
Chapter 6

Lie Algebras and Unitary
Representations of SU2(R)

We continue the discussion of unitary representations and develop some gen-
eral tools for unitary representations of Lie groups. In particular this will
allow us to describe the representation theory of the compact group SU2(R),
which represents an important example. For this we will sometimes use the
following notational conventions in addition to the standing assumptions and
notations of Section 1.1.

• If G is a real not necessarily connected Lie group, then we write g = LieG
for its Lie algebra and write a,b, c,d, e ∈ g for its elements. Recall that
there is a smooth map exp: g → G with a local inverse log : BGδ (I) → g

defined on some neighbourhood BGδ (I) of the identity I ∈ G with δ > 0.
• We will use the letters s, t to denote real numbers.

6.1 Finite-Dimensional Representation Theory of SL2(R)

For the classification of simple (and semi-simple) Lie groups and their finite-
dimensional representations the most important Lie group to understand
is SL2(R). As we will see later (in Chapters 8 and 9), this remains true for
the theory of unitary representations. As a warm-up for this discussion as
well as because of its independent interest, we study in this chapter the twin
sibling SU2(R) of SL2(R). In fact, as we will explain shortly these two groups
are strongly related: SU2(R) is the compact real form, and SL2(R) is the
split real form, of the complex Lie group SL2(C), and they have identical
descriptions of their finite-dimensional representations (which can be made
unitary for SU2(R) but are not unitary except in trivial cases for SL2(R); see
Exercise 1.79 and 1.81). As before, we will always study representations on
complex vector spaces.
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260 6 Lie Algebras and Unitary Representations of SU2(R)

6.1.1 A Quick Reminder on Closed Linear Groups

Many facts concerning the connection between Lie groups and their Lie al-
gebras are easy to verify for closed linear Lie groups G < GLn(R) using only
the properties of the exponential map

exp: Matn,n(R) −→ GLn(R)

m 7−→ exp(m) =

∞∑

k=0

1
k!m

k.

One such basic property is that the derivative of exp is the identity map
on Matn,n(R), which is also referred to as the Lie algebra gln(R) of GLn(R).
Using this we can calculate, for example, the adjoint representation, de-
noted Ad, of GLn(R) on its Lie algebra gln(R), which is defined by the
derivative of conjugation at the identity for any g ∈ GLn(R). This gives

Adg(m) =
d

dt

∣∣∣∣
t=0

(
g exp(tm)g−1) = g

d

dt

∣∣∣∣
t=0

(
exp(tm)

)
g−1 = gmg−1

for all m ∈ gln(R), where the last three expressions involve the usual product
of matrices. The adjoint representation, denoted ad of gln(R) on gln(R) is
defined as the derivative of the map

GLn(R) ∋ g 7−→ Adg ∈ gln(R).

By the product rule, this gives

ada(m) =
d

dt

∣∣∣∣
t=0

(
exp(ta)m exp(−ta)

)
= am−ma = [a,m] (6.1)

for all a,m ∈ gln(R). We also call the map

[·, ·] : gln(R)× gln(R) −→ gln(R)

the Lie bracket. This is a bilinear map satisfying

[a,b] = −[b, a]

for all a,b ∈ gln(R).
Moreover, the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a,b]] = 0 (6.2)

can be checked by a direct calculation. Equivalently, we have

[[a,b], c] = [a, [b, c]]− [b, [a, c]]
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6.1 Finite-Dimensional Representation Theory of SL2(R) 261

for all a,b, c ∈ gln(R), which can also be written as

ad[a,b] = [ada, adb] = ada ◦ adb− adb ◦ ada

for all a,b ∈ gln(R), where ad· is defined in (6.1).
We note that these facts generalize without too much effort to closed

linear subgroups G of GLn(R), and that these cases will suffice for all of our
discussions.

Essential Exercise 6.1. (a) Show that any continuous homomorphism

g· : R ∋ t 7−→ gt ∈ GLn(R)

is differentiable.
(b) Show that the map gln(R) ∋ m 7→ {gt = exp(tm)} is a bijection be-
tween elements m of the Lie algebra gln(R) and differentiable one-parameter
subgroups as in (a).

6.1.2 The Lie Groups SU2(R) and SL2(R)

We recall the definition of the real Lie group

SL2(R) =
{
g =

(
a b
c d

)
∈ Mat22(R) | det g = ad− bc = 1

}
,

called the special linear group in 2 dimensions, and its Lie algebra

sl2(R) = {m ∈Mat22(R) | trm = 0},

which contains all elements of the form

m =

(
a b
c −a

)

for a, b, c ∈ R. As in any Lie group, the Lie algebra has the property
that exp

(
sl2(R)

)
is an open neighbourhood of the identity I ∈ SL2(R) and

so can be used to describe SL2(R) locally.
We will frequently use the basis of sl2(R) given by

a =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, (6.3)

which we will refer to as the sl2-triple. These three elements satisfy the fol-
lowing relations
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262 6 Lie Algebras and Unitary Representations of SU2(R)

[a, e] =

(
1 0
0 −1

)(
0 1
0 0

)
−
(
0 1
0 0

)(
1 0
0 −1

)
= 2e

[a, f ] =

(
1 0
0 −1

)(
0 0
1 0

)
−
(
0 0
1 0

)(
1 0
0 −1

)
= −2f

[e, f ] =

(
0 1
0 0

)(
0 0
1 0

)
−
(
0 0
1 0

)(
0 1
0 0

)
= a.





(6.4)

In other words, with respect to the map ada = [a, ·] : sl2(R) → sl2(R), e is
an eigenvector with eigenvalue 2, f is an eigenvector with eigenvalue −2, a
is an eigenvector with eigenvalue 0, and e and f together generate a. As
a consequence, the number 2 will be quite prevalent in the representation
theory of SL2(R). Much of what we wish to discuss here will use these simple
relations. We also note that we have been using versions of the relations (6.4)
within SL2(R) already in Section 1.7.

We will also use the complex Lie group

SL2(C) =
{
g =

(
a b
c d

)
∈ Mat22(C) | det g = ad− bc = 1

}
,

and, more specifically, its complex Lie algebra

sl2(C) = {m ∈Mat22(C) | trm = 0},

which also has the Lie algebra elements a, e, and f as a basis over C. A more
formal way of stating this is to say that there is an isomorphism

sl2(C) ∼= sl2(R)⊗R C, (6.5)

where sl2(R)⊗RC is the complex Lie algebra obtained by bilinearly extending
the Lie bracket map from R to C. Because of the isomorphism in (6.5) we also
say that sl2(R) is a real form or, more specifically, the split real form of sl2.
We now turn our attention to the only other real form (up to isomorphism).

The special unitary group

SU2(R) = {g ∈Mat22(C) | g∗g = I, det g = 1},

is a real Lie group with Lie algebra

su2(R) = {m ∈ Mat22(C) |m∗ +m = 0, trm = 0}.

We note that these are not a complex Lie group and Lie algebra since the
adjoint operation is semi-linear over C. The elements of su2(R) have the form

m =

(
ai bi− c

bi + c −ai

)

for a, b, c ∈ R and we may use the basis
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6.1 Finite-Dimensional Representation Theory of SL2(R) 263

b1 =

(
i 0
0 −i

)
, b2 =

(
0 i
i 0

)
, b3 =

(
0 −1
1 0

)
(6.6)

with the relations

[b1,b2] =

(
i 0
0 −i

)(
0 i
i 0

)
−
(
0 i
i 0

)(
i 0
0 −i

)
= 2b3

[b2,b3] =

(
0 i
i 0

)(
0 −1
1 0

)
−
(
0 −1
1 0

)(
0 i
i 0

)
= 2b1

[b3,b1] =

(
0 −1
1 0

)(
i 0
0 −i

)
−
(
i 0
0 −i

)(
0 −1
1 0

)
= 2b2.





(6.7)

Since the elements in (6.6) are also a basis of sl2(C) over C, we obtain once
more an isomorphism

sl2(C) ∼= su2(R)⊗R C

so that su2(R) is a real form of sl2(C) which is called the compact real form
since SU2(R) is compact.

To better understand su2(R) and SU2(R), we may also present these in
equivalent ways as in the next lemma.

Lemma 6.2 (Two isomorphisms). (a) The vector space R3 equipped with
the cross product is a Lie algebra isomorphic to su2(R).
(b) The sphere S3 ⊆ H inside the four-dimensional Hamiltonian quater-
nions H = R + Ri + Rj + Rk forms a real Lie group with respect to mul-
tiplication so that S3 ∼= SU2(R) as real Lie groups.

Proof of Lemma 6.2(a). The cross product map



x
y
z


×



α
β
γ


 =



yγ − zβ
zα− xγ
xβ − yα




for 

x
y
z


 ,



α
β
γ


 ∈ R3

is bilinear and antisymmetric, just as a Lie bracket is. Also note that we have
the relations e1 × e2 = e3, e2 × e3 = e1, and e3 × e1 = e2. We define a linear
map ϕ : R3 → su2(R) by

ϕ(e1) =
1
2b1,

ϕ(e2) =
1
2b2,

ϕ(e3) =
1
2b3.

Then ϕ is a linear isomorphism which satisfies ϕ(a× b) = [ϕ(a), ϕ(b)]. In fact
this follows first for a and b being any two basis vectors in positive order by
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264 6 Lie Algebras and Unitary Representations of SU2(R)

dividing the relations in (6.7) by 4. By antisymmetry of the cross product and
the Lie bracket this extends to any two basis vectors. Finally, by bi-linearity of
the cross product and the Lie bracket this extends to all a, b ∈ R3. As su2(R)
is a Lie algebra, the same therefore holds for R3 with the cross product,
proving (a). �

Proof of Lemma 6.2(b). We recall first that the Hamiltonian quaternions
are defined by

H = R+ Ri+ Rj+ Rk

where i, j, k are formal symbols satisfying the four relations†

i2 = j2 = k2 = −1,
ij = −ji = k,

jk = −kj = i, and

ki = −ik = j.

We may identify H with

{(
z −w
w z

)
| z, w ∈ C

}
⊆Mat22(C)

because the matrices b1, b2, b3 in (6.6) satisfy these relations so that

ϕ : H ∋x+ai+bj+ck 7−→ xI+ab1+bb2+cb3 =

(
x+ ai bi− c
bi + c x− ai

)
∈Mat2,2(C)

is an algebra isomorphism to a sub-algebra of Mat2,2(C).
The norm operator defined by

N(x+ai+bj+ck) = x2 + a2 + b2 + c2 = detϕ(x+ai+bj+ck)

for x, a, b, c ∈ R satisfies N(gh) = N(g)N(h) for all g,h ∈ H. It follows that

S3 = {g ∈ H | N(g) = 1}

is a Lie group under multiplication, which is mapped under ϕ to

ϕ
(
S3
)
=
{
g =

(
z −w
w z

)
| z, w ∈ C, det g = |z|2 + |w|2 = 1

}
.

Note that

g =

(
z −w
w z

)
∈ ϕ

(
S3
)

satisfies

†
These relations are easy to reconstruct because of their symmetry under cyclic permu-

tations.
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6.1 Finite-Dimensional Representation Theory of SL2(R) 265

g∗g =

(
z w
−w z

)(
z −w
w z

)
=

(
|z|2 + |w|2 0

0 |z|2 + |w|2
)

= I

and so ϕ
(
S3
)
⊆ SU2(R). Conversely, if

g =

(
z z1
w w1

)
∈ SU2(R),

then

∥∥∥∥
(
z
w

)∥∥∥∥ = 1 and

0 =

〈(
z
w

)
,

(
z1
w1

)〉
=

〈(
z
w

)
,

(
−w
z

)〉

implies that

(
z1
w1

)
= α

(
−w
z

)
for some α ∈ C. Taking the determinant this

gives

1 = det g = det

(
z −αw
w αz

)
= α|z|2 + α|w|2 = α.

This proves that ϕ
(
S3
)
= SU2(R), and hence part (b) of the lemma. �

The following lemma describes the above Lie groups from a topological
point of view.

Lemma 6.3 (Topological properties). (a) The groups SL2(R), SU2(R),
and SL2(C) are connected.
(b) The Lie groups SU2(R) and SL2(C) are simply connected.

(c) The universal cover S̃L2(R) of SL2(R) is a Z-cover of SL2(R).

Proof. For SU2(R) both (a) and (b) follow easily from Lemma 6.2(b)
since SU2(R) ∼= S3 is connected and simply connected.

The facts concerning SL2(R) and SL2(C) follow from the Iwasawa decom-
position of these groups, as we will now show.

For SL2(R), let

A =

{(
t

t−1

)
| t > 0

}
,

U =

{(
1 x
1

)
| x ∈ R

}

and K = SO2(R). Then every element g ∈ SL2(R) has a unique decomposi-
tion g = kau with k ∈ K, a ∈ A, and u ∈ U by the Iwasawa decomposition
(see Exercise 6.4). This gives a homeomorphism SL2(R) ∼= KAU ∼= S1 × R2

which proves the claims in (a) and (c) for SL2(R).
For SL2(C) we have A as before,
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266 6 Lie Algebras and Unitary Representations of SU2(R)

U =

{(
1 α
1

)
| α ∈ C

}
,

and K = SU2(R) ∼= S3, which gives a homeomorphism

SL2(C) = KAU ∼= S3 × R3,

and hence the remaining claims in the lemma. �

Exercise 6.4 (Euclidean meaning of Iwasawa decomposition). Give a proof of the

Iwasawa decomposition for SL2(R) (or of SLd(R) for d > 2) using the Gram–Schmidt
orthonormalization procedure.

6.1.3 A Quick Review of Lie Algebra Representations

Let us start by recalling that for a representation

ρ : G ∋ g 7−→ ρg ∈ GL(W )

on a finite-dimensional vector space W of a (real or complex) Lie group G
we can take the derivative of ρ at the identity,

Dρ : g −→ gl(W ) = Hom(W )

to obtain a representation of the Lie algebra g of G. The exponential map
satisfies together with the derivative Dρ the categorical property

ρ ◦ exp = exp ◦Dρ, (6.8)

see Exercise 6.5. We will use these facts to show that Dρ is a Lie algebra
homomorphism, meaning that it satisfies

Dρ
(
[b, c]

)
= [Dρ(b),Dρ(c)] (6.9)

for all b, c ∈ g.
For this, consider first some g ∈ G and c ∈ g. Then, by definition, the

adjoint representation applied to g and c is given by

Adg(c) =
d

dt

∣∣∣∣
t=0

g exp(tc)g−1.

For the element ρg and the Lie algebra element Dρ(c) for some c ∈ g, this
gives
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6.1 Finite-Dimensional Representation Theory of SL2(R) 267

Adρg (Dρ(c)) =
d

dt

∣∣∣∣
t=0

ρg exp(Dρ(tc))ρ
−1
g

=
d

dt

∣∣∣∣
t=0

ρgρ(exp(tc))ρ
−1
g (by (6.8))

=
d

dt

∣∣∣∣
t=0

ρ
(
g exp(tc)g−1) = DρAdg(c), (6.10)

where we also used the homomorphism property of ρ and the chain rule for
differentiation. If now b, c ∈ g then we can set g = exp(tb) and use the
defining property

[b, c] = adb(c) =
d

dt

∣∣∣∣
t=0

Adexp(tb)(c)

in the same way. In fact we have

[Dρ(b),Dρ(c)] =
d

dt

∣∣∣∣
t=0

Adexp(Dρ(tb))

(
Dρ(c)

)

=
d

dt

∣∣∣∣
t=0

Adρ(exp(tb))
(
Dρ(c)

)
(by (6.8))

=
d

dt

∣∣∣∣
t=0

DρAdexp(tb)(c) = Dρ[b, c]. (by (6.10))

Hence the study of finite-dimensional representations of G leads to the study
of representations of g. Below we will also denote the representation of g

induced from a representation ρ of G by ρ.
Let V ⊆W be a subspace of a finite-dimensional vector space W carrying

a representation ρ of a Lie group G. If V is invariant under ρ(G), then by
taking derivatives we see that V is also invariant under ρ(g). If G is connected,
the reverse also holds. This follows, since ρ(c)V ⊆ V for c ∈ g implies by (6.8)
that

ρ
(
exp(c)

)
V = exp

(
ρ(c)

)
V ⊆ V

for all c ∈ g, which then extends to ρ(g)V ⊆ V for all g ∈ Go = G (since the
subgroup generated by exp(g) is open).

In particular, for the connected groups SL2(R), SL2(C), and SU2(R) the
notions of irreducibility for finite-dimensional representations of the Lie group
or of the Lie algebra coincide.

As discussed above, any finite-dimensional representation of G gives rise
to a representation of its Lie algebra g. However, the converse to this is a bit
harder to prove and only states that every finite-dimensional representation
of g gives rise to a finite-dimensional representation of the universal cover G̃
ofG. In the case ofG = SL2(C) andG = SU2(R) this and Lemma 6.3 explains
the correspondence between the irreducible representations of G and its Lie
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268 6 Lie Algebras and Unitary Representations of SU2(R)

algebra in Theorem 6.6 below. However, for G = SL2(R) this correspondence
is a special feature.

Essential Exercise 6.5. Let G be a Lie group with Lie algebra g, and
let ρ : G→ GL(W ) be a finite-dimensional representation of G.
(a) Show that ρ is differentiable (in doing so, use the fact that exp: g → G
is smooth and has a local inverse near the identity).
(b) Show the categorical property (6.8) of the exponential map.

6.1.4 Irreducible Representations of the Lie Algebra

We now specialize to the case g = sl2(C) and classify its irreducible represen-
tations in the next theorem, which is crucial for the representation theory of
all semi-simple Lie groups and the classification of semi-simple Lie groups.

Theorem 6.6 (Irreducible representations of sl2). The irreducible finite-
dimensional representations of sl2(C) (respectively of sl2(R) or su2(R)) are
in a natural one-to-one correspondence with the elements of N0. In fact for
every n ∈ N0 the representations of SL2(C) on the symmetric tensor product

Symn(C2) =
{ n∑

k=0

αke
⊙k
1 ⊙ e

⊙(n−k)
2 | α0, . . . , αn ∈ C

}

gives rise to an irreducible representation of sl2(C). By restriction, we also
obtain irreducible representations of SL2(R), or SU2(R), and of the Lie al-
gebras sl2(R) and su2(R). Any irreducible finite-dimensional representation
of sl2(C), of sl2(R), or of su2(R) is isomorphic to one of these.

Before we begin the proof of the theorem we first wish to describe the
representations on Symn(C2) in more detail.

Given a finite-dimensional vector space W and a representation ρ of a
group G on it, one can define the symmetric tensor product

Symn(W ) = 〈w1 ⊙ w2 ⊙ · · · ⊙ wn | w1, . . . , wn ∈ W 〉

as the linear hull of all formal commuting products of n vectors in W with
the product map

Wn ∋ (w1, . . . , wn) 7−→ w1 ⊙ · · · ⊙ wn ∈ Symn(W )

being multilinear. In fact

Symn(W ) =

n⊗
W/〈w1 ⊗ · · · ⊗ wn − wσ(1) ⊗ · · · ⊗ wσ(n) | σ ∈ Sn〉,
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6.1 Finite-Dimensional Representation Theory of SL2(R) 269

where Sn again denotes the symmetric group of {1, . . . , n}. For n = 0 we
define Sym0(W ) = C. We refer to Hungerford [34] for more details.

Moreover, any linear map A ∈ Hom(W,W ) can be used to induce a linear
map Symn(A) ∈ Hom

(
Symn(W ), Symn(W )

)
with

Symn(A)(w1 ⊙ · · · ⊙ wn) = (Aw1) ⊙ · · · ⊙ (Awn).

Returning to the setting of Theorem 6.6, we note that C2 carries the
standard representation ρ defined by the linear action ρg : C

2 ∋ v 7→ gv ∈ C2

of SL2(R), SL2(C), or SU2(R). This defines the representation on Symn(C2)
for all n ∈ N, where n = 1 corresponds to the standard representation. In the
special case n = 0 we use the trivial representation on Symn(C2) = C.

If we instead letW be the vector space of linear maps on C2, then Symn(W )
becomes the space of homogeneous polynomials of degree no more than n
on C2. The isomorphism Symn(C2) ∼= Symn(W ) would also follows from
the proof of the theorem below, but let us indicate briefly where it comes
from. In fact, we will show that the standard representation on C2 and the
representation ρ on W are isomorphic. Let

g =

(
a b
c d

)
∈ SL2(C)

and then send the linear map f defined by f(X,Y ) = αX + βY to

f ◦ g−1 :

(
X
Y

)
7−→ g−1

(
X
Y

)
7−→ (α, β)g−1

(
X
Y

)
.

In terms of the basisX,Y (dual to the standard basis of C2), this corresponds
to the map

ρ(g) =
(
g−1

)t
=

(
d −b
−c a

)t

=

(
d −c
−b a

)
=

(
−1

1

)(
a b
c d

)(
1

−1

)
,

or ρ(g) = kgk−1 for all g =

(
a b
c d

)
∈ SL2(C), where k =

(
−1

1

)
.

This shows that the standard representation of SL2(C) on C2 and its
dual on W are isomorphic, which is a special property of SL2(C) due to the
special rule for calculating g−1. This isomorphism can be used to find the
isomorphism between Symn(C2) and Poln(C

2).

Proof of irreducibility. Let us now work with the representation on the
space Symn(C2) of G = SL2(C) or G = SL2(R). The trivial representation
corresponding to n = 0 is clearly irreducible.
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We now assume that n > 1. For a =

(
1
−1

)
and t ∈ R we have

exp(ta) =

(
et

e−t

)

and ρ
(
exp(ta)

)
e1 = ete1 and ρ

(
exp(ta)

)
e2 = e−te2 for the representation

on C2 and hence

Symn(ρ
(
exp(ta)

))(
e
⊙k
1 ⊙ e

⊙(n−k)
2

)
=
(
ete1

)⊙k
⊙
(
e−te2

)⊙(n−k)

= ekt−(n−k)te
⊙k
1 ⊙ e

⊙(n−k)
2

for k = 0, . . . , n. This shows that exp(ta) acts diagonally on Symn(C2) with

eigenvalues e−nt, e(−n+2)t, . . . , e(n−2)t, ent. Taking the derivative, we also ob-
tain that the Lie algebra element a acts diagonally via

Symn(a) =
d

dt

∣∣∣∣
t=0

Symn(ρ
(
exp(ta)

))
,

with eigenvalues −n,−n+ 2, . . . , n− 2, n.

For e =

(
0 1
0

)
and t ∈ R we have exp(te) =

(
1 t
1

)
and ρ(exp(te))e1 = e1

and ρ(exp(te))e2 = te1 + e2 for the representation on C2 and hence

Symn(ρ(exp(te))
)(
e
⊙k
1 ⊙e

⊙(n−k)
2

)
=e

⊙k
1 (te1+e2)

⊙(n−k)

= e
⊙k
1

(
e
⊙(n−k)
2 +te1

(
n−k
1

)
e
⊙(n−k−1)
2 +· · ·

)
,

where the dots indicate the terms of order two and higher with respect to
the variable t. Taking the derivative at t = 0, this gives

Symn(e)(e
⊙k
1 ⊙ e

⊙(n−k)
2 ) = (n− k)e⊙(k+1)

1
⊙ e

⊙(n−k−1)
2 (6.11)

and similarly

Symn(f)(e
⊙k
1 ⊙ e

⊙(n−k)
2 ) = ke

⊙(k−1)
1

⊙ e
⊙(n−k+1)
2 (6.12)

for all k = 0, . . . , n.
Suppose now that V ⊆ Symn(C2) is non-trivial and invariant under Symn.

Since Symn(a) is diagonal with n+ 1 different eigenvalues, it follows that

e
⊙k
1 ⊙ e

⊙(n−k)
2 ∈ V

for some k ∈ {0, 1, . . . , n}. However, using (6.11) and (6.12) we also see that
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e
⊙(k+1)
1

⊙ e
⊙(n−k−1)
2 ∈ V

if k < n, and

e
⊙(k−1)
1 e

⊙(n−k+1)
2 ∈ V

if k > 0. Iterating this shows that V = Symn(C2) contains all basis vectors,
and irreducibility of our representation on Symn(C2) follows. �

As already visible in the proof above the eigenvectors of ρ(a) and their
eigenvalues play an important role in the theory. Hence they deserve a spe-
cial name: the eigenvalues of ρ(a) are called weights and the corresponding
eigenvectors are called weight vectors. Moreover, the numbers 2 and −2 are
called the roots and the vectors e, f ∈ sl2(C) the root vectors.

Proof of completeness. We now will show that for G = SL2(C) and
forG = SL2(R) the list of irreducible finite-dimensional representations above
is complete. For this we let W carry an arbitrary finite-dimensional repre-
sentation ρ of the Lie algebra g of G. Later we will assume that ρ is irre-
ducible, but the initial part of the construction is more general. Since W is
finite-dimensional, ρ(a) ∈ Hom(W ) must have at least one weight, that is an
eigenvalue of ρ(a). Let us assume that λ0 ∈ C is a weight with the property
that ℜλ0 is maximal in the set {ℜλ | λ is a weight}. Let w0 ∈W be a weight
vector for weight λ0. We will be using ρ(f) and the following more general
claim to find more weight vectors with weights λ0 − 2, λ0 − 4,... which will
lead to a complete classification of W .

Fundamental calculation. If v ∈W is a weight vector for weight λ, then
we claim that ρ(e)v and ρ(f)v are weight vectors for weight λ+ 2 and λ− 2
respectively (but might be zero).

The proof of the claim is rather simple. Indeed, using the defining prop-
erty (6.9) of a Lie algebra homomorphism and the defining properties of
the sl2-triple in (6.4), we have

ρ(a)ρ(e)v =
(
ρ(a)ρ(e) − ρ(e)ρ(a)

)
v + ρ(e)ρ(a)v

=
[
ρ(a), ρ(e)

]
v + ρ(e)λv

= ρ
(
[a, e]

)
v + λρ(e)v

= ρ(2e)v + λρ(e)v = (λ+ 2)ρ(e)v.

Similarly, we obtain

ρ(a)ρ(f)v = [ρ(a), ρ(f)]v + ρ(f)ρ(a)v

= ρ
(
[a, f ]

)
v + λρ(f)v = (λ − 2)ρ(f)v.

Construction of eigenvectors. Let w0 ∈ W be a weight vector with
maximal real part of its weight λ0 as above. By the fundamental calcula-
tion ρ(e)w0 has weight λ0 + 2, which by maximality of ℜλ implies that
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ρ(e)w0 = 0. (6.13)

On the other hand we can define

w1 = ρ(f)w0, w2 = ρ(f)w1, . . . (6.14)

and obtain weight vectors for weights λ0 − 2, λ0 − 4, . . . . As eigenvectors
for different eigenvalues are always linearly independent and dimW < ∞ it
follows that there must exist some n > 0 with wn = ρ(f)nw0 6= 0 but

ρ(f)wn = 0. (6.15)

An invariant subspace. We let V = 〈w0, . . . , wn〉 ⊆ W and claim that V
is invariant under ρ. Since V is generated by eigenvectors for ρ(a), V is
clearly invariant under ρ(a). Moreover, by the construction in (6.14) and the
property (6.15) we have ρ(f)wk ∈ V for all k = 0, . . . , n and hence ρ(f)V ⊆ V .
It remains to study ρ(e), where we will prove by induction that

ρ(e)wk

{
= 0 for k = 0;

∈ Cwk−1 for k > 0
(6.16)

for k = 0, . . . , n. Indeed, we know this for k = 0 by (6.13). If now (6.16) is
already known for some k ∈ {0, . . . , n− 1}, then by construction

wk+1 = ρ(f)wk

and

ρ(e)wk+1 = ρ(e)ρ(f)wk

= [ρ(e), ρ(f)]wk + ρ(f)ρ(e)wk

= ρ(a)wk + ρ(f)ρ(e)wk ∈ Cwk + ρ(f)Cwk−1 = Cwk,

by the invariance assumption. This shows the inductive step.

Assuming irreducibility. Suppose now in addition that ρ is irreducible.
Since V ⊆W is non-trivial and invariant under ρ, it follows that V =W has
the basis w0, . . . , wn consisting of weight vectors for ρ(a) for the weights

λ, λ− 2, . . . , λ− 2n.

In particular, ρ(a) is diagonalizable with these eigenvalues, and the trace
of ρ(a) is

n∑

k=0

(λ − 2k) = (n+ 1)λ− 2

n∑

k=0

k = (n+ 1)λ− (n+ 1)n.
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Since ρ(a) = ρ
(
[e, f ]

)
= [ρ(e), ρ(f)], we also know that tr ρ(a) = 0, and

so λ = n ∈ N0.

An isomorphism. We now combine the arguments above with our discussion
of Symn(C2) by constructing the graph of an isomorphism within

W̃ = Symn(C2)⊕W.

In fact the vector v0 = (e
⊙n
1 , w0) ∈ W̃ is a weight vector of weight n

satisfying Symn(e) ⊕ ρ(e)v0 = 0 just as in the case of our original vec-
tor w0 ∈ W . Applying the same argument as before, we produce weight

vectors v0, v1, . . . , vn ∈ W̃ such that V = 〈v0, v1, . . . , vn〉 is invariant.
Moreover, dimV = n + 1 = dimSymn(C2) = dimW and the projec-
tions of V onto Symn(C2) respectively onto W are surjective, which follows
from (6.12) for Symn(C2) and since w0, w1, . . . , wn is a basis of W . This
shows that V = Graph(φ) for some linear isomorphism φ : Symn(C2) → W
and invariance of V implies that φ is an isomorphism of the representations.

�

The maximal weight as it appeared in the proof above is called the highest
weight and the corresponding weight vectors are called highest weight vectors.

Exercise 6.7. Use the arguments from the proof of Theorem 6.6 to show that for any
finite-dimensional representation of sl2(C) a highest weight vector for highest weight λ
always generates an irreducible subrepresentation of dimension λ+ 1.

We refer to Fulton and Harris [26] for an accessible treatment of the theory
of highest weight vectors for more general semi-simple groups. We will see
similar mechanisms for creating more eigenvectors out of an initial eigenvector
also for unitary representations later.

To summarize, we have proved Theorem 6.6 in the two cases g = sl2(C)
and g = sl2(R), where we did not see any difference in the arguments as
the sl2-triple belonged to sl2(R) and all subspaces of the representation space
are assumed to be complex subspaces. As we will now show, the extension
to su2(R) does not require much except for the right insight.

Proposition 6.8 (Complexification). Any finite-dimensional (and, as al-
ways, complex) representation

ρ : su2(R) −→ Hom(W )

(or ρ : sl2(R)→ Hom(W )) can be extended in a unique way to a representa-
tion ρC : sl2(C)→ Hom(W ). A subspace V ⊆W is invariant under ρ(su2(R))
(respectively ρC(sl2(R))) if and only if it is invariant under ρC(sl2(C)). In
particular, they have the same list of irreducible finite-dimensional represen-
tations.

Proof. Since Hom(W ) is a complex vector space, su2(R) is a real vector
space, and sl2(C) = su2(R) ⊗R C by the discussion in Section 6.1.2, ev-
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ery R-linear map ρ : su2(R) → Hom(W ) has a uniquely defined C-linear
extension ρC : sl2(C)→ Hom(W ) satisfying

ρC(b1 + ib2) = ρ(b1) + iρ(b2)

for all b1,b2 ∈ su2(R). Moreover, if

ρ
(
[b1,b2]

)
= [ρ(b1), ρ(b2)]

for all b1,b2 ∈ su2(R) then this property extends by bilinearity of [·, ·] and
linearity of ρC from su2(R) to all b1,b2 ∈ sl2(C). �

We have shown that sl2(C), sl2(R), and su2(R) as well as SL2(C), SL2(R),
and SU2(R) have the same list of irreducible finite-dimensional representa-
tions, which concludes the proof of Theorem 6.6. In this discussion, the Lie
algebra su2(R) and its Lie group SU2(R) were the odd ones out as they re-
quired extra effort (because su2(R) does not contain an sl2-triple). However,
in the next section the special properties of SU2(R) are used to prove an
important property of SL2(C) and SL2(R).

Exercise 6.9. Show that son(R) and son−k,k(R) with k ∈ {1, . . . , n − 2} are real forms
of son(C), and conclude that Proposition 6.8 holds in the same way for these Lie algebras.

6.1.5 The Weyl Unitary Trick

Proposition 6.10 (Semi-simplicity of representations of su2(R)). As-
sume that W is a finite-dimensional representation of su2(R). If a complex
subspace V of W is invariant under su2(R), then there exists an invariant
complementary subspace V ′ so that W = V ⊕ V ′.

Proof. As explained after Section 6.1.3, W is also a representation space
for SU2(R) and V is invariant under SU2(R). Fix some inner product on W
and apply Proposition 5.35. Hence we may assume that W is a unitary rep-
resentation of SU2(R) and we may define V ′ = V ⊥ with respect to this inner
product. �

Theorem 6.11 (Finite-dimensional representations of sl2). For finite-
dimensional representations of sl2(C), sl2(R), and su2(R) we have the fol-
lowing properties.

(a) (Semi-simplicity) Any invariant subspace has an invariant complement.
(b) (Description) The representation is a finite direct sum of irreducible rep-

resentations as described in Theorem 6.6.

Proof. For su2(R) part (a) is precisely the statement in Proposition 6.10.
Part (b) follows from this by induction on the dimension. For sl2(C) and sl2(R)
we combine Proposition 6.8 with the above. �
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The argument above using compactness of SU2(R) ⊆ SL2(C) can in fact
be used for all semi-simple real and complex Lie groups since there always

exists a compact form(10) that can take the role of SU2(R).

6.2 Harmonic Analysis of SU2(R) and Quotients*

6.2.1 Peter–Weyl Theorem for SU2(R)

†We now start the in-depth discussion of the harmonic analysis on SU2(R)
and related spaces. Schur orthogonality and the Peter–Weyl theorem (The-
orems 5.38 and 5.42) give a complete description of L2(G) for a com-

pact group G, assuming a complete description of Ĝ. In Theorem 6.6 we
have obtained the description of all irreducible finite-dimensional represen-
tations of SU2(R). Combining these two (and calculating the inner product
on Symn(C2)) gives the following result. For this, we will be using the coor-
dinate system (z, w) ∈ C2 with |z|2 + |w|2 = 1 for the elements

g =

(
z −w
w z

)
∈ SU2(R). (6.17)

Corollary 6.12 (Peter–Weyl for SU2(R)). The functions

g 7−→
√
n+ 1π

(n)
k,ℓ (g)

defined by

π
(n)
k,ℓ (g) =

√
k!(n− k)!ℓ!(n− ℓ)!

×
∑

i∈{0,...,n−k}
j∈{0,...,k}
i+j=ℓ

(−1)k−j
i!j!(n− k − i)!(k − j)!z

n−k−iwizjwk−j

for k, ℓ ∈ {0, . . . , n} are the normalized matrix coefficients associated to the
irreducible representation on the (n + 1)-dimensional space Symn(C2) for n
in N0 (and using a convenient choice of orthonormal basis of Symn(C2)). By
also varying n in N0 we obtain an orthonormal basis of L2(SU2(R)).

Proof. As already hinted at before the corollary, we have done all the
work required for the corollary apart from determining the inner product

†
This section discusses the first non-trivial and quite important example of a compact

simple group. In order to be completely explicit, the discussion is quite heavy on concrete
formulas. These are, however, not important for most of the subsequent discussions.
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on Symn(C2) for n ∈ N0. We note that the inner product is uniquely deter-
mined up to a positive scalar by the irreducibility of the representations and
Schur’s lemma (Theorem 1.27).

The case n = 0 corresponds to the trivial representation, and setting in

addition k and ℓ to be 0 gives
√
1π

(0)
0,0 = 1. The case n = 1 corresponds to the

standard representation on C2 and the standard inner product on C2 makes
the action unitary (by definition of SU2(R)). In this case we use the standard
basis

w0 = e1 =

(
1
0

)
, w1 = e2 =

(
0
1

)

and obtain π
(1)
0,0(g) = z, π

(1)
0,1(g) = w, π

(1)
1,0(g) = −w, π(1)

1,1(g) = z for g as
in (6.17). Setting n = 1 and using k, ℓ ∈ {0, 1} in the formula in the corol-
lary, we obtain the same four functions on SU2(R). By Theorem 5.38, the

vectors
√
2π

(1)
k,ℓ are then orthonormal for k, ℓ ∈ {0, 1}.

So suppose now that n > 2. Then the vectors

w̃k = e
⊙(n−k)
1

⊙ e
⊙k
2

are eigenvectors for the elements

(
z
z

)
∈ SU2(R)

for all z ∈ S1 for eigenvalues zn−kzk = zn−2k for k = 0, . . . , n. As the
eigenvalues are distinct, they must be pairwise orthogonal with respect to the
desired inner product 〈·, ·〉 on Symn(C2). We claim that the inner product
can be chosen so that the vectors

wk =

(
n

k

)1
2

e
⊙(n−k)
1

⊙ e
⊙k
2 (6.18)

are an orthonormal basis of Symn(C2). This could be checked directly (for
example, by showing that the representation of su2(R) only takes on anti-
Hermitian matrices with respect to that basis). However, we will give a more
conceptual argument for this.

We consider
⊗n(C2) and apply Proposition 5.14 (inductively extended

to n factors) to define the unitary inner tensor product representation ρ
of SU2(R) on

⊗n
(C2) so that

ρ(g)(u1 ⊗ u2 ⊗ · · · ⊗ un) = (gu1)⊗ (gu2)⊗ · · · ⊗ (gun) (6.19)

for all u1, . . . , un ∈ C2. Next note that there is a canonical equivariant map

Com:
⊗n

(C2) −→ Symn(C2)
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that sends any tensor product to its commutative counterpart, as

⊗n
(C2) ∋ u1 ⊗ u2 ⊗ · · · ⊗ un 7−→ u1 ⊙ u2 ⊙ · · · ⊙ un ∈ Symn(C2).

In fact, as was already mentioned, Symn(C2) is defined as the quotient
of
⊗n

(C2) by the subspace generated by

u1 ⊗ u2 ⊗ · · · ⊗ un − uσ(1) ⊗ uσ(2) ⊗ · · · ⊗ uσ(n)

for all u1, u2, . . . , un ∈ C2 and permutations σ ∈ Sn.
Also note that the permutation group Sn acts unitarily on

⊗n(C2) by
setting

λσ(u1 ⊗ u2 ⊗ · · · ⊗ un) = uσ(1) ⊗ uσ(2) ⊗ · · · ⊗ uσ(n) (6.20)

for all σ ∈ Sn and u1, . . . , un ∈ C2 and then linearly extending this action.
Moreover, using (6.19) and (6.20) it is easy to see that λσρg = ρgλσ for
all σ ∈ Sn and g ∈ SU2(R). Therefore

V =
{
v ∈⊗n(C2) | λσ(v) = v for all σ ∈ Sn

}

is invariant under ρ, and is non-trivial since e1 ⊗ e1 ⊗ · · · ⊗ e1 ∈ V . Recall
that

⊗n
(C2) has

ej1 ⊗ ej2 ⊗ · · · ⊗ ejn (6.21)

for j1, . . . , jn ∈ {1, 2} as an orthonormal basis, and note that λσ for σ ∈ Sn
maps any such basis vector to another such basis vector. It follows from this
that V is generated by the vectors

vk =
∑

j1,...,jn∈{1,2}
n−k times 1,
k times 2

ej1 ⊗ ej2 ⊗ · · · ⊗ ejn (6.22)

for k = 0, . . . , n. In fact, if one of the basis vectors ej1 ⊗ ej2 ⊗ · · · ⊗ ejn
with |{ℓ | jℓ = 1}| = n − k appears with a coefficient c in the expansion of
some v ∈ V with respect to the basis in (6.21), then all other basis vectors
appearing in the sum (6.22) are images of the original basis vector under
some σ ∈ Sn. Hence these all appear with the same coefficient c in the
vector v. Using this argument for all k = 0, . . . , n we deduce that v is a linear
combination of v0, v1, . . . , vn.

Now note that the vector vk in (6.22) has
(
n
k

)
summands which are mutu-

ally orthogonal unit vectors in
⊗n

(C2). Hence the vectors

ṽk =

(
n

k

)− 1
2

vk
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for k = 0, . . . , n are an orthonormal basis of V . Applying the equivariant
map Com |V : V → Symn(C2) we see that

Com ṽk =

(
n

k

)− 1
2

Com vk =

(
n

k

)− 1
2
(
n

k

)
e
⊙(n−k)
1

⊙ e
⊙k
2 = wk

for k = 0, . . . , n. This proves the claim that the basis in (6.18) is an or-
thonormal basis with respect to an inner product on Symn(C2) that makes ρ

a unitary representation π(n) of SU2(R).
We now calculate the matrix coefficients π

(n)
k,ℓ = ϕwk,wℓ for the basis vec-

tors wk, wℓ and k, ℓ = 0, . . . , n. Using the notation (6.17) once again, we
have ge1 = ze1 + we2 and ge2 = −we1 + ze2 and hence

π(n)
g (wk)=

(
n

k

)1
2

(ze1 + we2)
⊙(n−k) ⊙ (−we1 + ze2)

⊙k

=

(
n

k

)1
2

(
n−k∑

i=0

(
n− k
i

)
zn−k−iwie

⊙(n−k−i)
1

⊙ e
⊙i
2

)

⊙




k∑

j=0

(
k

j

)
(−1)k−jwk−jzje⊙(k−j)1

⊙ e
⊙j
2




=

(
n

k

)1
2
n−k∑

i=0

k∑

j=0

(
n− k
i

)(
k

j

)
(−1)k−jzn−k−iwizjwk−je⊙(n−i−j)1

⊙e
⊙(i+j)
2 .

Taking the inner product with

wℓ =

(
n

ℓ

) 1
2

e
⊙(n−ℓ)
1 e

⊙ℓ
2

selects those terms in the sum above with i+ j = ℓ. Multiplying and dividing
by (

n

ℓ

)− 1
2

and using ‖wℓ‖ = 1 leads to
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π
(n)
k,ℓ = 〈π(n)

g (wk), wℓ〉

=

(
n

k

)1
2
(
n

ℓ

)− 1
2 ∑

i∈{0,...,n−k}
j∈{0,...,k}
i+j=ℓ

(
n− k
i

)(
k

j

)
(−1)k−jzn−k−iwizjwk−j

=
√
k!(n−k)!ℓ!(n−ℓ)!

∑

i∈{0,...,n−k}
j∈{0,...,k}
i+j=ℓ

(−1)k−j
i!j!(n−k−i)!(k−j)!z

n−k−iwizjwk−j .

Together with Theorem 5.42, this concludes the proof. �

6.2.2 Peter–Weyl Theorem for SO3(R)

We briefly explain in this section how Corollary 6.12 also gives rise to a
Peter–Weyl theorem for the group SO3(R). We will not, however, give the
orthonormal basis explicitly in terms of the coordinates of SO3(R).

The connection between SU2(R) and SO3(R) is given by the following
lemma. We recall that an isogeny between two semi-simple Lie groups is a
finite-to-one surjection.

Lemma 6.13 (Isogeny for SU2(R)). We have

SO3(R) ∼= SU2(R)/C,

where C = {±I} is the centre of SU2(R).

Proof. We recall from Lemma 6.2 that SU2(R) ∼= S3 ⊆ H, and so in par-
ticular SU2(R) is simply connected (see also Lemma 6.3). We claim now
that SO3(R) is also a connected three-dimensional Lie group. To see that
it is connected, we let g ∈ SO3(R). Then g has a real eigenvector v with
eigenvalue 1. In fact, if all eigenvalues are real, then g = I or the eigenvalues
must equal −1, −1, and 1. If there is a non-real complex eigenvalue λ then
the eigenvalues must be λ, λ, and 1. Hence in either case g = I or g can be
viewed as a rotation about some axis in R3. It follows that g belongs to a one-
parameter subgroup and hence to the connected component of I ∈ SO3(R).
As g ∈ SO3(R) was arbitrary, we deduce that SO3(R) is connected.

The Lie algebra of

SO3(R) = {g ∈ SL3(R) | g∗g = I}

is given by
so3(R) = {m ∈ sl3(R) |m∗ +m = 0},
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and so consists of all matrices of the form

m =



0 −α −β
α 0 −γ
β γ 0




for α, β, γ ∈ R. It follows that SO3(R) is a three-dimensional connected Lie
group as claimed.

To define the homomorphism SU2(R)→ SO3(R), we identify the vector



a
b
c


 ∈ R3

with the Lie algebra element

m =

(
ai bi− c

bi + c −ai

)
∈ su2(R), (6.23)

and define
ρ(g)(m) = gmg−1 = gmg∗

for all g ∈ SU2(R) and m ∈ su2(R). Since

su2(R) = {m ∈ gl2(C) |m∗ = −m, trm = 0},

it follows that ρ(g)(su2(R)) ⊆ su2(R). Moreover, for m as in (6.23), we have

detm = a2 − (bi− c)(bi + c) = a2 + b2 + c2

and det (ρ(g)m) = detm for all g ∈ SU2(R). This shows that the adjoint
representation ρ defines a homomorphism ρ : SU2(R)→ SO3(R).

Suppose now that ρ(g) = I, so gmg−1 = m for all m ∈ su2(R).
Since su2(R) ⊗R C = su2(C) we see that gm = mg for all m ∈ sl2(C).
For

g =

(
z −w
w z

)

and

m =

(
1 0
0 −1

)

we deduce that

gm =

(
z w
w −z

)
, mg =

(
z −w
−w −z

)
, (6.24)

so w = 0. Similarly, by using
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m =

(
0 1
0 0

)

we obtain

gm =

(
0 z
0 0

)
, mg =

(
0 z
0 0

)

and hence z = z ∈ R. To summarize, if g ∈ ker ρ then g = I or g = −I.
The converse of this statement is clear. The lemma follows from this:
Since both SU2(R) and SO3(R) are three-dimensional and ρ has finite ker-
nel, ρ

(
SU2(R)

)
is also three-dimensional, which together with connectedness

of SO3(R) implies that ρ
(
SU2(R)

)
= SO3(R). �

Corollary 6.14 (Peter–Weyl for SO3(R)). The irreducible representa-

tion π(n) on Symn(C2) gives rise to a unitary representation of

SO3(R) = SU2(R)/C

if and only if n is even. In particular, the normalized matrix coefficients

√
n+ 1π

(n)
k,ℓ

for k, ℓ ∈ {0, . . . , n} and n ∈ 2N0 give rise to an orthonormal basis
of L2(SO3(R)).

Proof. If π is an irreducible unitary representation of SO3(R), then the
isomorphism SO3(R) ∼= SU2(R)/C can be used to consider π also as an
irreducible unitary representation of SU2(R), which we again denote by π.

By Theorem 6.6, π is isomorphic to the representation π(n) on Symn(C2) for

some n ∈ N0. By construction, we have π(n)(−I) = (−I)n = I, which implies
that n is even.

On the other hand, if n ∈ 2N then π(n)(−I) = I, which shows that π(n)

descends to a unitary representation of SO3(R).
The final claim follows from the Peter–Weyl theorem (Theorem 5.42) as

in the proof of Corollary 6.12. �

6.2.3 The Unitary Representation on L
2(S2)

By the discussion in the previous section we know that SU2(R) acts nat-
urally on the unit sphere S2 ⊆ R3. We equip S2 with the natural surface
area measure and obtain a measure-preserving action of SU2(R) on S2. This
in turn gives rise to a unitary representation of SU2(R) on L2(S2) as in
Proposition 1.3. We wish to use the description of irreducible representa-
tions of SU2(R) in Theorem 6.6 to describe how L2(S2) splits into irreducible
components.
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Corollary 6.15 (Decomposition of L2(S2)). Using the unitary represen-
tation of SU2(R) on L

2(S2) as described above, we have

L2(S2) =
⊕

n∈2N

Symn(C2).

In other words, every irreducible unitary representation of SU2(R) of even
highest weight (equivalently, every irreducible representation of SO3(R)) ap-
pears in L2(S2) with multiplicity one.

Proof. We will combine the description of L2(SU2(R)) in Corollary 6.12
with the isomorphism

S2 ∼= SU2(R)/T (6.25)

where

T =

{(
α
α

)
| α ∈ S1

}

is the diagonal subgroup in SU2(R).
For the proof of (6.25) we recall from Section 6.2.2 that SU2(R) fac-

tors onto SO3(R) and acts on su2(R) ∼= R3 while preserving the quadratic
form det. Let

v0 =

(
i
−i

)

and note that gv0g
−1 = v0 if and only if g ∈ T (see the argument in (6.24)).

Moreover, as SO3(R) acts transitively on S2 and SU2(R) factors onto SO3(R)
by this action, we obtain S2 = ρ(SU2(R))v0, and (6.25) follows. More pre-
cisely, gT ∈ SU2(R)/T corresponds to gv0g

−1 ∈ S2 under the isomorphism
and the action of SU2(R) corresponds to left multiplication on SU2(R).

Also recall that the Haar measure on a homogeneous space is unique up
to positive proportionality, which implies that the surface area measure de-
scribed above the corollary agrees up to a positive multiple with the push-
forward of the Haar measure on SU2(R) onto SU2(R)/T .

To summarise, we may consider L2(S2) as the subspace V of L2(SU2(R))
consisting of all functions on SU2(R) that are right-invariant under T . In
other words,

L2(S2) ∼= V = {f ∈ L2(SU2(R)) | f has weight 0 for T }.

Here we say that f ∈ L2(SU2(R)) has weight m ∈ Z for T if f(gt) = αmf(g)
for all diagonal elements

t =

(
α
α

)
∈ T

and almost every g ∈ SU2(R).
We now use the notation
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g =

(
z −w
w z

)

again for elements of SU2(R), and the orthonormal basis comprising the func-

tions
√
n+ 1π

(n)
k,ℓ for n ∈ N0 and k, ℓ ∈ {0, . . . , n} of L2(SU2(R)) from Corol-

lary 6.12. Using the concrete formula for π
(n)
k,ℓ and the notation for g and t

above, we see that

gt =

(
αz −αw
αw αz

)

and

π
(n)
k,ℓ (gt) = (k!(n− k)!ℓ!(n− ℓ)!) 1

2

×
∑

i∈{0,...,n−k}
j∈{0,...,k}
i+j=ℓ

(−1)k−j
i!j!(n−k−i)!(k−j)! (αz)

n−k−i(αw)i(αz)j(αw)k−j

= αn−2kπ
(n)
k,ℓ (g).

In other words, the orthonormal basis consists of eigenvectors for the right-
regular representation restricted to T ∼= S1. Hence we can obtain an orthonor-

mal basis of V by using only those normalized matrix coefficients
√
n+ 1π

(n)
k,ℓ

with weight n−2k = 0. This gives the corollary, and we have shown that V has

the orthonormal basis consisting of the functions
√
2k + 1π

(2k)
k,ℓ with k ∈ N0

and ℓ ∈ {0, . . . , 2k}, and the left-regular representation of SU2(R) on

V2k =
〈
π
(2k)
k,ℓ | ℓ ∈ {0, . . . , 2k}

〉

is isomorphic to Sym2k(C2) by the argument used in the last part of the proof
of the Peter–Weyl theorem (Theorem 5.42). �

6.2.4 Conjugacy Classes and Characters of SU2(R)

We wish to finish the discussion of the compact group SU2(R) by describ-

ing SU2(R)
♯ and calculating the characters of SU2(R).

Proposition 6.16 (Sato–Tate measure). The trace tr : SU2(R)→ [−2, 2]
descends to a homeomorphism

tr : SU2(R)
♯ −→ [−2, 2].

The push-forward of the Haar measure is given by
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tr∗mSU2(R)

(
(a, b)

)
=

1

π

∫ b

a

√
1− t

2

4 dt,

and is called the Sato–Tate measure.

Proof. For A,B ∈ Matd,d(C) recall that tr(AB) = tr(BA), since

tr(AB) =
d∑

i=1

(AB)i,i =
d∑

i,j=1

Ai,jBj,i =
d∑

j,i=1

Bi,jAj,i.

In particular, the map tr : SU2(R)
♯ → R defined by tr([g]) = tr(g) is a well-

defined continuous map. As the eigenvalues of any g ∈ SU2(R) are of the
form α, α for some α ∈ S1, we see that tr(g) lies in [−2, 2]. Varying α ∈ S1

and using

t =

(
α
α

)
∈ SU2(R),

we also see that tr : SU2(R)
♯ → [−2, 2] is surjective.

We claim that the trace map is also injective on SU2(R)
♯. So suppose

that tr([g1]) = tr([g2]) for some [g1], [g2] ∈ SU2(R)
♯. Then the characteristic

polynomials of g1 and g2 agree (since these are determined for 2× 2 matrices
by the trace and determinant). It follows that the eigenvalues α, α of g1 and g2
are equal. Since g1 ∈ SU2(R) there exists an orthonormal basis u1, u2 ∈ C2

consisting of eigenvectors for α, resp. α. Multiplying u2 by a scalar of absolute
value one if necessary, we may assume deth = 1 where h = (u1, u2). It follows
that h ∈ SU2(R) and

g1 = h

(
α
α

)
h−1.

In other words,

[g1] =

[(
α
α

)]
,

and by symmetry between g1, g2 also [g1] = [g2], as required.

As both SU2(R)
♯ and [−2, 2] are compact and tr is continuous, it follows

that tr : SU2(R)
♯ → [−2, 2] is a homeomorphism.

It remains to prove the explicit description of the image of Haar measure.
For this, we again identify SU2(R) with S3 ⊆ H ∼= R4. With this the Haar
measure can be defined using the four-dimensional Lebesgue measure m

R
4 .

In fact for B ⊆ S3 we define

m
S
3(B) = m

R
4

(
{rv | r ∈ [0, 1], v ∈ B}

)
(6.26)

and, since S3 acts linearly as a unimodular transformation on R4, it follows

that m
S
3 defines a measure on S3 with total measure m

S
3(S3) = m

R
4

(
BR

4

1

)
.
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This turns the description of tr∗mS
3 into an exercise in multi-dimensional

calculus.
In fact we will use four-dimensional spherical coordinates defined by

S :




r
θ
φ
ψ


 7−→




r cos θ
r sin θ cosφ

r sin θ sinφ cosψ
r sin θ sinφ sinψ




with total derivative



cos θ −r sin θ 0 0
sin θ cosφ r cos θ cosφ −r sin θ sinφ 0

sin θ sinφ cosψ r cos θ sinφ cosψ r sin θ cosφ cosψ −r sin θ sinφ sinψ
sin θ sinφ sinψ r cos θ sinφ sinψ r sin θ cosφ sinψ r sin θ sinφ cosψ




and Jacobian determinant

r3 sin2 θ sinφdet




cos θ − sin θ 0 0
sin θ cosφ cos θ cosφ − sinφ 0

sin θ sinφ cosψ cos θ sinφ cosψ cosφ cosψ − sinψ
sin θ sinφ sinψ cos θ sinφ sinψ cosφ sinψ cosψ


.

Expanding the remaining determinant along the first row, we see that it is
given by

∆ cos2 θ +∆ sin2 θ = ∆

where

∆ = det




cosφ − sinφ 0
sinφ cosψ cosφ cosψ − sinψ
sinφ sinψ cosφ sinψ cosψ




= cos2 φdet

(
cosψ − sinψ
sinψ cosψ

)
+ sin2 φdet

(
cosψ − sinψ
sinψ cosψ

)
= 1.

A convenient domain for the spherical coordinates is

U = (0,∞)× (0, π)× (0, π)× (0, 2π),

and spherical coordinates define a diffeomorphism S from U to a full measure
open set V ⊆ R4.

Now let a < b be in [−2, 2], and define θa = arccos a
2 and θb = arccos b2 so

that
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tr−1(a, b) =








x1
x2
x3
x4


 ∈ S3 | a

2
< x1 <

b

2





=








cos θ
sin θ cosφ

sin θ sinφ cosψ
sin θ sinφ sinψ


 | θ ∈ (θb, θa), φ ∈ (0, π), ψ ∈ (0, 2π)




.

Using the description of the Haar measure m
S
3 in (6.26), this leads to

tr∗mS
3

(
(a, b)

)
=

∫ 1

0

r3 dr

∫ θa

θb

sin2 θ dθ

∫ π

0

sinφdφ

∫ 2π

0

dψ

= 1
4 · 2 · 2π

∫ θa

θb

sin2 θ dθ.

Instead of calculating the latter integral, we wish to rewrite it as an integral
over t ∈ [a, b] using t = 2 cos θ and dt = −2 sin θ dθ. This gives

tr∗mS
3

(
(a, b)

)
=
π

2

∫ b

a

√
1− t

2

4 dt.

Normalizing the measure to be a probability gives the proposition. �

Using the identification of SU2(R)
♯ and the interval [−2, 2] we now describe

the characters of SU2(R). By Theorem 6.6 the irreducible representations
of SU2(R) are given by the nth symmetric tensor products Symn(C2) of the
standard representation for all n ∈ N0. For t = z + z ∈ [−2, 2] with z ∈ S1

the eigenvalues for (
z
z

)
∈ SU2(R)

and the basis vector e
⊙(n−k)
1

⊙ e
⊙k
2 is zn−kzk = zn−2k for k ∈ {0, . . . , n}

and n ∈ N0. Hence the character χ associated to Symn(C2) is given by

χn(t) = χn

((
z
z

))
=

n∑

k=0

zn−2k

for every n ∈ N0. Using the variable t ∈ [−2, 2] ∼= SU2(R)
♯, the first few are

given by

χ0(t) = 1,

χ1(t) = t,

χ2(t) = z2 + 1 + z−2 = (z + z)2 − 1 = t2 − 1,
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and

χ3(t) = z3 + z + z−1 + z−3 = (z + z)3 − 2(z + z) = t3 − 2t.

Using the notation z = eiθ ∈ S1 with θ ∈ [0, 2π), the eigenvalues of π(n)

are given by

zn−2k = ei(n−2k)θ

for k = 0, . . . , n, and so

χn

((
z
z

))
= einθ + ei(n−2)θ + · · ·+ e−inθ

= e−inθ e
i2(n+1)θ − 1

ei2θ − 1

=
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin
(
(n+ 1)θ

)

sin θ

by the geometric series summation formula (using q = ei2θ). Expressing this
in terms of

t = tr

(
z
z

)
= z + z = 2 cos θ

gives a formula for the character χn(t). Using instead the variable

T = t
2 = cos θ,

this would give rise to the Chebyshev polynomials of the second kind.

Exercise 6.17. Describe SO3(R)
♯

and the characters of SO3(R).

6.2.5 The Isometry Group of 3-Space

(Possible addition, to be decided later)

6.3 Summary and Outlook

The main purpose of this chapter was to provide a concrete example of the
unitary dual of the compact simple groups SU2(R) and SO3(R).

To achieve this, we actually classified all irreducible finite-dimensional rep-
resentations of the complex Lie group SL2(C), respectively of its Lie alge-
bra sl2(C) by differentiation. As we will see in Chapter 7, generalizing this
derivative representation to unitary representations is more delicate than it
is in finite dimensions.
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