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Introduction

S.A.Yuzvinskii calculated the Haar measure theoretic
entropy of an endomorphism of a solenoidal group in (9).
D.Lind stated without proof the equivalence of Yuzvinskii's
formula to one involving Bowen entropies of the induced
endomorphisms on vector spaces over all inequivalent
completions of the rationals as stated in (5). The proof of
this was outlined in a lecture by D.Lind at the L.M.S.
conference on Ergodic Theory at the University of Durham in
1980.

In this dissertation we follow through the suggestion
implicit in (5). In the first section the solenoid is
described explicitly (Theorem 1.3) and is identified with a
quotient group of the group of adeles QA'

In the second section the Haar measure theoretic
entropy of an automorphism of the one-dimensional full
solenoid is calculated directly using finite partitions
(Theorem 2.3). This result is shown to be equivalent to that
of Abramov (1). The direct calculation is included largely
to show how the maps considered act on the solenoid, and in
particular to show why they are bijections.

In the third section an automorphism of the d-dimensional
solenoid (Q""‘)d 1s considered. The Haar measure theoretic entropy
of this is shown to be equivalent to the Bowen entropy of the
induced map on the adele space, and this is caleculated. This
gives the result of D.Lind. We then show the equivalence of
this formula to that of Yuzvinskii. Throughout we use
relationships between the zeros and the coefficients of a
polynomial over a non-archimedean field

The fourth section is a direct generalisation of the

third. Here, the Haar measure theoretic entropy of an auto-



morphism of the solenoid obtained from an algebraic number
field, k, is found. We also give an abstract derivation of
the solenoid k* in terms of the group of adeles K-

Throughout we wish to describe the solenoids in such
a way that the intuitive view of entropy in terms of stretching
along axes gives the correct result.

The description of the solenoid as a quotient of the
group of adeles can be found in (8) and in a rather different
form in (2). The result of section two is proved by different
methods in (1). The result of section three is stated in (5)
and is derived using different methods in (9). The result in
section four is formally original but is a very direct
extension of the preceding sections.

I would like to express my thanks to Doug Lind for

several very helpful conversations at Warwick during July 1986.
Notation

K is the additive group [0,1). When G is a locally compact
abelian group G* is the Pontryagin dual of G. We use the
following results without comment:-

G** = G ; G*/H'=H*
when H is a closed subgroup of G.(See Hewitt and Ross, (2)).
When k(Q) is an algebraic number field, kV(Qp) is the

completion at a finite place v(p), and rV(Z ) is the unique

P
maximal compact subring of kV(QP), kA(QA) is the group of
adeles and k(Q) is always considered to be embedded
diagonally in the group of adeles. Following Weil(8) we call

a given kv a quasi-factor of the group of adeles.



Section One: The Solenoid Q*

{

Lemma 1.1:-The groups Zg and Q@Z are isomorphic as topological

groups.

Proot.
Let e? be the character on a cyclic group of order pk defined

by:-
eg(l) = exp(ZWi/pk)
and call the group generated by this character C;. Then:-

Zg = lim (Cg, 'raising to pth power' )

Similarly, if we write Q(p,k) ={p-ka : aef}, then:-
Q™z = 113 (Q(p,k)/Z, 'multiplication by p' )

and notice that each Q(p,k) is cyclic of order pk.
Define a map from Z§ into Q™/Z in the natural way -

if XGZE appears first in Cg SO thatx==(e§0n and the kernel is

pk+lzp, then map this character to the rational n/pk. This map

is clearly an epimorphism and is injective since an image can

be written in only one way as n/pk with n = O,...,pk~1. This

map is also a homeomorphism since both the groups are discrete.
M

Lemma 1.2:-The groups q_ﬁp)* and Q/Z are isomorphic as

topological groups.

Proof.

We claim that any xe€Q/Z can be written uniquely in the form:-

_ n
X = E ﬂﬂﬁhP’ (1)

pe P

where O;gnps_pkf’—l and P is afinite set of primes.



The existence of the decomposition (1) is equivalent to

a solution in integers for the equation:-

g yi(pih..p;i...pg“) = N

i

where x = N/pih..pgﬂ, and this is always possible since Z is a
principal ideal domain. We can then add or subtract multiples
of pz‘from y; to make all the coefficients lie in the correct
range.

The expression (1) is unique:-

é V“P/%tjw = E : ﬂ?/b(hp) mod 1

FEPJ ve P

implies that the order of this element of Q/Z is uniquely
'ﬂ‘ Pt\a\n
P

so that P = P' and k_ = jp for each peP. Thus:-

P

and E (mpf—vnwfrxhptk@ is an integer divisible by ]_rp(kﬁ
p'eP ST, P

So p divides (np.—mp.) and therefore e = T m

Define a character onTTZP for each rational between zero
and one, written as at (1), by ((egP)nP). Notice this is the
trivial character on all but finitely many places since P is
finite. This assignment clearly defines a monomorphism. To see
that this is surjective notice that any character trivial on
all but finitely many places must take the above form and the
set of such characters is dense in(TTZp)* since it seperates
points. Surjectivity follows since (TTZP)* is discrete.

The map is a homeomorphism since both of the groups are

discrete. u



By duality, lemma 1.2 shows that (Q/Z)* is isomorphic

toTw_Zp and they will be identified below without comment.

Let X = (Q/Z)*. This is a subgroup of Q* with (Q*/X)

- L, 5
isomorphic to Z* since X Z in Q*. So there is a short

exact sequence:-

IR

TTZP K

Thus Q* is a central extension of K (the dual of Z) defined

by a symmetric cocycle w:KxK ——-9TTZP.
= -Int(a+b)+1, where 1 is

Consider the cocycle w(a,b)
the multiplicative unit inTTEp, (1,1,...). Then the group

G = Ext (K,X) has binary operation:-

(a,x) + (b,y) = (a+b, x+y-Int(a+b)-1)

and is therefore isomorphic to (RxX)/Y where Y = &r“n-l):nez}.

Make G into a topological group with the product topology

from the usual topologies on K and on X.

Any continuous character on RxX has the form:-

() (b,x) = exp(2viab) | [(f)™ (x)) (2)

where aeR, x = (xz,x3,x5, ..) is an element of X and n is a map
from the set of all primes into the positive integers which is

zero on all but finitely many primes.

In order for such a character to be trivial on Y, we need:-

(a,n)*(1,1°1) = 1



B
Thus a = -ZE:W4hso a is rational and uniquely determines and
is uniquely determined by (np,kp) as before.
Thus G* is isomorphic to Q and so by duality the solenoid

Q* is given by G. Notice that G is compact. A basis of open

sets at the identity in RxX is given by.all sets of the form:-
0{m,n) = (-1/m,1/m) g
m,n /m,1/ XTTP 5

where m'is a positive integer and n is as at (2). Thus a basis

of open sets at the identity in G is given by all the sets:-
U(m,n)vV(m,n)

where U(m,n) = [O,l/m)xTTdVZp and V(m,n) = (l—l/m,l)xTTﬁWZp.

We have proved the following theorem.

Theorem 1.3:-The solenoid Q* is isomorphic to ExtW(K,X). A

basis of open sets at the identity is given by all sets of the

form U(m,n)uV(m,n).

Corollary 1.3:-The solenoid is isomorphic to QA/Q where Q is

embedded in the adele diagonally.

Proof .
A fundamental set of Qq modulo Q is:-

Kxﬂzp (Weil,p.65)
and the binary operation is precisely that given by the cocycle

w when representatives are chosen to lie in this set. A basis

of open sets at the identity in the adele takes the same form

as Ules«) above. -



Section Two: Entropy of an automorphism of Q¥*

Let S:Q —> Q be an automorphism. Then S(x) = r-x for
some rational r. S induces a dual automorphism T of the solenoid
Q* by translation:- (Tx)(x) = x(Sx).

When Q* is described as in Corollary 1.3 and r is a prime

q say, then the action of T is:-

T(a,x) = (qa-Int(qa), gx-Int(qa)-1 )
In order to describe the action of T_1 , embed each Zp into Qp
and use "Int" to describe the integer part of a p-adic number.
Also write, for §érpp, xg for the units digit in the q-adic
component of X. We now claim that:-

T—l(a,g) = ( (q+a—x8)/q, Int((x+Int(qa)-1)/q) )

This is checked directly:-

T_l'T(a,g) = T_l(qa—Int(qa), gx-Int(ga)-1 )

Il

((q+qa—Int(qa)—(T§)8)/q, Int(qx/q) )

(a+1—(T§)8-(Int(qa))/Qa x)

Now notice that Int(gqa) = 0,1,..., or g-1 so:-

(T§)q q(xg+ xé.q+...)—1nt(qa)

(q-Int(qa))+(xg-1).q+xé.q2+...



So even if xg = 0, (x2-1).q~$;.. lies in qu, and so the units

component vanishes. Similarly, TOr Tt §5 phe identity.

Remarks:-

(1)T is g-to-1 on K and 'l-to-q' on Zq.The choice of image
point in Z_ is made depending on the position in K, thus
removing the ambiguity and making the map on the whole space
bijective.

(2)Haar measure p on Q% is given by the product measure mirh%
where m is normalised Haar measure on K and mp is normalised
Haar measure on Zp.This is so because a translation on Q¥ acts

by a translation on each of the components.

Lemma 2.1:-The Haar measure theoretic entropy of T on Q* is

log q, and a full entropy factor is KXZq

Proof.
Define the partition P™ of Q* to be the product of the following
partitions:-

- on K into the intervals [i/m!, (i+1)/m!) for i = 0,1..., m!-1.

- on each ZP into the pm p-adic cylinders each defined by
prescribing the first m digits. Each such set has mp—measure l/pm.

m+1

Notice that P is a refinement of P™ so that:-

and this is clearly equal to the point partition modulo null sets.

Thus (Walters,p.99):-

i m
hp(T) = lfnhp(T,P ) (3)



ne
To calculate hu(T,Pm), observe that the partition \V/T_le

1=0

is the product of the partitions:-

- on K into the intervals ﬁ/(m!qn_l), (i+1)/(m!qn-1) ) when
m>q. There are m!qn_1 such sets, each of m-measure l/m!qn_l.
- on each Zp (p#q) into the sets of the original partition P™.
This is because each application of T_1 maps the partition on
Zp onto itself, merely permuting the elements.

- on Z_ into P™ again. This is because each application of 71

maps the partition P" onto P?7L,

Thus KXZq is a full entropy factor for the system (T,Q%).
That is, the entropy of T is equal to the entropy of T modulo

the invariant factor TTEP acting on Q*/TTZP. With a minor abuse

PF i
of notation use the same letters for maps and partitions and

for their quotients by this invariant factor.

Then: -

A=l
hp(T,Pm) lim(l/n)HU( \/T“ipm)

- 1im(1/n)Hp(T_(n_1)Pm)

m( C““l_.\
%
- lim (1/n) ) (1/m!q" 1)log (m1q™ 1)

e )
V=0

= lim(l/n)log(m!qn_l)

= log q

Thus by (3):- hp(T) = log g



)

Lemma 2.2:-The Haar measure theoretic entropy of T on Q* is

log q, and a full entropy factor is Kqu

PEGUT .
Use the same partition P™ and the result (3). Then \V/Tle
is the partition:-

- on K into P™ itself. This is because each application of T

1

maps P" onto P™ % so that if n>max(m!,q), T'P™ is the trivial

partition.

- on ZP (p#q) into P" itself for the same reason as in Lemma 2.1;

since q is prime to p#q, "multiplying" or "dividing" by q is an

isometry fixing the lattice ZP

L

- on Zq, TP" is the natural pactition 4nto qm+1 sets (i.e.p™

so that we obtain the natural partition by cylinders into

m+n-1 m+n~1)

sets, each of m,-measure 1/(q

So Kqu is a full entropy factor for T-1 and by the same

abuse of notation as in Lemma 2.1:-

n-l

Lim (1/n)H, \/TiPm)

v=0

N |

|
lim (1/n) > (1/q)™* ™ 1150 (q0*m1

Il

s Y
J—La

11m(1/n)10g(qn+m_1)

lim (1+(m-1)/n)log q

log q

Thus by (3):- hp(T_l) - log g &



&' Jie

Now return to the map T induced by multiplication by a

general rational r on Q.

Theorem 2.3:-The Haar measure theoretic entropy of T acting on

Q* is given by:-

h,(T) - Llogjrlp

where the sum is taken over all inequivalent places of Q at
which the norm of r exceeds one. We include the real place and

real norm formally as one of the places P-

Proof.
This follows immediatly from the above lemmas: a full entropy

factor is KXTTZP where P is the set of primes appearing in the

numerator orFéenominator of r. Since this is a finite product

we have by the same abuse of notation as above:-

h (T) = h (T on K) + % h, (T on 2 )
H m B, |%
‘D
and the result follows by noticing from the proofs of the two
lemmas that on each Zp only powers of the prime p appearing
in r can do anything other than permute elements of a partition.
[
Remarks: -
(1)The "full entropy factors" chosen above are chosen so as to
include all of the stretching and contracting parts of T and to
ensure that the quotient map is well-defined.They therefore do

contain some factors not contributing to the entropy.

(2)If we write r=m/n, with (m,n)=1 and n positive then the

above formula becomes:-



wlf P

hU(T) - max{}ogru log[m|}
which is the result in Abramov's paper (1).
(3)The above calculations do not easily extend to higher
dimensions so in the next section we find a full entropy
factor for a map covering T in the form of a finite
product of finite-dimensional vector spaces over completions

of the rationals.
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Section Three: Higher-dimensional Solenoids

Use the construction of Corollary 1.3 so that (Q”“)d is

identified with (QA/Q)d and let T be an automorphism of (Q*)d
dual to some element (tij) of GLd(Q).
Let m:Qy, — QA/Q be the canonical epimorphism. Then the

following diagram commutes:-

% . >
”rfJ/ j1‘r
(Qv’:)d T ,(Q‘h'f)d

where T' is the map on the covering space defined by the same

matrix as was T.

Remarks: -
(1)The automorphism T on (Q""‘)d is an affine transformation of
a compact group so that (Walters,p.197) if p is Haar measure
on (Q”)d then:-

hp(T) = h(T)

where h with no suffix means topological entropy.

(2)Since Qg has a countable basis of open sets at the identity,
(see Section One or Weil,p.59) it is a metrizable topological
group (Hewitt and Ross,p.70) and a translation invariant metric

can be chosen. One such metric is:-

1 — - i s p
41 = Mgyl + ) -y g2
“’J



= Zi=

4 \ 4 \
_ _ i ii2.%4 B ﬁZi_iZ/’-
where Hxa)3%3l— (Z{}gm—qu ) " and pr YPNP = (‘ \xp yp\p) .
1=\ 1=\

Convergence is guaranteed since for all but finitely many places
x_ and y_ both lie in ZJ so that:-

% P P

pr—yp“pé;awfor all but finitely many p.

Then the quotient metric d induced on (Q*)d, given by:-
d(a,b) = inf {d'(x,y):w(x)=a, w(y)=b}

defines the topology of (Q*)d.

Also notice that1rz((QA)d,d')—~———%> ((Q*)d,d) is a local

isometry since Qd is discrete in Qz.

(3)T is uniformly continuous on (Q"“)d by compactness. T' is
uniformly continuous on Qg since it is uniformly continuous
on each quasi-component Qg or Rd and it is an isometry on
all but finitely many places. This is because the elements
of T' are rationals and for any rational r,\r$=1 for all but
finitely many p.

Thus, by (Walters,p.199), the topological entropy of T

on (Q"")d is identical to the topological entropy of T' on Qg.
Putting all three remarks together we conclude:-
h (T) = h(T'
p( ) (T")

Lemma 3.1:-If P is the set of primes appearing in the numerator

or denominator of elements of T, then RdXTTQg is a full entropy
i

factor for T'.
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Proof .
Similar to Lemmas 2.1 and 2.2. If p¢P, then T' fixes the
lattice Zg in Q? and can therefore not contribute to the entropy.

Alternatively, notice as above that on such a Qg, T' is an
]

isometry.

So the problem is now reduced to finding the topological

dx Qg, where

entropy of T' on the finite cartesian product R
T' acts as an automorphism of each component. Firstly, since

P is finite:-

h(T') = h(T' on RY) +S h(T' on Q%)
i
P
) ' d. N7 : ;
Lemma 3.2:- h(T' on R") —Zidlog|sﬂ where the sum is taken over

all eigenvalues of T with modulus exceeding one.

Proof.

See Walters p.201. E

In the sequel, write specp(T') for the roots of the
characteristic polynomial of T regarded as a polynomial over
Qp in some splitting extension of Qp for this polynomial.

Let p(x) = det(T-x-Id) be the characteristic polynomial
of T' and by the usual embedding QeQp regard p as a member of
Q]

Define the following metrics on Qg:—
4
d(x,y) = m?X“Xi—yﬂp}

d_(x,y) = max{d(T'*x, 1T'1y))
n o



1=

Let p(x) pTl(x)p?Z(x) ..... pzs(x) where each p; is

irreducible over Qp. Then T' is similar to a matrix M in
primary rational canonical form (Hungerford,p.360).

Remarks:-

(1)M has the form:-

1
Mo
M:
M
- L

; . . m, r Tim
where each M, is the companion matrix to p;i(x)=x ta, X0 TH..+ag
so that:-
Thus h(M, Q%) =5 h(M.,qf1)

P 1°'p

Also notice that r{+ry+...4r. = d = mldeg(p1)+...+mtdeg(pt).

(2)Notice that h(M) = h(T') since if M = S(T‘)S_1 where S is in
GL4(Q) then M" = S'(T'J'S™! so that the metrics d defined by T'
and the corresponding metrics defined by M are uniformly

equivalent.

(3)Let the solutions of pilbe SysesesS yn in F, the splitting
field for p; over Qp' So, counted according to multiplicity,

each s appears m; times in specp(T') or specp(M).For brevity,
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call a given Mi and p; M and p.
The unique norm on F that extends the usual p-adic norm

on Qp ig:-

B 1/deg(x)
jx, = lNF/Q(m’
P
where deg(x) is the degree of the minimal monic polynomial over
Q that has x as a zero.
P
Notice that h.[ =ls f for all i since there is an isometric
ilp 1lp
member of Gal(F:Qp) interchanging any two roots of p.

(see Koblitz,p.60 ff.)

In this case we have:-

pr(x) = xr+ar_1xr_1+...+a0
and so:- pli) = xr/m+...(a0)1/m
and hence:- ]sih)=|a0%/r

Since each coefficient of pm is a symmetric polynomial in the
roots s. this gives an upper bound on the size of the
coefficients:-
2 .
(r/m“)-(i/m)
lar-i'pé 'aolp
(4)The bound on the coefficients in (3) now gives an easy

description of the metrics dn'

The action of M is as follows:-



] G

[
LS|

M(x-y) =

_ao(xo_yO)_- . -_ar_l (Xr"],_yr_l)J

and so:-

_r-t . n-1
dn(x,y) = mgx{mi—yiky la.| \Xi_yﬂp""”aﬂp ki—yiﬁ}

1p

. I
Then if |aobsg1, dn=d and we get h(M,Qp) = 0.

Lemma 3.3:- h(M,Q;) =—7Tm-1ogs.

Lp
\snf,vl
. {0 if |s;\ 51
r-l s b marks.
0og 1p y remar

Proof.

From (4) above, assume without loss of generality that
\sllp>1 so that \aol;/m>l.

We then have:-
n-1 '
dn(x,y) = poh) .maxhxi—yﬂp}

by the remarks.

Thus a minimal (n,¢)-spanning set for the compact set Z; 1ge~
S=={X€ZE: the first m co-ordinates of each X; are fixed}
where m is the smallest positive integer satisfying:-
p D E/Zo\aolg_l

The cardinality of S is r-pm.



=
So, to within a factor pe (1/p,p) , we have the equality:-

r n-1
rn(i, Zp) = pr-(Z’aOIP )/ ¢

Then: - r(ﬁ,Z;) = limsup (1/n)log rn(i,Z;)
. n-1
= 11msup(1/n)10g(pr.2-aOp /5 )
- 1imsup(l—l/n)log(Z(pr)(1/(n_1))a0P/g%““)
= log]aok
Hence: - h(M,Z;) = 1og[a0h
= r-log[sﬂp
e
= Hmlog‘silp
\
Now notice that h(M,p_NZE) = h(M,Z;) where p-NZE = (p_NZiS)r
for any integer N by a similar calculation:-
. =N,r, _ n+N-1., ,
rn(z,p ZP) = ff- (2 20 5 Yig
N.r

so as n tends to infinity in the expression for r(¢,p- Zp)

we get:-
- =N_r W
(¢, & ) = it )
rit,p 2, p

Lastly, let K be any compact set in Q;. Then there exists an

N such that p-NZE:)K so (Walters,p.172) we have:-
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h(M,p—Nz;)yh(M,K)
. SN
Thus: - h(M) = 1imh(M,p Zp)
= h(M,z7)
( p
_ 0 if[31H§1
r-logml\p otherwise n

Theorem 3.4:-The Haar measure theoretic entropy of T on (Q*)d

is given by:-

hH(T) = 2 IOgISi,pb

where{si p} = specp(T) and the sum is taken over all places and
all eigenvalues with p-adic norm exceeding one. Here we

formally include the real place as the "infinite" place.

Proof.

This is all shown above:-

hp(T) h({(T") by the end of the remarks

h(T' on a finite full entropy factor)

Il Il Il
P/ M N
— — —~
(@] O =3
g9 0)e] -
w 7 i
e R =
o +
MY
= ~—
O =
[0)¢] H
" O
S i
H
"?_- ~—
e
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Remarks.

(1)Yuzvinskii's formula for the Haar measure theoretic entropy

of T fgm=
d
hp(T) = logs + h(T on R") (1)

where s is the least common denominator of the coefficients
of the characteristic polynomial of T.

Lind states in (5) that this is equivalent to the sum of
the entropies of the induced maps on all the inequivalent
places of Q. He also has the expression in 3.4.

In order to show the equivalence of Theorem 3.4 and (1)
above, we will use the following facts about Newton polygons
from Koblitz.

Let f(x) = Xd+bd_1xd_1+...+bO be a polynomial over Qp
and let F be a splitting field with p-adic norm extending that
on Qp as used above. The Newton polygon of f is defined to be
the convex hull of the points (i,ordpbi) with the convention
that orde = ®. Then if a segment of the polygon has slope p
and horizontal length N then f has exactly N zeroes s; with
ordp(si) = -p. The converse is clearly true.

Let f as above be the characteristic polynomial of T.

Notice that:-

1 =N logh
og s L og | /s\p
5

-this is true of any positive integer.
At a given prime p where ordp(s) is strictly positive
so that this place contributes to the above sum, we can assume

by the arguments used in the remarks of this section that f is



-,

irreducible over Qp' Then: -

1.
so that:- ordp(bd_i);;-i-ordp(bo) (a)
Let ord s =n = -ordp(bd_i) for some i. We then have:-
ordp(bj)f; ordp(bd_i) for all j. (b)

By the remark (3) all the zeros of f have:-

_ _ 1/d
lsih)_lsljp'_'bolp
so that:- ordp(si) = ordp(bo)/d

So the Newton polygon has the shape:-

d-i d

Ordp(bo) Pl

(d—l)ordp(bo -
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(a) requires that all the points lie above the dotted line.(b)
requires all the points to lie above the horizontal line
through (d—i,ordp(d—i) ) .However, all the roots have the same
order so all the points must lie above the solid line also.

These three conditions can only be satisfied if i=d. That is:-
ordps =—ordp(b0)

Thus, ll/slp = |b0|p==’81|$. This means that:-

logfl/s[p = > log]silp
S|

This shows the equivalence of Theorem 3.4 and Yuzvinskii's

formuta (1).

(2)The above results show that the action of T on the solenoid
locally is very simple. At a neighbourhood of the origin, the
solenoid looks like a cartesian product of real lines and p-adic
Cantor sets and the entropy agrees with the 'stretching' done

by T in each of the "directions' associated with eigenvectors.
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Section Four: Solenoids from Algebraic Number Fields

In this section we check that nothing goes wrong when Q
is replaced by k in the preceding sections, where k is an
algebraic extension of the rationals. We also explain the

observation made in Corollary 1.3.

Lemma 4.1:-The group of adeles of an algebraic number field is
isomorphic to its dual. The isomorphism is determined by any

character on kA which vanishes on k but is not trivial.

Proof.(See Weil,p.60ff)

Consider the case k = Q first. We can define non-trivial
characters on QA which are trivial on Q since Q is discrete in
the group of adeles. One such character p can be obtained by

setting:-

pm(xm)::eprimﬂxm)
and letting pp be trivial on each Zp' Notice that any continuous
character on Qy must be trivial on all but finitely many of the
Zp since it must restrict to a continuous character on an
infinite product of compact groups.

The character induced on a given quasi-factor by p can

be found as follows. If xeQ® then erq for all primes g#p

so that:-
p(x) = p&ﬁx)pp(x) =1

since the character is trivial on Q. Thus:-
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pp(x) = exp( 2w ix)

This determines pp completely since Q is dense in Qp and p is
continuous.

Notice from the above that we can write:-

5 =TTe,
P

including the real place as one of the p's and with convergence
guaranteed since the up are trivial on all but finitely many Zp
and when evaluated on a given adele, Lhe adele will be in Zp
for all but finitely many places.

Now let p' be any element of QK. Then, since each Qp is a

non-discrete field, and each My is non-trivial we have:-
' = ( )
pp(x) up a X

for some ap in Qp, and this ap is uniquely determined by the
above equation.

As usual, pﬁ must be trivial on all but finitely many Zp
Now notice that 1 is the topological generator of each Zp so
this condition is exactly equivalent to requiring that pp(ap)==1
for all but finitely many p. Thus a = (a_) is itself an adele

p
and we can write:-

p'(x) = pla-x)

This mapping from QK into QA is therefore surjective. It is
easily seen to be a monomorphism and continuous. Duality then

shows this map to be a homeomorphism.
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For the case where k is an algebraic extension of Q, we
simply identify k with Qn as additive groups and notice that
(Qn)A - the adele group of a vector space - is still isomorphic
to kA (see Weil,p.62) and this isomorphism sends (Zp)n to r, in
all but finitely many places, where v is a place above p. What
this means is that we can find a character on kA by which to do
the same construction as we did for QA' T.£ Wpseees W is a Q-
basis for k then we could choose the character:-

B W+ e AR W) = B+ oo +X )

18} T

Notice also that the kernel of the character induced by
B on Qp (and hence by u on kv) is exactly Zp (rv) for all but

finitely many p (v). [ |
Lemma 4.2:-The solenoid k* is isomorphic to kA/k.

Proof.
We are done if we can show that the mapping in 4.1 sends
k* to k. This is clear:- if p'(x) =1 for all xek and

u'(x) = p(ax) then axek for all xek so that ack. oy

Let Wiseoo W, be an integral basis for k over Q. Then if

v 1s a place of k lying above the place p of Q we have:-
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Now consider an automorphism of (k¥*)° given by a matrix
T In GLS(k). We have (k*)° = Féﬁ(TTfs.

As in section three, (k*)° is a compact metrizable group
and T is an affine transformation so that the Haar measure
theoretical entropy of T is equal to the topological entropy.
Further, we have a commuting diagram with a locally isometric

projection 1:-

S S
(kA) '(kA)
’;T' Tr
s T . s
(kA/k) —7(kA/k)

Thus the problem is reduced to finding the topological entropy
in the sense of Bowen of the lifted automorphism T' acting on

the adele space (kA)s.
Lemma 4.3:-A full entropy factor for T' on (kA)S is:-
n s s
(@ wiR) XURV

where V is the finite set of places at which any one Of’tiﬂv’

jdet‘ﬂv takes on a value not equal to one.

Procof.

Section three, mutatis mutandis. The lattice ri is clearly

fixed at any place not in V and therefore such a quasi-factor

cannot contribute to the entropy. u

Thus we have reduced the problem to that of finding the

Bowen entropy of T' acting on ks for a given v.
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Consider first a finite place v. As in section three, we
can assume without loss of generality that T is in primary—kv
rational canonical form. So T is the direct sum of block

matrices of the form:-

B I Desswsasns 0

0 \\\\\\\\\ .
M=l = 1

-bo ........... —br_

r-1

where p(x) = x"+b_ .x* "+ ... +b, is the characteristic poly-

r=1
nomial of M and is an irreducible element of ko x].

So we only need to find the Bowen entropy of M on ki.

Lemma 4.4:-0On a finite place v, we have:-

1 b if |b g |
h(M on ki) = Og](JV ' ICJV

0 18 LA T

Proof.

We observe that the metric dn is given by:-

|

ol : ;
dn(E,Z) - ﬂ:)l_agCUTJXl-TJyllv}

max{H%Js-dl(g,z) 3 dl(§,1i¥

Then on the compact set B, = wlZp+ g 5 ¥ +wnZP the same calculation

as in section three yields:-

h(T.2T) _ log|b |, LE [l d
3 v -

0 if b |, <1



<O
and hence the required formula. 3

We now sum the entropies over all the blocks at this place

to obtain:-

s E
h(T on kv) = 1ogkgdv

where {si}: specV(T) and the sum is taken over all eigenvalues
with norm exceeding one.
The entropy of T' on an infinite place is clearly given
by the same formula with v replaced by an infinite place.
Summing the above results over the finite full entropy

factor we obtain the following analogue of Theorem 3.4:-

Theorem 4.5:-The Haar measure theoretic entropy of T on the

solenoid (k*)° is given by:-

b, (T) = g 1ogbi,vkr

where {si V}= specV(T) and the sum is taken over all places and
?
all eigenvalues with norm at the place v exceeding one. Here we

include the infinite places as some of the v's.

Remark.

We can also easily describe the analogue of section one.
An element of k* is an automorphism of k and induces an auto-
morphism of k*. Notice that tek”™ has Iﬂvzrl for all but

finitely many places and t is therefore an element of the group

of ideles when embedded. (That is, t has a multiplicative

inverse in the group of adeles).
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As usual, the Haar measure theoretic entropy of the action
of t is equal to the topological entropy of t acting as an idele

on the group of adeles. Here there is a finite full entropy

factor and we obtain:-

hp(t on k¥*) = g loghjv

where the sum is taken over all finite and infinite places at

which the norm of t exceeds one.
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