) 7→ ha ∈ G is a homeomorphism of topological
spaces.

In other words, we assume that the semi-direct product G = A ⋉H of two
abelian groups satisfies our standing assumptions. Moreover, we assume that:

• A and each of its quotients by closed subgroups has compact quotients
by discrete subgroups.
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3.5 Metabelian Groups with Countable Separation of Orbits 167

As we have seen in many examples before, we have two ways of constructing
irreducible unitary representations of G. Indeed, since G/H ∼= A, we can lift

a character χ ∈ Â to a character χ ∈ Ĝ. On the other hand, we can use
any A-invariant and ergodic measure µ on Ĥ as in Section 3.2 to define the
irreducible unitary representation πµ of G (see Lemmas 3.5 and 3.6). The
correct way to combine these is to allow tensor products χ⊗ πµ defined by

χ⊗ πµ(ha) = χ(a)πµ(ha)

for ha ∈ G on Hχ⊗πµ = L2
µ(Ĥ) as in Lemma 1.28.

We now define the necessary technical condition that will help us to avoid
ergodic measures on Ĥ other than Haar measures on orbits.

Definition 3.32. Let A be a group and X a locally compact, σ-compact,
metric space carrying an action of A. We say that the action has countable
separation of orbits if the σ-algebra†

BAX = {B ∈ BX | a.B = B for all a ∈ A}

is countably generated.

Theorem 3.33 (Semi-direct products with countable separation).

Let G = A ⋉H be as above. Then every character χ of A and every t0 ∈ Ĥ
gives rise to an irreducible unitary representation χ⊗πµ, where µ is the Haar
measure on the orbit A.t0 ⊆ Ĥ. Assume now in addition that the A-action
on Ĥ has countable separation of orbits. Then any irreducible unitary repre-
sentation of G is isomorphic to a representation of this form. Finally, two
such representations χ1 ⊗ πµ1 and χ2 ⊗ πµ2 for χ1, χ2 ∈ Â and Haar mea-
sures µ1, µ2 on A-orbits on Ĥ are isomorphic if and only if the following two
conditions hold true:

• µ1 and µ2 are multiples of each other, and hence are Haar measures on
the same orbit A.t0, and
• the characters agree when restricted to the stabilizer subgroup

StabA(t0) = {a ∈ A | a.t0 = t0};

in symbols χ1|StabA(t0)
= χ2|StabA(t0)

.

Proof. Let t0 ∈ Ĥ and χ ∈ Â. We define µ as the push-forward of the Haar
measure on A/ StabA(t0) under the orbit map

† We note that in ergodic theory this σ-algebra is also important, and is often replaced by
a countably generated σ-algebra that is equivalent to BAX modulo an A-invariant measure.

As we do not have a preferred measure on Ĥ and we wish to use BAX as a tool to exclude
ergodic measures other than Haar measures, the definition of BAX has to be taken literally
here.
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168 3 Normal Abelian Subgroups and some Metabelian Groups

a StabA(t0) 7→ a.t0 ∈ X = A.t0,
and equip X with the topology on A/ StabA(t0). By [24, Lem. 10.3] or [22,
Prop. 8.6], the action of A/ StabA(t0) on A/ StabA(t0) is ergodic with re-
spect to the Haar measure, which implies that µ is A-invariant and ergodic.
By Lemmas 3.5 and 3.6 we obtain the irreducible unitary representation πµ

on G = A ⋉ H . By Lemma 1.28 it follows that χ ⊗ πµ is an irreducible
unitary representation of G. We also note that the restriction of χ ⊗ πµ

to H agrees with the restriction of πµ to H , and hence the spectral measure
of v ∈ L2

µ(A.t0) is, in either case, given by |v|2 dµ.
Suppose first that µ1 = µ2 = µ is the Haar measure on X = A.t0 and

χ1|StabA(t0)
= χ2|StabA(t0)

.

We note that A.t0 ∼= A/ StabA(t0) and define the well-defined measurable
map

b(x) =

{
1 for x ∈ ĤrA.t0;(
χ2χ1

)
(ax) for x = ax.t0 ∈ A.t0.

This gives
χ2(a) = b(x)χ1(a)b(a

−1.x)−1

for all a ∈ A and x ∈ A.t0. We use b to define the unitary operator

U =Mb : L
2
µ(X) −→ L2

µ(X).

It follows now for v ∈ L2
µ(X) that

(
Mb(χ1 ⊗ πµ)av

)
(x) = b(x)χ1(a)v(a

−1.x)
and

(
(χ2 ⊗ πµ)aMbv

)
(x) = χ2(a)b(a

−1.x)v(a−1.x)
agree for µ-almost every x ∈ X . As Mb commutes with πµ|H it follows
that Mb gives an equivariant isomorphism between χ1 ⊗ πµ and χ2 ⊗ πµ.

Suppose now that χ1⊗πµ1 and χ2⊗πµ2 are isomorphic, where χ1, χ2 ∈ Â
and µ1, µ2 are Haar measures on A-orbits inside Ĥ as above. The remark
above concerning spectral measures implies that the orbits are equal, for
otherwise the spectral measures for the restriction to H would be mutually
singular. By uniqueness of Haar measures up to scalar multiples, we deduce
that µ1 and µ2 are proportional. This allows us again to work with a Haar
measure µ = µ1 = µ2 on A.t0. Hence we assume that there exists a unitary
operator

U : L2
µ(A.t0) −→ L2

µ(A.t0)

Page: 168 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



3.5 Metabelian Groups with Countable Separation of Orbits 169

that is equivariant for χ1 ⊗ πµ and χ2 ⊗ πµ. As the restriction of these
agree with the multiplication representation M on L2

µ(A.t0), it follows (as
a very special case) from Proposition 2.69 that U equals the multiplication

operator Mb for some measurable b : Ĥ → S1. For a ∈ A and v ∈ L2
µ(A.t0),

the formula Mb(χ1 ⊗ πµ)aMb = (χ2 ⊗ πµ)a shows that

b(x)χ1(a)
(
πµa (bv)

)
(x) = b(x)χ1(a)b(a

−1.x)v(a−1.x) = χ2(a)v(a
−1.x)

for µ-almost every x ∈ A.t0. As this holds for all v ∈ L2
µ(A.t0) we must have

χ2(a) = b(x)χ1(a)b(a
−1.x)−1 (3.14)

for µ-almost every x ∈ A.t0. As A is abelian and µ is the Haar measure
on A.t0, we know that we have a−1.x = x for a ∈ StabA(t0) and µ-almost ev-

ery x ∈ Ĥ . Therefore (3.14) implies that χ2(a) = χ1(a) for all a ∈ StabA(t0).
It remains to show that every irreducible unitary representation π of G is

isomorphic to a unitary representation of the form χ⊗πµ for a character χ ∈ Â
and the Haar measure µ on a single A-orbit A.t0 for some t0 ∈ Ĥ . Here we
have to use the assumption of countable separation of orbits for the action
of A on Ĥ .

So let µmax be a maximal spectral measure for π|H , and let C ⊆ BA
Ĥ

be a

countable algebra of A-invariant sets that generates the σ-algebra BA
Ĥ

of A-

invariant sets on Ĥ . For any B ∈ C we have a.B = B, and hence by the
conjugacy formula (3.2) that ΠB is equivariant for A. As it is defined by the
functional calculus for π|H , it is also equivariant forH . This implies by Schur’s
lemma (Theorem 1.29) that ΠB is 0 or I, or equivalently that µmax(B) = 0

or µmax(ĤrB) = 0. Taking the countable intersection

X =
⋂

B∈C,

µmax(ĤrB)=0

B

we obtain an A-invariant set with µmax(ĤrX) = 0. By the above, we

have X ⊆ B or X ⊆ ĤrB for any B ∈ C. As C generates BA
Ĥ

by assumption,

this also holds for any A-invariant Borel set. For t0 ∈ X and B = A.t0 ∈ BAĤ
this implies X ⊆ B and hence X = A.t0 by invariance of X .

We define µ as the Haar measure on A.t0 ∼= A/ StabA(t0), the closed
subgroup

T = 〈A.t0〉
generated by the orbit X = A.t0 ⊆ Ĥ, and its annihilator T⊥ < H . As

suppµmax ⊆ A.t0 ⊆ T,
it follows from the spectral theorem (Theorem 2.66) that π|T⊥ is trivial. As A
normalizes T , the same holds for T⊥ and hence T⊥ ⊳ G. Therefore we may
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170 3 Normal Abelian Subgroups and some Metabelian Groups

and will consider π as a unitary representation of

G/T⊥ ∼= A⋉H/T⊥.

Moreover, as A is abelian, the stabilizer subgroup S = StabA(t0) acts triv-

ially on A.t0 and hence also on T and on its Pontryagin dual T̂ ∼= H/T⊥. In
other words S belongs to the centre of G/T⊥. By Corollary 1.32, there exists
a character χ0 on S such that π|S = χ0I. By Pontryagin duality (Proposi-
tion 2.31(2)) the character χ0 on S extends to a character χ on A. We define
the representation π0 = χ⊗π, which is an irreducible unitary representation
by Lemma 1.28. We note that π0|S is trivial, and so π0 may be considered as a
representation of G/ST⊥ ∼= A/S ⋉H/T⊥. Writing A0 = A/S, H0 = H/T⊥,

and G0 = G/ST⊥ ∼= A0 ⋉ H0, we note that Ĥ0 = T < Ĥ . Hence the

unchanged maximal spectral measure µmax satisfies µmax

(
Ĥ0rA0.t0

)
= 0,

and the orbit map A0 ∋ a 7→ a.t0 ∈ A.t0 ⊆ T = Ĥ0 is free. Therefore Theo-
rem 3.20 applies, and we deduce that π0 is isomorphic to πµ. Since π = χ⊗π0,
it follows that π is isomorphic to χ⊗ πµ as claimed. �

The results in Section 3.3 and this section are special cases of the Mackey
machine that can be used to calculate the unitary dual of semi-direct products
in many more cases.(8)

3.5.1 The Unitary Dual of Isometry Groups

We indicate in this section via another class of examples how the general case
of the Mackey machine works. For this we let K ⊆ SOd(R) be a compact
subgroup, let H = Rd, and define the semi-direct product

G = K ⋉Rd =
{(

k h
0 1

) ∣∣∣∣ k ∈ K,h ∈ Rd
}
.

Extending the case considered in Theorem 3.33, the correct way to con-
struct unitary representations of the semi-direct product G is to use a char-
acter t0 ∈ Ĥ , the K-invariant probability measure µ on K.t0 (obtained as
the push-forward of the Haar measure on K), and an irreducible unitary
representation ρ of K0 = StabK(t0) = {k ∈ K | k.t0 = t0}. We then first
combine χt0 and ρ (similarly to Lemma 1.28) to define an irreducible unitary
representation ρ⊗ χt0 of K0 ⋉H on Hρ by

ρ⊗ χt0(kh) = 〈h, t0〉ρ(k).

Next one defines
π = IndGK0⋉H

(ρ⊗ χt0),
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where the measure µ is used to define the Hilbert space structure on the
space Hπ = IndGK0⋉H

Hρ. This leads to a description of all elements of Ĝ.
To make these objects less mysterious, we recommend assuming that K is

finite, as in this case the following exercise applies.

Exercise 3.34. Let G = A ⋉ H be as in the beginning of Section 3.2, and assume in
addition that A is discrete. For some t0 ∈ Ĥ we define

A0 = StabA(t0) = {a ∈ A | a.t0 = t0}

and suppose that ρ ∈ Â0. We define π = IndGA0⋉H
(ρ ⊗ χt0) on

Hπ =
{
v : A→ Hρ | v(aa0) = ρ(a0)−1v(a) for all a ∈ A, a0 ∈ A0 with ‖v‖Hπ <∞

}

equipped with the Hilbert space norm

‖v‖2Hπ =
∑

aA0∈A/A0

‖v(a)‖2Hρ

by (πbv)(a) = v(b−1a) and (πhv)(a) = 〈h, at〉v(a) for all a, b ∈ A, h ∈ H, and v ∈ Hπ.
(a) Show that π is a unitary representation of G on Hπ.
(b) Show that the spectral multiplicity of π|H is dimHρ.
(c) Show that π is irreducible.
(d) Assume now that the A-action on Ĥ has countable separation of orbits. Show that the
construction above gives rise to all irreducible representations of G (up to isomorphism).
(e) Show that the A-action on Ĥ has countable separation of orbits if A is finite.

3.6 Two More Groups With Unreasonable Unitary
Duals*

3.6.1 The Discrete Heisenberg Group

The (3-dimensional) discrete Heisenberg group is defined by

G =







1 a c
0 1 b
0 0 1



∣∣∣∣∣∣
a, b, c ∈ Z



 .

We will show that despite G being nilpotent, and hence as close as possible
to being abelian without being abelian, its unitary dual is quite wild and has
no simple description.

As in Section 3.3.4, we will again use the notation (a, b, c) ∈ Z3 for the
matrices in G and the subgroups

C(G) = {(0, 0, c) | c ∈ Z} ,
H =

{
hb,c = (0, b, c)

∣∣ b, c ∈ Z
}
,
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and

A = {ga = (a, 0, 0) | a ∈ Z} .

Let us begin with the by now obvious candidates for irreducible unitary
representations:

• old representations defined by characters on G/C(G) ∼= Z2,

• new representations arising from A-orbits on Ĥ ∼= T2, and
• new representations arising from A-invariant and ergodic probability
measures on T2.

We now explain the sense in which the second type is itself ‘unreasonable’
and how to modify the third type to also give rise to an ‘unreasonably large
collection’ of irreducible unitary representations.

By the same calculation as in Section 3.3.4, the dual automorphisms cor-
responding to elements of A ∼= Z on T2 are defined by powers of the matrix

M = θ̂(1,0,0) =

(
1 1
0 1

)
: T2 ∋

(
x
ξ

)
7−→

(
x+ ξ
ξ

)
∈ T2.

Fixing some ξ ∈ Tr{0}, noting that X = T× {ξ} ∼= T is invariant under M ,

and recalling that the A-action defined in (3.1) uses θ̂−1
(1,0,0), we therefore need

to study the rotation map

Rξ : T ∋ x 7−→ x− ξ ∈ T.

For ξ ∈ Q/Z every orbit under this map is finite. However, for an irrational ξ
the orbit of every x0 ∈ T is free, and given by x0 +Zξ ⊆ T. Hence each such
orbit gives rise to an irreducible unitary representation. What is unreasonable
about this? After taking into account possible isomorphisms of irreducible
representations, the irreducible unitary representations arising from ξ and
orbits of A on Ĥ are in one-to-one correspondence with elements of the
quotient T/Zξ. Since Zξ is a dense subgroup of T for every irrational ξ, the
quotient T/Zξ is ‘unreasonable’ because (for example) any cross-section S
(that is, a unique choice of representative x0 for each coset x0 +Zξ ⊆ T, and
hence for its associated irreducible unitary representation of G) is necessarily
non-measurable.

We now move on to the third type in the list above, namely irreducible
unitary representations arising from A-invariant and ergodic probability mea-
sures. Unlike the discussion of the solvable discrete group in Section 3.2.1,
the A-invariant and ergodic probability measures on Ĥ = T2 are not at all
complicated.† If ξ is rational, every orbit on T × {ξ} is finite and the nor-
malized Dirac measure on the orbit is an A-invariant and ergodic probability

† The set of quasi-invariant measures (see Lemma 3.4), on the other hand, is more compli-
cated. Nonetheless, even by restricting to invariant probability measures, we can construct
many irreducible representations of G.
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measure on T × {ξ} ⊆ T2. If, on the other hand, ξ is irrational, then the
Lebesgue measure on T×{ξ} is the only A-invariant and ergodic probability
measure on T×{ξ} ⊆ T2. However, we have only scratched the surface of the
possible constructions of irreducible unitary representations. In particular,
the following exercises will show that a generalization of Theorem 3.20 from
measures on orbits to ergodic probability measures is not at all possible.

In fact, we can use an irrational ξ ∈ T, Lebesgue measure µ onX = T×{ξ},
and a measurable map (called a cocycle) c : A×X −→ S1 satisfying the cocycle
equation

c(a1a2, x) = c(a1, x)c(a2, a
−1.x) (3.15)

for all a1, a2 ∈ A and almost all x ∈ X to define a unitary representation πµ,c

by (
πµ,chb,cgaf

)
(x) = e2πi(xb+ξc)c(a, x)f(a−1.x)

for a, b, c ∈ Z, f ∈ L2
µ(X), and x ∈ X . We note that in the case that the

cocycle c : A × X → S1 does not depend on the point in X , the property
in (3.15) becomes the defining equation for a homomorphism from A to S1.
We will call a cocycle arising from a homomorphism a constant cocycle.

Exercise 3.35 (Unitarity and irreducibility).
(a) Generalize Proposition 1.5 to allow for measurable cocycles, while assuming that the
group is discrete.
(b) Formulate and prove a generalization of Lemma 3.5 to allow for measurable cocycles
(assuming that A is discrete).
(c) Generalize Lemma 3.6 to allow measurable cocycles.

What makes these methods for producing irreducible unitary represen-
tations more difficult to understand are the questions that arise regarding
equivalence of the resulting representations.

Exercise 3.36 (Coboundaries). Let G be the discrete Heisenberg group as above. Let µ
be an A-invariant σ-finite measure on Ĥ , let d > 1, and let c1, c2 : A × Ĥ → S1 be two
cocycles (that is, measurable maps satisfying (3.15)). Show that the unitary representa-
tions πµ,c1 and πµ,c2 are unitarily equivalent if and only if there is a measurable map

b : Ĥ −→ S1

(a coboundary) satisfying the coboundary equation

c2(a, x) = b(x)c1(a, x)b(a−1.x)−1 (3.16)

for all a ∈ A and µ-almost every x ∈ Ĥ.

In a way, b as in the exercise above corresponds to a point-dependent co-
ordinate change in C. Cocycles related by (3.16) are said to be cohomologous.

The following exercise now shows that cocycles can be used for the discrete
Heisenberg group to define additional irreducible unitary representations.

Exercise 3.37 (Constant cocycles and irreducible representations). Let G be the
discrete Heisenberg group as above, let ξ ∈ T be irrational, and let α ∈ TrZξ. Then the
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Lebesgue measure µ on X = T × {ξ} ⊆ T2 ∼= Ĥ and the constant cocycle cα defined
by cα((a, 0, 0), x) = e2πiaα for x ∈ X define an irreducible unitary representation πξ,α

that is not unitarily equivalent to the irreducible unitary representation πµ defined by the
Lebesgue measure µ on T×{ξ} alone. Indeed, two representations πξ,α1 and πξ,α2 defined
as above by homomorphisms and α1, α2 ∈ T are unitarily equivalent if and only if α2−α1

is an integer multiple of ξ.

Notice that the exercise above shows that Ĝ contains ‘another copy of the
unreasonable quotient’ T/Zξ for every irrational ξ ∈ T that arise not from
orbits but from twisting the representation πµ by constant cocycles.

3.6.2 The Mautner Group

The examples considered so far, and in particular those in Sections 3.2.1
and 3.6.1, may give the impression that only discrete groups have unrea-
sonably complicated unitary duals, while connected groups have better be-
haviour. To see that this is not the case, we consider here the connected
group G = GMautner known as the Mautner group.

To define the Mautner group, we first recall the isometry group

G2 = SO2(R)⋉R2

of the plane considered in Section 3.3.1, and define

G4 = G2 ×G2
∼= T2 ⋉ (R2)2.

We now let A < T2 be an immersed subgroup isomorphic to R and define
the Mautner group by GMautner = A⋉ (R2)2.

By this stage we expect that the description of Ĝ (or our inability to give

a description of it) has to do with the action of A on Ĥ for H = (R2)2. For
the vector

t0 =

((
1
0

)
,

(
1
0

))
∈ (R2)2 ∼= Ĥ

the T2-orbit is free and is given by X = T2.t0 = S1 × S1. The restriction
of the A-action to X is isomorphic to the translation action of the dense
subgroup A on T2. In particular, we can:

• use every coset in T2/A (equivalently, every A-orbit in X) to obtain an
irreducible unitary representation of G,
• use the Haar measure on T2 pushed down to an A-invariant and ergodic
probability measure on X to obtain another irreducible unitary represen-
tation πµ of G, or
• make use of (continuous or, with a bit more effort, measurable) unitary
cocycles c : A×X → S1 for the A-action on X , together with the ergodic
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probability measure µ, to obtain irreducible unitary representations πµ,c

of G.

In particular, the first and (due to a generalization of Exercise 3.37, also
the) third type again give rise to an unreasonable set of irreducible unitary
representations.

3.7 Summary and Outlook

Our discussions regarding the interplay between π|H and the G-action on Ĥ
for a normal abelian subgroup H ⊳ G in Section 3.1 will be important in, for
example, Chapter 7.

The complete description of Ĝ for some concrete metabelian groups will
provide interesting examples for the discussion of the Fell topology in the next
chapter. The reader interested in pursuing the so-called Mackey machine in
full strength may consult Folland [27].
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