
Chapter 5

Horospherical Subgroups and Counting

Results

The inheritance property of ergodicity of the Mautner phenomenon in Propo-
sition 2.25 and in the general Theorem 2.55 (also see Exercise 2.24 and 2.45)
established in Chapter 2 already gives the equidistribution of many orbits.

Indeed, if a simple Lie group G acts ergodically on (X,µ) and

{gt | t ∈ R} ⊆ G

is an unbounded one-parameter subgroup, then

1

T

∫ T

0

f(gt.x) dt −→
∫

X

f dµ

for µ-almost every x ∈ X , for any f ∈ Cc(X) as T →∞. A point x ∈ X with this
property is called generic for µ and the one-parameter subgroup {gt | t ∈ R}.

In this chapter we start the discussion of unipotent dynamics by consider-
ing the case of horospherical actions. For those actions we will show ‘unique
ergodicity’, and sometimes ‘almost unique ergodicity’, and we will understand
precisely which points are generic for mX . The method of proof also gives other
equidistribution results of certain ‘distorted orbits’, which in turn can be used
to prove asymptotic counting results. Hence in the second half of the chapter
we will explain the set-up of Duke, Rudnick, and Sarnak and its dynamical
interpretation by Eskin and McMullen.

5.1 Dynamics on Hyperbolic Surfaces

Let us start by discussing briefly the case of the geodesic flow and the horocycle
flow on quotients of SL2(R) as introduced in Section 1.2.
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182 5 Horospherical Subgroups and Counting Results

5.1.1 The Geodesic Flow

We note first that for the geodesic flow defined by the diagonal subgroup it is
not possible to make a more general statement about the equidistribution of
orbits by relaxing the requirement that the point be µ-typical. Indeed, in this
case the flow is partially hyperbolic and as a result X contains many irregular
orbits. As this result can be considered of negative type we will not prove it
here, but refer to [45, Sec. 9.7.2] for a more detailed discussion of the case of
the geodesic flow on the modular surface.

Example 5.1. For a compact quotient X of SL2(R) by a uniform lattice as in
Figure 5.1, the action of the one-parameter subgroup

A =

{
at =

(
e−t/2

et/2

) ∣∣∣∣∣ t ∈ R

}
(5.1)

has many orbits that, for example, stay on one side of the dotted line.(27)

Fig. 5.1: There are many orbits under the action of A that stay on one side of the
dotted line furthest to the right.

We also refer to Exercises 5.2–5.5 for the behaviour of the geodesic flow and
higher dimensional analogues.

Exercise 5.2 (Anosov shadowing for SL2(R)). Let X be the quotient of SL2(R) by a
discrete subgroup Γ < SL2(R).
(a) Let x ∈ X , T > 0, ε > 0 and y ∈ X be chosen with d(aT

.x, y) < ε. Then there

exists a point z ∈ X with d(x, z) ≪ e
−T

ε (and so d(at
.x, at

.z) ≪ ε for t ∈ [0, T ])
and d(at

.y, aT +t
.z) ≪ ε for all t > 0. Also show that there exists some δ with |δ| ≪ ε

such that d(at+δ
.y, aT +t

.z) ≪ e
−t

for all t > 0.
(b) Assume now that X is compact (for example, as in Figure 5.1) and use (a) to construct
non-periodic orbits as in Example 5.1.

Exercise 5.3 (Anosov closing for SL2(R)). Let X be as in Exercise 5.2. Let x in X
and T > 1 be chosen so that d(aT

.x, x) 6 ε < 1. Show that there exists a point z ∈ X
which is periodic with period Tz satisfying

|Tz − T | ≪ ε

and
d(at

.x, at
.z) ≪ ε

for all t ∈ [0, T ].
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5.1 Dynamics on Hyperbolic Surfaces 183

Exercise 5.4 (Anosov shadowing for G). Let G be a connected Lie group, let Γ < G
be a discrete subgroup, let X = G/Γ , and let a ∈ G be such that Ada is diagonalizable
with positive eigenvalues.

(a) Let x ∈ X , N > 1, ε > 0 and y ∈ X be such that d(a
N
.x, y) < ε. Then there exists a

point z ∈ X , some λ < 1 (independent of x, y and Γ ) with

d(a
n
.x, a

n
.z) ≪ λ

N−n
ε

for n = 0, . . . , N and

d(a
N+n

.z, a
n
.y) ≪ ε

for all n > 0.
(b) Assume that X has finite volume and a acts mixingly on X with respect to mX .
Construct non-periodic irregular orbits by iterating (a).

Exercise 5.5 (Anosov closing for X = SLd(R)/Γ ). We let X be any quotient of the
group G = SLd(R) by a discrete subgroup Γ < G, and let A be the subgroup of G of
positive diagonal matrices. Let a ∈ A be a nontrivial element.

(a) Suppose that x ∈ X and N > 1 are such that d(a
N

, I) > 1 but d(a
N
.x, x) 6 ε < 1.

Assume that ε is sufficiently small and that N is sufficiently large. Show that there exists

some z ∈ X and some c ∈ SLd(R) with ac = ca, d(a
N

, c) ≪ ε, c.z = z and

d(a
n
.x, a

n
.z) ≪ ε

for n = 0, . . . , N .
(b) Suppose that a is regular (that is, no two eigenvalues are the same) and X is compact.
Show that z as in (a) is a periodic point for A.
(c) Suppose d = 3 and a is regular and does not have 1 as an eigenvalue, and

X = X3 = SL3(R)/ SL3(Z).

Show again that the point z as in (a) is periodic for A.
(d) Repeat (c) for

X = Xd = SLd(R)/ SLd(Z),

assuming that a ∈ A has the property that no product over a proper non-empty subset of
the eigenvalues of a equals 1.
(e) In the setting of (b), (c), and of (d), show that periodic A-orbits are dense in X .

(f) Generalize the statement in (b) to any semisimple group.
†

5.1.2 The Horocycle Flow

The discussion above for the geodesic flow is in stark contrast to the behaviour
of horocycle orbits defined by the unipotent subgroup

U = G+
a1

=

{
us =

(
1
s 1

) ∣∣∣∣ s ∈ R

}

†
In that sense Poincaré recurrence can be used to construct anisotropic tori (see Sec-

tion 9.3).
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184 5 Horospherical Subgroups and Counting Results

in the compact quotient X : The orbit of every point under this group action
visits the right-hand side in Figure 5.1 at some point (indeed much more is
true).

In fact Hedlund [69] showed in 1936 that the horocycle flow on any compact
quotient of SL2(R) is minimal (that is, has no nontrivial closed invariant subsets)
and that Haar measure is ergodic. This was strengthened by Furstenberg [57]
in 1972 and by Dani [17] in 1978, who showed the following theorems.

Theorem 5.6 (Unique ergodicity of horocycle flow). If Γ is a uniform
lattice in SL2(R), then the horocycle flow (that is, the action of the subgroup U)
is uniquely ergodic on the quotient X of SL2(R) by Γ .

Theorem 5.7 (Almost unique ergodicity of horocycle flow). If X = X2 is
the quotient of SL2(R) defined by Γ = SL2(Z) (or another non-uniform lattice)
then a probability measure m on X that is invariant and ergodic for the action
of U is either

• the Haar measure mX on X (inherited from the Haar measure mSL2(R)) or
• a one-dimensional Lebesgue measure supported on a periodic orbit of the

action for U .

Moreover, both types of invariant measure indeed exist.

i

a short periodic orbit

a long periodic orbit

Fig. 5.2: In the standard fundamental domain for SL2(Z), the observed speed of
a periodic horocycle orbit increases with the height, so the two different periodic
orbits shown are of different lengths. The longer periodic orbit could also be drawn
in the fundamental domain, but it would look very complicated.

Moreover, the tool discussed in the next section also gives the following the-
orem† of Sarnak [139] as well as Theorem 1.16 concerning expanding circles.

†
Sarnak also gives an error rate in this equidistribution result—obtaining this (or even

any) error estimate requires more sophisticated methods than those we will discuss here.
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5.2 The Banana Mixing Trick and Unique Ergodicity 185

Theorem 5.8 (Equidistribution of long periodic horocycles). Let X be a
quotient of SL2(R) by a non-uniform lattice and let A be the diagonal subgroup
as in (5.1). Let x ∈ X be a periodic orbit for the horocycle flow U = G+

a1
and

let µ be the normalized Lebesgue measure on the one-dimensional orbit U.x.
Then the periodic orbit measures (at)∗µ

• diverge for t → −∞ to infinity (in which case the periodic orbit atU.x
becomes shorter and shorter) and

• equidistribute for t → ∞ with respect to the Haar measure mX (in which
case the periodic orbit atU.x become longer and longer).

We will prove Theorem 5.6 in Section 5.2.1 and Theorems 5.7 and 5.8 in
Section 5.3.1.

5.2 The Banana Mixing Trick and Unique Ergodicity

We suppose in the following that G is a closed linear group and that the ele-
ment a ∈ G 6 SLd(R) only has real and positive eigenvalues. Let

G+
a =

{
g ∈ G

∣∣∣ anga−n −→ I as n −→ −∞
}

be the unstable horospherical subgroup of a. The general method discussed
below gives a way to classify the G+

a -invariant ergodic probability measures
on X . The method goes back to the PhD thesis of Margulis, who refers to this
as the banana argument due to the shape of the sets involved.

Theorem 5.9 (Banana mixing argument for G+
a ). Let X = G.x0 ⊆ Xd

be a finite volume orbit for a closed connected subgroup G 6 SLd(R). Let a ∈ G
only have real and positive eigenvalues, and suppose that a acts as a mixing
transformation on X with respect to mX . Let G+

a be the unstable horospherical
subgroup for a, and let B0 be a neighbourhood of I ∈ G+

a with compact closure
and a boundary of zero Haar measure. Let f ∈ Cc(X) and ε > 0. Finally suppose
that K ⊆ X is a compact set such that B0 ∋ u 7→ u.x is injective for any x ∈ K.
Then there exists an integer N such that

∣∣∣∣∣∣∣

1

m
G

+

a
(anB0a

−n)

∫

a
n
B0a

−n

f(u.x) dm
G

+

a
(u)− 1

mX(X)

∫

X

f dmX

∣∣∣∣∣∣∣
< ε

for all n > N whenever a−n
.x ∈ K.

We will prove the theorem in Section 5.2.2.
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186 5 Horospherical Subgroups and Counting Results

B0a
−n
.x

a
n

B0a
−n
.x

a
n

Fig. 5.3: A ‘box’ containing B0a
−n
.x is mapped by a

n
to a ‘banana’ that contains

the much bigger set a
n

B0a
−n
.x in the direction of G

+
a , is about as thick as the

original box in the direction of CG(a), but is much thinner in the direction of G
−
a

(not drawn).

5.2.1 Unique Ergodicity on Compact Quotients

The following consequence of Theorem 5.9 is a generalization of Theorem 5.6.

Theorem 5.10 (Unique ergodicity of horospherical actions(28)). Let G
be a linear Lie group, Γ < G be a uniform lattice, and let a ∈ G have only
real and positive eigenvalues. Suppose a acts mixingly on X = G/Γ . Then the
action of G+

a on X is uniquely ergodic: mX is the only G+
a -invariant probability

measure on X and every point x ∈ X is generic for G+
a and mX .

Proof of Theorems 5.6 and 5.10. We note that compactness of X implies
that G+

a ∋ u 7→ u.x ∈ X is injective for any x ∈ X . Indeed, if u.x = x for
some u ∈ G+

ar{I} and x ∈ X then the injectivity radius at

a−n
.x = (a−nuan)a−n

.x

would go to 0 for n→∞ and as a result contradict Lemma 1.17. LetB0 ⊆ G+
a be

as in Theorem 5.9,† set K = X and Bn = anB0a
−n for n ∈ N. By Theorem 5.9

we have
1

m
G

+

a
(Bn)

∫

Bn

f(u.x) dm
G

+

a
(u) −→

∫

X

f dmX

as n → ∞ for any f ∈ C(X) and any x ∈ X (as the constraint a−n
.x ∈ K is

meaningless for K = X).

†
For example, B0 = B

G
+

a
r for r > 0 with m

G
+

a

({
u ∈ G

+
a

∣∣ dG(u, I) = r
})

= 0
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5.2 The Banana Mixing Trick and Unique Ergodicity 187

Now let µ be a G+
a -invariant probability measure. Then

∫

X

f dµ =

∫

X

1

m
G

+

a
(Bn)

∫

Bn

f(u.x) dm
G

+

a
(u) dµ(x) −→

∫

X

f dmX

as n → ∞ by Fubini’s theorem and dominated convergence. As this holds for
any f ∈ C(X) we deduce that µ = mX , as claimed. �

Notice that once unique ergodicity is proved then the pointwise everywhere
convergence of the ergodic averages also follows for other Følner sets (see Exer-
cises 5.11–5.12).

Exercise 5.11. Let Bn = a
n

B0a
−n

be as in the proof of Theorem 5.10 with m
G

+

a
(∂B0) =

0 for n > 1. Show that (Bn) is a Følner sequence in G
+
a , that is a sequence satisfying

m
G

+

a
(Bn△(KBn))

m
G

+

a
(Bn)

−→ 0 (5.2)

as n → ∞ for every compact subset K ⊆ G
+
a .

Exercise 5.12. Let a and X be as in Theorem 5.10. Let (Fn) be any Følner sequence

in G
+
a satisfying (5.2) and show that

1

m
G

+

a
(Fn)

∫

Fn

f(u.x) dm
G

+

a
(u) −→

∫

X

f dmX

as n → ∞, for any f ∈ C(X) and any x ∈ X .

5.2.2 Proving the Banana Trick

For the proof of Theorem 5.9 we will use the ‘stable parabolic subgroup’

P−
a =

{
g ∈ G

∣∣ anga−n stays bounded as n→∞
}

together with the unstable horospherical subgroup G+
a .

Lemma 5.13 (A coordinate system). Let G 6 SLd(R) be a closed linear
group and let a ∈ G only have real and positive eigenvalues. Then P−

a and G+
a

are closed subgroups that together define a coordinate system in the following
sense. The set P−

a G
+
a is open in G, the map P−

a ×G+
a ∋ (h, u) 7→ hu ∈ P−

a G
+
a

is a homeomorphism, and the Haar measure mG restricted to P−
a G

+
a is propor-

tional to the push-forward of the product of the Haar measures of P−
a and G+

a .

Proof. By conjugating a, G, and its subgroups P−
a and G+

a we may assume
that a = diag(a1, . . . , ad) is diagonal. With this P−

a can be defined as a subgroup
of the set of all g = (gi,j) ∈ G with gi,j = 0 for all indices i, j with ai > aj .

This shows that P−
a is closed subgroup. Similarly G+

a is also a closed subgroup.
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188 5 Horospherical Subgroups and Counting Results

Moreover, from the definition it follows that the Lie algebra p
−
a of P−

a (respec-
tively g

+
a of G+

a ) is the direct sum of all eigenspaces in g of Ada with eigenvalue
less than or equal to 1 (respectively bigger than 1). This shows that the deriva-
tive of the map φ : P−

a × G+
a ∋ (h, u) 7→ hu ∈ P−

a G
+
a at (I, I) is the linear

isomorphism p
−
a × g

+
a ∋ (x, y) 7→ x + y ∈ g. By the inverse mapping theorem φ

is locally a diffeomorphism.
To see that φ is injective let (h1, u1), (h2, u2) ∈ P−

a ×G+
a satisfy h1u1 = h2u2.

Then g = h−1
2 h1 = u2u

−1
1 ∈ P−

a ∩ G+
a has the property that anga−n remains

bounded for n > 0 and converges to I as n → −∞. The latter implies that
the matrix g − I is zero or a sum of eigenvectors for conjugation by a with
eigenvalues bigger than 1. Together with the behaviour for n > 0 this implies
that g = I and hence (h1, u1) = (h2, u2).

Now let O ⊆ P−
a ×G+

a be open and (h, u) ∈ O. Then (h, I)−1O(I, u)−1 is also
open in P−

a ×G+
a . By the behaviour of φ near (I, I) obtained above we deduce

that φ
(
(h, I)−1O(I, u)−1) = h−1φ(O)u−1 is a neighbourhood of I, which shows

that φ(O) is a neighbourhood of hu = φ
(
(h, u)

)
. It follows that φ(O) ⊆ G

is open for any open subset O ⊆ P−
a × G+

a , that P−
a G

+
a ⊆ G is open, and

that φ : P−
a ×G+

a → P−
a G

+
a is a homeomorphism.

With this we may apply Lemma 1.58 and obtain that mG restricted to P−
a G

+
a

is proportional to the push-forward of the product of the (left) Haar measure
on P−

a and the (right) Haar measure on G+
a . As G+

a is unipotent it is also
unimodular and the lemma follows. �

The following upgrade (a fairly standard compactness argument) to the in-
jectivity assumption for B0 and K in Theorem 5.9 will be useful in the proof.

Lemma 5.14 (Upgrade to injectivity). Let K ⊆ X and B0 ⊆ G+
a be compact

sets for which B0 ∋ u 7→ u.x is injective for all x ∈ K. Then there exists
some δ = δ(K,B0) > 0 such that

B
P

−

a

δ ×B0 ∋ (h, u) 7−→ hu.x

is injective for all x ∈ K.

Proof. If the conclusion of the lemma does not hold then there exist se-
quences hn → I and h′

n → I as n → ∞, (un), (u′
n) in B0, and (xn) in K

with (hn, un) 6= (h′
n, u

′
n) but hnun.xn = h′

nu
′
n.xn for all n ∈ N. As K

and B0 are assumed to be compact we may assume without loss of general-
ity that xn → x ∈ K, un → u ∈ B0, and u′

n → u′ ∈ B0 as n→∞. Together we
obtain u.x = u′

.x which gives u = u′ by our assumption. Moreover, using

(hnunu
−1

︸ ︷︷ ︸
→I

)u.xn = hnun.xn = h′
nu

′
n.xn = h′

nu
′
nu

−1

︸ ︷︷ ︸
→I

(u.xn)

as n→∞ and the injectivity radius at u.xn ∈ B0.K we obtain

hnunu = h′
nu

′
nu

−1
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5.2 The Banana Mixing Trick and Unique Ergodicity 189

for all sufficiently large n. Together with the properties of the local coordinate
system P−

a G
+
a in Lemma 5.13 we deduce that (hn, un) = (h′

n, u
′
n) for all suf-

ficiently large n. This contradicts our choice of the sequences and proves the
lemma. �

Proof of Theorem 5.9. Let us assume compatibility of the Haar measures in
the sense that mX(π(B)) = mG(B) for any injective Borel subset B ⊆ G and
that mG restricted to P−

a G
+
a is equal to the product of the Haar measures m

P
−

a

and m
G

+

a
.

We let B0 ⊆ G+
a be a neighbourhood of the identity as in the theorem and

define Bn = a−nB0a
n for n > 1. We suppose for now in addition that B0 is

compact and let δ(K,B0) be as in Lemma 5.14.

Using continuity. Now fix a function f ∈ Cc(X)r{0}. By compactness of the
support, f is uniformly continuous. So for ε > 0 there is a δ ∈

(
0, δ(K,B0)

)
for

which
dG(g, I) < δ =⇒ |f(g.y)− f(y)| < ε (5.3)

for all g ∈ G and y ∈ X , where dG is a right-invariant metric on G (giving rise

to the metric d on X). We choose a compact neighbourhood V ⊆ B
P

−

a

δ of the
identity whose boundary has measure zero with

dG(anha−n, I) < δ

for h ∈ V and n > 0.

The banana trick. We now come to the heart of the argument involving the
‘box’ V B0a

−n
.x and the ‘banana’ anV B0a

−n
.x illustrated in Figure 5.3. Indeed

1

m
G

+

a
(Bn)

∫

Bn

f(u.x) dm
G

+

a
(u)

is within ε of

1

m
P

−

a
(anV a−n)m

G
+

a
(Bn)

∫

a
n
V a

−n

∫

Bn

f(gu.x) dm
P

−

a
(g) dm

G
+

a
(u)

because of (5.3) applied for y = u.x and g = anha−n with h ∈ V . Using the
definition Bn = anB0a

−n ⊆ G+
a and Lemma 5.13, the latter may in turn be

written as
1

mG(V B0)

∫

V B0

f(anga−n
.x) dmG(g), (5.4)

since mG is bi-invariant and on P−
a G

+
a the product of m

P
−

a
and m

G
−

a
. Moreover,

using the injectivity in Lemma 5.14 at a−n
.x ∈ K and the notation y = ga−n

.x
with g ∈ V B0 we see that (5.4) can also be written as
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1

mG(V B0)

∫

X

f(an.y)1
V B0a

−n
.x

(y) dmX(y). (5.5)

Using mixing. The expression in (5.5) is an inner product of f composed
with an and a normalized characteristic function. Hence we would like to apply
mixing of a to conclude that (5.5) is ε-close to

∫
f dmX if n is large enough.

However the characteristic function also depends on n, which in general would
be an issue. Fortunately in our case z = a−n

.x ∈ K, the map

K ∋ z 7−→ Fz = 1V B0
.z ∈ L2

mX
(X)

is continuous, and the mixing property for f and these characteristic functions
holds uniformly on the compact image (see below). So we indeed obtain for n
large enough with a−n

.K that (5.5) is within O(ε) of
∫
f dmX .

Compactness in L2(X). Let η > 0 and recall that mG(∂(V B0)) = 0. Using
the fact that (V B0)o is σ-compact there exists a compact subset C ⊆ (V B0)o

with mG(V B0rC) < η. Now let z′ = g.z, z ∈ K for g sufficiently close to I so
that Cg ⊆ V B0. With this we obtain

‖Fz′ − Fz‖2 = ‖Fz′‖2 − 2ℜ〈Fz, Fz′〉+ ‖Fz‖2

= mX(V B0.z
′)− 2mX

(
V B0g.z ∩ V B0.z

)
+mX(V B0.z)

6
(
2mG(V B0)− 2mG(C)

)
< 2η.

As η > 0 was arbitrary, this shows the continuity of K ∋ z 7→ Fz ∈ L2
mX

(X)

claimed earlier. In particular, F = {Fz | z ∈ K} ⊆ L2
mX

(X) is compact.

Uniform mixing. To prove the uniform mixing we use compactness of F and
find a finite collection z1, . . . , zJ ∈ K so that for every z ∈ K there exists
some j ∈ {1, . . . , J} with

‖Fz − Fzj
‖ < εmG(V B0)

‖f‖2

. (5.6)

Applying mixing to f and Fzj
for j = 1, . . . , J we may find N so that for n > N

we have ∣∣∣∣
1

mG(V B0)
〈f ◦ an, Fzj

〉 −
∫
f dmX

∣∣∣∣ < ε. (5.7)

However, this now implies for z ∈ K and j ∈ {1, . . . , J} satisfying (5.6) that

∣∣∣∣
1

mG(V B0)
〈f ◦an, Fz〉−

∫
f dmX

∣∣∣∣ 6
∣∣∣∣〈f ◦a

n,
1

mG(V B0)
(Fz−Fzj

)〉
∣∣∣∣

+

∣∣∣∣〈f ◦a
n,

1

mG(V B0)
Fzj
〉−
∫
f dmX

∣∣∣∣
< 2ε
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by Cauchy–Schwarz, (5.6), and (5.7). This concludes the proof for compact
sets B0 ⊆ G+

a .

Finding a compact B0. If B0 ⊆ G+
a is not compact, then we claim that there

exists for any η ∈ (0, 1) a compact set B′
0 ⊆ B0 with m

G
+

a
(B0rB

′
o) < ηm

G
+

a
(B0)

and m
G

+

a
(∂B′

0) = 0. The difference between the averages obtained using the

sets Bn = anB0a
−n and B′

n = anB′
0a

− is then easily estimated. Indeed

∣∣∣∣∣∣∣

1

m
G

+

a
(Bn)

∫

Bn

f(u.x)dm
G

+

a
(u)− 1

m
G

+

a
(Bn)

∫

B
′

n

f(u.x) dm
G

+

a
(u)

∣∣∣∣∣∣∣

6
m
G

+

a
(BnrB

′
n)

m
G

+

a
(Bn)

‖f‖∞ =
m
G

+

a
(B0rB

′
0)

m
G

+

a
(B0)

‖f‖∞ < η‖f‖∞

and
∣∣∣∣∣∣∣

1

m
G

+

a
(Bn)

∫

B
′

n

f(u.x)dm
G

+

a
(u)− 1

m
G

+

a
(B′

n)

∫

B
′

n

f(u.x) dm
G

+

a
(u)

∣∣∣∣∣∣∣

6

∣∣∣∣∣
1

m
G

+

a
(Bn)

− 1

m
G

+

a
(B′

n)

∣∣∣∣∣mG
+

a
(B′

n)‖f‖∞

=
m
G

+

a
(B0rB

′
0)

m
G

+

a
(B0)

‖f‖∞ < η‖f‖∞

shows that the two averages differ by at most 2η‖f‖∞. Using our discussion
above for B0 and setting η = ε

2‖f‖∞

gives the desired conclusion for B0.

To prove the claim we recall that m
G

+

a
(∂B0) = 0 and so we may assume

that B0 is open. It follows that B0 is σ-compact and we can find a compact
subset C ⊆ B0 with m

G
+

a
(B0rC) < ηm

G
+

a
(B0). It remains to ensure that the

boundary is a null set. For this we note that for any u0 ∈ C and all but at most
countably many radii r > 0 the boundary

∂Br(u0) ⊆ {u ∈ G+
a | d(u, u0) = r}

is a null set. We choose r(u0) > 0 small enough to ensure that in addi-

tion B
G

+

a

r(u0)(u0) ⊆ B0. The set B′
0 ⊆ B0 is then obtained as the closure of

the union of a finite cover

B
G

+

a

r(u1)(u1) ∪ · · · ∪BG
+

a

r(uk)(uk) ⊆ B0

of C, completing the proof of the theorem. �
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5.3 Almost Unique Ergodicity on Non-Compact Quotients

with Finite Volume

We now explain, guided by examples, how the presence of a cusp (that is, the
lack of compactness of the quotient) and the presence of horospherical invariant
measures other than the Haar measure are related to each other.

5.3.1 Horocycle Action on Non-Compact Quotients

The following result is important for the study of the horocycle flow on quotients
of SL2(R) and holds much more generally (see also Exercise 1.39). We also
allow SL2(C) as this makes no difference to the argument.

Proposition 5.15 (Non-uniform lattices and unipotents). Let G = SL2(R)
or G = SL2(C). A lattice Γ < G is non-uniform if and only if Γ contains non-
trivial unipotent elements.

For the proof we will need the following lemma which will help us to under-
stand the small ‘loops’ for points in X = G/Γ . Here we say that g ∈ G is a loop

at x ∈ X if g.x = x.(29)

Lemma 5.16 (Zassenhaus neighbourhoods). There exists a norm ‖ · ‖
on Matd(C) such that for N =

{
g ∈ GLd(C)

∣∣ ‖g − I‖ < 1
}

all nontrivial
discrete subgroups Γ < GLd(C) generated by Γ ∩ N have nontrivial centre.
Moreover, for g, h ∈ N we have

∥∥[g, h]− I
∥∥ 6 ‖g − I‖‖h− I‖. (5.8)

Proof. Let ‖ · ‖op be the operator norm on Matd(C) satisfying

‖uv‖op 6 ‖u‖op‖v‖op

for any u, v ∈ Matd(C). Let g, h ∈ Matd(C) and define u = g− I and v = h− I.
We suppose that ‖u‖op <

1
2 and ‖v‖op <

1
2 . Notice that this implies that the

geometric series giving g−1 = (I + u)−1 and h−1 = (I + v)−1 converge and
that ‖g−1‖op, ‖h−1‖op < 2. For the commutator [g, h] = g−1h−1gh of g, h we
then obtain

[g, h] = (I + u)−1(I + v)−1(I + u)(I + v)

= (I + u)−1(I + v)−1(I + u+ v) + O(‖u‖op‖v‖op)

= (I + u)−1((I + v)−1(I + v) + (I + v)−1u
)

+ O(‖u‖op‖v‖op)

= (I + u)−1(I + u+ O(‖v‖op)u
)

+ O(‖u‖op‖v‖op)

= I + O(‖u‖op‖v‖op).
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To summarize, we have shown that there exists a constant c > 1 such that

‖[g, h]− I‖op 6 c‖g − I‖op‖h− I‖op (5.9)

for all g, h with ‖g−I‖op, ‖h−I‖op <
1
2 . We assume c > 2, define ‖g‖ = c‖g‖op,

multiply (5.9) by c and obtain (5.8) for all g, h with ‖g − I‖, ‖h − I‖ < c
2 .

We define N as in the lemma, which in particular ensures that [g, h] ∈ N for
all g, h ∈ N .

Now let Γ be a nontrivial discrete subgroup generated by Γ ∩N . Let

g ∈ Γ ∩Nr{I}

have the minimal distance to I with respect to the above norm. Then (5.8)
shows that ‖[g, h]− I‖ < ‖g − I‖ for all h ∈ Γ ∩ N . This forces [g, h] = I and
hence g belongs to the centre of 〈Γ ∩ N〉 = Γ . �

The following special feature of SL2 is particularly useful.

Lemma 5.17 (Centralizers). Let G = SL2(K) for K = R or K = C. Any
two g, h ∈ G that commute but do not belong to the centre define the same
(automatically abelian) centralizers. If g, h ∈ SL2(K) are close to the identity,
then g and h commute if and only if log g and log h are linearly dependent
over K.

Proof. It is sufficient to study the case K = C and we will prove a version of
the lemma for Mat2(C). Assume first that g = diag(α, β) for some α 6= β ∈ C.
A simple calculation shows that g and some h ∈Mat2(C) commute if and only
if h is also diagonal. By conjugation the first claim of the lemma follows in a
more general form within Mat2(C) if one of g or h is diagonalizable.

If g is not diagonalizable we may assume that g = λI+

(
0 1
0 0

)
. For h =

(
a b
c d

)

we then have gh =

(
λa+ c λb+ d
λc λd

)
and hg =

(
λa λb + a
λc λd+ c

)
. If h commutes

with g this gives h =

(
a b
0 a

)
. If h is not a scalar multiple of I we obtain that h

once again has the same structure as g. Together with the above, this gives the
first claim in the lemma for Mat2(C).

For the second claim suppose that g, h ∈ SL2(K)r{I} commute and are close
to the identity so that u = log g and v = log h are well-defined. Then g = exp(u)
commutes with exp(su) for s ∈ C and h = exp(v) commutes with exp(tv) for t
in C. By the first part of the lemma the two one-parameter subgroups defined
by s 7→ exp(su) and t 7→ exp(tv) commute. Moreover, this implies that [u, v] = 0.
Now the first part of the proof implies that the traceless matrices u, v ∈ sl2(C)
are multiples of each other. �

Proof of Proposition 5.15. Let K = R or K = C and let Γ < G = SL2(K)

be a lattice. Let at = diag
(
e− t

2 , e
t
2

)
as before and let U = G+

a1
< G the lower
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unipotent subgroup. If Γ contains a nontrivial unipotent element γ then there
exists some g ∈ G so that u = gγg−1 ∈ U . However, this implies that the
point gΓ satisfies u.gΓ = gΓ . Applying a−t gives a−tuat.a−tgΓ = a−tgΓ .
As u 6= I and a−tuat → I as t → ∞ it follows that a−tgΓ → ∞ as t → ∞ by
the divergence criterion in Proposition 1.35. Hence X is non-compact.

The converse is the more difficult direction. So suppose that Γ contains no
nontrivial unipotent elements. LetN0 ⊆ SL2(R) be an open neighbourhood of Γ
so that the conclusions of Lemmas 5.16 and 5.17 hold on N0. Let N be an open
neighbourhood with N ⊆ N0. By the divergence criterion in Proposition 1.35
the set

K =
{
x ∈ X | N ∋ g 7−→ g.x is injective

}

is compact. For x0 ∈ K there might be loops g ∈ N0rN with g.x0 = x0. Note
that if x0 = g0Γ then there exists some γ ∈ Γ with gg0 = g0γ, which shows that
the characteristic polynomial of the loop g is also the characteristic polynomial
of γ (corresponding to the loop g at x0). Similarly replacing x0 by hx0 for
some h ∈ G creates a loop hgh−1 at hx0 with the same characteristic polynomial.
A simple compactness argument now shows that varying x0 ∈ K and g ∈ N0

gives only a finite set F ⊆ K[T ] of characteristic polynomials of loops. As every
such polynomial is also a characteristic polynomial of an element of Γ and we
assume that Γ contains no nontrivial unipotent elements we deduce that F

does not contain (T − 1)2. Hence there exists a neighbourhood O of I ∈ SL2(K)
so that g ∈ O implies that the characteristic polynomial of g does not belong
to F .

We will show that g ∈ Or{I} cannot appear as a loop of any x0 ∈ X . By
the divergence criterion in Proposition 1.35 this then shows that X must be
compact. So suppose for the purposes of a contradiction that g ∈ Or{I} is a
loop at some x0 = g0Γ . Then g−1

0 gg0 ∈ Γ or equivalently g ∈ Λ = g0Γg
−1
0 . As Λ

is discrete we may apply Lemmas 5.16 and 5.17 and obtain that Λ∩N ⊆ exp(Kv)
for some unit vector v ∈ SL2(K). We may assume that g = exp(su) ∈ Λ∩Nr{I}
is a smallest element with |s| < 1.

If v =

(
a b
c −a

)
has c 6= 0, we apply at with t > 0 to x0. Simultaneously we

conjugate the elements of Λ ∩N and the smallest loop atga−t = exp(sAdat
u).

Using the fact that c is expanded and continuity we find t ∈ R so that the
loop atga−t at at.x0 belongs to N0rN . As this was the smallest loop, Lem-
mas 5.16 and 5.17 imply that at.x0 ∈ K. By our choice of O this gives a contra-

diction. If c = 0 but b 6= 0 we similarly apply at with t < 0. If v =

(
a 0
0 −a

)
we

first apply

(
1
1 1

)
to x0, which replaces v by

(
a
2a −a

)
. After this we apply at

for t > 0 and argue as above. �

With these preparations the remaining results from Section 5.1.2 on the horo-
cycle flow follow quickly.

Proof of Theorem 5.7. Suppose that Γ < SL2(R) is a non-uniform lattice. By
Proposition 5.15 Γ contains a nontrivial unipotent element γ which is conjugated
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to an element gγg−1 ∈ U for some g ∈ SL2(R). However, this implies that UgΓ
is a periodic orbit supporting a one-dimensional U -invariant Lebesgue measure.

We still have to show that mX and the one-dimensional periodic orbit mea-
sure are the only U -invariant and ergodic probability measures on X . So assume
that µ is a U -invariant and ergodic probability measure on X and let x ∈ X be
a generic point for µ. We consider the orbit a−t.x for t > 0.

If x is periodic under U , then µ is the one-dimensional Lebesgue measure
on U.x and a−t.x → ∞ for t → ∞. So suppose now that x is not periodic un-
der U , let t0 > 0 be arbitrary, x′ = a−t0.x, and N ⊆ N0 be the neighbourhoods

of I as in the proof of Proposition 5.15. Suppose x′ has a loop in N . As x is not
periodic under U and at0 normalizes U we see that x′ is also not periodic and
so the loop cannot belong to U . We now argue along the lines of the proof of

Proposition 5.15: Let g = exp(v) be a smallest loop at x with v =

(
a b
c −a

)
6= 0.

If b 6= 0 then the smallest loop at a−t.x eventually grows for t > t0. If b = 0
and a 6= 0, then the smallest loop at a−t.x will not grow but also will not go to
zero. Finally, b = 0, a = 0, and c 6= 0 would mean that x′ and hence also x are
periodic for U . It follows that for any t0 there exists t > t0 so that a−t belongs
to a fixed compact subset K ⊆ X . This allows us to find a subsequence tn →∞
with a−tn.x ∈ K, apply Theorem 5.9, and obtain a subsequence of times for
which the time average along U.x converges to

∫
f dmX for all f ∈ Cc(X). As

the time average converges to
∫
f dµ by the choice of x we obtain µ = mX . �

Proof of Theorem 5.8. Let x be periodic for U . Then the injectivity radius
at any point in at.Ux goes to 0 for t→ −∞, which shows that at.(Ux) diverges
for t → −∞. For t → ∞ we let K = {x}, let B0 ⊆ U be an interval so
that B0 ∋ s 7→ us.x ∈ Ux is bijective, and apply Theorem 5.9 to see that the
normalized Lebesgue measure on the expanding orbits at.Ux equidistributes
for t→∞ to the Haar measure mX on X . �

5.3.2 Equidistribution for Non-Compact Quotients

Dani and Smillie showed in [26] that even for non-compact quotients of SL2(R) a
rather strong equidistribution theorem holds: A horocycle orbit is either periodic
or it equidistributes with respect to the uniform measure mX .

For higher dimensional non-compact quotients X = G/Γ and their horo-
spherical actions other possibilities can occur. For the following characterization
of whether or not a horospherical orbit equidistributes we specialize to the case
where the horospherical subgroup is abelian.

Theorem 5.18. Let G.x0 ⊆ Xd = SLd(R)/ SLd(Z) be a finite volume orbit for
some closed connected subgroup G 6 SLd(R) and some point x0 ∈ Xd. Let a ∈ G
have only real and positive eigenvalues so that the action of a is mixing with
respect to mG.x0

. Let U = G+
a be the unstable horospherical subgroup of a and
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suppose that it is abelian. Let (Fn) be a Følner sequence in U containing I
consisting of blocks whose sides are parallel to some fixed coordinate system
spanned by eigenvectors for the conjugation map by a. Then for every x ∈ G.x0

the following are equivalent:

(1) The U -orbit through x is equidistributed, meaning that

1

mU (Fn)

∫

Fn

f(u) dmU (u)→
∫

Xd

f dmXd

as n→∞ for any f ∈ Cc(Xd).
(2) The orbit U.x is not contained in a closed orbit L.x for any proper connected

subgroup L < G.

If, in addition, G = SLd(R) and x = g SLd(Z) for some g ∈ SLd(R) then we
also have the equivalence to the next property.

(3) There is no rational subspace V ⊆ R
d for which gV is fixed by U and

expanded by a.

Proof. We let x ∈ G.x0 be as in the theorem. If the U -orbit of x is contained
in a closed orbit of a proper connected subgroup L < G as in (2), then clearly
we cannot have equidistribution of the U -orbit as in (1). This shows that (1)
implies (2).

Assume now that the U -orbit U.x is not contained in a closed orbit L.x for
any proper closed subgroup L < G as in (2). Fix some f ∈ Cc(Xd) and ε > 0.

We let x0 = g0 SLd(Z), let Λ0 = g0Z
d be the lattice corresponding to x0, and

define
η = min

{
covol(Λ0 ∩ V, V )1/ dimV

∣∣∣ V is Λ0-rational
}
. (5.10)

By quantitative non-divergence for the action of U = G+
a there exists some

compact set K ⊆ Xd with the property as in Proposition 4.13 with δ = ε. We
let B0 be the symmetric cube (that is, centred at the origin) in

U = G+
a
∼= R

ℓ

satisfying the injectivity requirement of Theorem 5.9 on K. Applying that the-
orem to f , B0K, and ε, we find some k > 1 such that

∣∣∣∣∣∣∣

1

m
G

+

a
(akB0a

−k)

∫

a
k
B0a

−k

f(u.y) dm
G

+

a
(u)−

∫

X

f dmX

∣∣∣∣∣∣∣
< ε (5.11)

whenever B0a
−k
.y intersects K non-trivially.

Now let x′ = a−k
.x and notice that it may not belong to K. Since (Fn) is

chosen to be a Følner sequence consisting of blocks, the same is true for a−kFna
k.

If U = G+
a fixes a Λx′-rational subspace V of covolume < ηdimV , then we can

define the subgroup
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L = Stab1
G(V ) = {g ∈ G | gV = V and g|V has determinant 1} � G

that does not contain a (by our definition of η in (5.10)). Exercise 3.12 shows
that Lx′ is closed, which shows that

akL.x′ = akLa−k
.x

is a closed orbit of a proper subgroup which contradicts our assumption in (2).
It follows that U does not fix any Λx-rational subspaces V with covolume

less than ηdimV . Applying Proposition 4.13 we see now that for large enough n
we have

1

m
G

+

a

(
a−kFna

k)mG
+

a

({
u ∈ a−kFna

k
∣∣ u.x′ /∈ K

})
< ε. (5.12)

We now split a−kFna
k into translates B0uℓ for ℓ = 1, . . . , L of the cube B0.

Ignoring the effects of the boundary which contribute no more than of (1) to
the ergodic average as n→∞, we now have

1

m
G

+

a
(Fn)

∫

Fn

f(u.x) dm
G

+

a

=
1

L

L∑

ℓ=1

1

m
G

+

a
(akB0a

−k)

∫

a
k
B0a

−k

f
(
uakuℓa

−k
.x
)

dm
G

+

a
+ of (1).

For all those ℓ for which B0uℓa
−k
.x intersects K the corresponding average is ε-

close to
∫
X
f dmX by (5.11). However, the number of boxes B0uℓ.x

′ that do not
intersect K is controlled by (5.12), and gives

1

m
G

+

a
(Fn)

∫

Fn

f(u.x) dm
G

+

a
(u) =

∫

X

f dmX + of (1) + Of (ε)

for n→∞. As ε > 0 and f ∈ Cc(X) were arbitrary, this shows (1).
Now suppose that G = SLd(R). We note that (2) implies (3) by Exercise 3.12.

It remains to show that (3) implies (1). For this let

a =

(
λ−nIm

λmIn

)
∈ SLd(R)

for some λ > 1 so that

G+
a =

{(
Im
∗ In

)}

is indeed abelian (up to conjugation and the choice of m and n this is the only

choice of a for which G+
a is abelian). Suppose now that V ⊆ R

d is a proper G+
a -

invariant subspace. Then either V ⊆ {0}m×Rn or V contains some v = (vm, vn)
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with vm ∈ R
mr{0} and vn ∈ R

n, which implies that {0}m × R
n ⊆ V . In both

cases aV = V and the restriction of a to V has determinant bigger than 1. It fol-
lows that (3) is equivalent to the assumption that U does not fix any proper gZd-
rational subspace. By setting η = 1 the above argument now proves (1). �

In the exercises we outline how one can remove the assumptions on commu-
tativity of U .

Exercise 5.19. Let G.x0 ⊆ Xd = SLd(Z)\ SLd(R) be a finite volume orbit for some closed
connected subgroup G 6 SLd(R) and some point x0 ∈ Xd. Let a ∈ G have only real and

positive eigenvalues so that the action of a is mixing with respect to mG.x0
. Let U = G

+
a be

the unstable horospherical subgroup of a and let Fn be as in Exercise 4.14. Let x ∈ G.x0.
Suppose that U does not fix any Λx-rational subspace which is not also fixed by G. Show
that Fn

.x equidistributes in X = G.x0 in the sense that

1

mU (Fn)

∫

Fn

f(u.x)dmU (u) −→

∫

X

fdmX

as n → ∞ for any f ∈ Cc(X).

5.4 The Counting Method of Duke–Rudnick–Sarnak and

Eskin–McMullen

We return to the topic of Sections 1.1 and 1.2.6. In fact we wish to explain
the work of Eskin and McMullen [52] who use mixing to establish asymptotic
counting results in a more general context. For this (and in preparation for other
special cases to be considered later) we describe in this section the general set-up
for the work of Duke, Rudnick and Sarnak [38] (which is also used in the work of
Eskin and McMullen) on how to relate a counting problem for points in Γ -orbits
on V = G/H to the equidistribution problem for ‘translated’ H-orbits of the
form

gH.Γ ⊆ X = G/Γ

for varying gH ∈ V .
In many cases (for example, in the context of ‘affine symmetric spaces’), the

methods of this chapter can be used to give the asymptotic of the counting
for the number of integer points on varieties. In fact, suppose G and H consist
of the R-points of algebraic groups G and H defined over Q respectively, the
quotient V = G/H can be identified with the R-points of an affine variety V

defined over Q, and V(Z) is non-empty. Then we get that V(Z) is a disjoint
union

V(Z) =
⊔

i

G(Z)vi

of different Γ = G(Z)-orbits. Frequently this is a finite union, and then one
gets the asymptotic for |V(Z) ∩Bt| by assembling the results for the individual
counts |G(Z)vi ∩Bt|. We will discuss the details of such integer point counting
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problems in special cases in the remaining sections of this chapter, and we refer
to the papers of Duke, Rudnick and Sarnak and of Eskin and McMullen [38, 52]
for a detailed discussion of the general problem of counting lattice points in
‘affine symmetric spaces’.

5.4.1 Compatibility of all Haar Measures Involved

In order to state both method and result, we have to briefly describe the nec-
essary compatibility of all the Haar measures involved. Let mG be a Haar mea-
sure on a unimodular group G, and let Γ < G be a lattice, on which we choose
counting measure as the Haar measure. As we know mG induces in a natural
way a Haar measure mX on X = G/Γ , giving total mass mX(X) = mG(F )
where F ⊆ G is a fundamental domain for (the right action of) Γ .

Assume that H < G is a closed unimodular subgroup with Haar measuremH .
Then (see Section A.2) we may define a locally finite measure mG/H with the
following compatibility property, which is analogous to Fubini’s theorem if G is
thought of measurably as a product of H and G/H . If f ∈ L1

mG
(G) then the

function F defined by the relation

F (gH) =

∫

H

f(gh) dmH(h) (5.13)

exists for almost every g ∈ G, and the measure mG/H satisfies

∫

G/H

F (gH) dmG/H =

∫

G

f dmG. (5.14)

5.4.2 First step: Equidistribution gives an Averaged Counting Result

Let Γ < G be a lattice, and assume that H < G is a closed subgroup with the
property that Γ ∩H < H is also a lattice. Let Y = H/Γ ∩H identified with the
closed orbit H.Γ ⊆ X , and let mY be the Haar measure on Y induced by the
Haar measure mH on H . We make the following†equidistribution assumption:

the translated H-orbits gH.Γ equidistribute in X = G/Γ (5.15)

as gH → ∞ in G/H . In other words the push-forward of 1
mY (Y )mY under g

should converge to 1
mX(X)mX in the weak* topology as gH →∞.

The assumptions above already imply a weak* version of our desired counting
result in the following sense. We let {Bt | t > 0} be a collection of subsets ofG/H

†
Alternatively, we may just assume a form of ‘equidistribution on average’—in a sense to

be made clear in the proof.
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each with finite Haar measure, and define for t > 0 a modified orbit-counting
function Ft : X → R>0 by

Ft(gΓ ) =
1

mG/H(Bt)
|gΓ.H ∩Bt| , (5.16)

which counts elements in Bt within the Γ -orbit of H ∈ G/H translated by g.

Proposition 5.20 (Weak* Counting Result). If mG/H(Bt)→∞ as t→∞,
then (5.15) implies the weak*-convergence

Ft dmX −→
mY (Y )

mX(X)
dmX (5.17)

as t→∞, where Y = H/Γ ∩H and X = G/Γ .

5.4.3 Second step: Additional Geometric Assumptions imply the
Counting Result

In order to be able to obtain the desired counting result from the averaged weak
counting result above, we need to assume that the sets Bt are well behaved in
a geometric manner.

Definition 5.21 (Geometric Assumption). A monotonically increasing fam-
ily {Bt | t > 0} of subsets of G/H is well-rounded if mG/H(Bt)→∞ as t→∞,
for every δ > 0 there exists a neighbourhood U of I ∈ G with

Bt−δ ⊆
⋂

g∈U
gBt ⊆ Bt ⊆

⋃

g∈U
gBt ⊆ Bt+δ,

and furthermore for every ε > 0 there exists δ > 0 with

mG/H(Bt+δ)

mG/H(Bt)
< 1 + ε

for all t > 0.

Theorem 5.22 (Asymptotic Counting). If Γ < G and Γ ∩ H < H are
lattices, the translated H-orbits equidistribute as assumed in (5.15), and the
family of sets {Bt} is well-rounded as above, then we have the asymptotic

lim
t→∞

1

mG/H(Bt)
|Γ.H ∩Bt| =

mY (Y )

mX(X)
(5.18)

for the orbit-point counting problem, where Y = H/Γ ∩H and X = G/Γ .

We note that Selberg’s Theorem 1.15 concerning PSL2(Z).i ⊆ H turns out
to be a very special case of this setup.
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5.4.4 Proofs

We now turn to considering the components of the outlined argument in greater
detail and start by proving the equidistribution of expanding circles in Theo-
rem 1.16 (leading to the instance of (5.15) needed for Selberg’s theorem).

Proof of Theorem 1.16. The argument is similar to the banana mixing
argument from Section 5.2 but easier. Let Γ < SL2(R) = G be a lattice,
let K = SO2(R), let A = {at | t ∈ R} be the diagonal subgroup, and let N = G−

a

be the stable horocycle subgroup. By the Iwasawa decomposition in Proposi-
tion 1.55 we have G = NAK and uniqueness of the corresponding decomposi-
tion. Moreover, by Lemma 1.58 the Haar measure on G is the direct product of
the Haar measure mNA on B = NA and the Haar measure on K.

Let x0 ∈ X = G/Γ , f ∈ Cc(X), and ε > 0. Using a compactness argument
as in Lemma 5.14 there exists a δ > 0 such that the map

BNAδ ×K.x0 ∋ (h, k.x0) 7−→ hk.x0 ∈ X

is injective. By shrinking δ we may assume that it satisfies the uniform con-
tinuity claim in (5.3) for f and ε. Using this and applying mixing for f
and 1

mG(B
NA
δ K.x)

1
B

NA
δ K.x

leads to the desired estimate. �

Proof of the instance of (5.15) for Theorem 1.15. Let H = K = SO2(R)
and (gn) in G = SL2(R) so that gnK → ∞ as n → ∞. Applying the Cartan
decomposition to gn we find kn ∈ SO2(R) and diagonal matrices atn with tn > 0
so that gnK = knatnK for all n > 1. By choosing a subsequence we may assume
that kn → k as n→∞ for some k ∈ K.

Now fix f ∈ Cc(X) and ε > 0. By uniform continuity we have

|f(kn.x)− f(k.x)| < ε

for x ∈ X and all sufficiently large n. Applying in addition the equidistribution
of expanding circles in Theorem 1.16 to f ◦ k we have that

∣∣∣∣∣∣

∫

Y

f(gn.y) dmY (y)−
∫

X

f dmX

∣∣∣∣∣∣
6 ε+

∣∣∣∣∣∣

∫

Y

f(katn
.y) dmY (y)−

∫

Y

f dmX

∣∣∣∣∣∣
6 2ε

for all sufficiently large n. �

Combining Theorem 5.22 with the required version of (5.15) and using the
fact that balls in H are well-rounded (see Exercise 5.24) then gives us Selberg’s
Theorem 1.15.

We return now to the general setup considered in Sections 5.4.1–5.4.3.

Proof of weak*-convergence in Proposition 5.20. We assume (5.15), or
more precisely that the normalized translation
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1

mY (Y )
g∗mY

of the Haar measure mY on

Y = H/Γ ∩H ⊆ X = G/Γ

translated by gH ∈ G/H converges to the normalized Haar measure

1

mX(X)
mX

in the following averaged sense. For a test function α ∈ Cc(X) we require that

1

mY (Y )mG/H(Bt)

∫

Bt

∫

Y

α (ghΓ ) dmY (hΓ ) dmG/H(gH)

−→ 1

mX(X)

∫
α dmX

(5.19)

as t→∞. As mG/H is locally finite this is certainly satisfied if both

1

mY (Y )

∫

Y

α (ghΓ ) dmY −→
1

mX(X)

∫
α dmX

as gH →∞ in G/H and
mG/H(Bt) −→∞

as t→∞, but (5.19) is a weaker requirement because of the additional averag-
ing.

We wish to deduce from this assumption that

Aαt =

∫

X

Ft(x)α(x) dmX −→
mY (Y )

mX(X)

∫

X

α dmX

as t→∞.
The proof is relatively short, and consists of an application of the following

folding/unfolding trick (see also Proposition 1.31) using the spaces

G/Γ ∩H

zztt
tt
tt
tt
t

%%
❑❑

❑❑
❑❑

❑❑
❑

G/Γ G/H.

By the definition of Ft in (5.16) we have
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Aαt =

∫

X

Ft(x)α(x) dmX

=
1

mG/H(Bt)

∫

G/Γ

∑

γ∈Γ/Γ∩H
1Bt

(gγ.H)α(gΓ ) dmX(gΓ ),

in which the sum over γ ∈ Γ/Γ ∩H denotes the sum over a list of representatives
of the cosets of Γ∩H in Γ . Thus by using the compatibility of the Haar measures
we get

Aαt =
1

mG/H(Bt)

∫

G/Γ∩H
1Bt

(gH)α(gΓ ) dmG/Γ∩H(g(Γ ∩H))

=
1

mG/H(Bt)

∫

G/H

1Bt
(gH)

∫

H/Γ∩H
α(ghΓ ) dmY (hΓ ) dmG/H(gH)

=
1

mG/H(Bt)

∫

Bt

∫

Y

α(ghΓ ) dmY (hΓ ) dmG/H(gH).

For the first unfolding step note that if F ⊆ G is a fundamental domain for Γ
then ⊔

γ∈Γ/Γ∩H
Fγ

is a fundamental domain for Γ ∩ H . For the second, we use (5.13)–(5.14) and
note that a fundamental domain F ⊆ G for Γ ∩H intersects any coset gH in
the g-translate of a fundamental domain for Γ ∩H in H .

Finally note that the last expression for Aαt converges by our assumption
in (5.19) to

mY (Y )

mX(X)

∫

X

α dmX

as t→∞. �

Proof of the pointwise count in Theorem 5.22. We now suppose that
the weak*-convergence discussed above holds, and that the family of sets Bt is
well-rounded as in Definition 5.21. From this we wish to derive the asymptotic

1

mG/H(Bt)
|(Γ.H) ∩Bt| −→

mY (Y )

mX(X)

as t→∞.
Let ε > 0 be arbitrary, and choose δ > 0 so that

mG/H(Bt+δ)

mG/H(Bt)
< 1 + ε

for all t > 0, and choose a symmetric neighbourhood U = U−1 ⊆ G of I ∈ G
with

UBt ⊆ Bt+δ
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for all t. Further let α ∈ Cc(X) be an approximate identity at the identity coset,
in the sense that α > 0,

∫
X α dmX = 1, and supp(α) ⊆ UΓ . Then we have for

any g ∈ U that

Ft+δ(g) =
1

mG/H(Bt+δ)

∣∣gΓ.H ∩Bt+δ
∣∣

=
1

mG/H(Bt+δ)

∣∣∣Γ.H ∩ g−1Bt+δ︸ ︷︷ ︸
⊇Bt

∣∣∣

>
mG/H(Bt)

mG/H(Bt+δ)

1

mG/H(Bt)

∣∣Γ.H ∩Bt
∣∣

>
1

1 + ε

1

mG/H(Bt)

∣∣Γ.H ∩Bt
∣∣.

Multiplying by α, integrating with respect to mX and letting t→∞ gives

lim sup
t→∞

1

mG/H(Bt)
|Γ.H ∩Bt| 6 (1 + ε)

mY (Y )

mX(X)
.

The second inequality is derived in the same way (see Exercise 5.23). �

Exercise 5.23. Give a detailed argument to show that

lim inf
t→∞

1

mG/H(Bt)
|Γ.H ∩ Bt| > (1 + ε)

−1 mY (Y )

mX (X)
.

To conclude the proof of Selberg’s counting result in Theorem 1.15 the fol-
lowing is needed.

Exercise 5.24. Recall that the hyperbolic area of a ball B
H

t of radius r > 0 is 2π(cosh R−1)

and use this to show that B
H

t is well-rounded in the sense of Definition 5.21,
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5.5 Counting Integer Points on Quadratic Hypersurfaces

In this section we study our first class of examples of ‘affine symmetric’ varieties,
namely the case of quadratic hypersurfaces. Let Q be a non-degenerate indefinite
quadratic form with integer coefficients in d > 3 variables and a ∈ Zr{0}. Then

V(R) = {v ∈ R
d | Q(v) = a}

can be identified with G(R)/H(R) for G = SOQ and H = StabG(v0) for

some v0 ∈ V(R) as the G(R)-action is transitive† by Witt’s theorem.(30) Let
us assume that V(Z) is non-empty and that v0 ∈ V(Z). If now H(Z) is a lattice
in H(R) (which is always the case for d > 4 and in many cases also for d = 3)
then we can derive from the methods of the last section the asymptotics for the
counting problem on V(Z).

Exercise 5.25. Show that G(R) acts transitively on V(R). Show also that G(R)
o

acts
transitively on every connected component of V(R).

5.5.1 The Asymptotic Counting Result

We wish to discuss the counting result now in greater detail. For the following
calculations it is convenient to sometimes fix a particular quadratic form. So
we set Q0(x1, . . . xp, y1, . . . , yq) = x2

1 + · · · + x2
p − y2

1 − · · · − y2
q with p, q > 1,

and d = p+ q > 3, while Q denotes a general non-degenerate quadratic form of
signature (p, q).

Corollary 5.26 (Counting on quadratic hypersurfaces). Let a ∈ Zr{0},
let V = {v | Q(v) = a} and assume that V(Z) is non-empty. Suppose fur-
thermore that either d > 4, that d = 3 and 0 /∈ Q(Q3r{0}), or that (p, q)
is (2, 1), Q = Q0, and a is not a square in Z. Define

BVR =
{
v ∈ V(R)

∣∣ ‖v‖ 6 R
}

for a suitable Euclidean norm ‖ · ‖ on R
d. Then there exists constants c > 0

and c′ > 0 such that

∣∣V(Z) ∩BVR
∣∣ ∼ c volV

(
BVR
)
∼ c′Rd−2

as R→∞, where volV denotes the G-invariant Haar measure on V = V(R).

As we will see, the constants above can be expressed using a, the volumes of
the associated homogeneous spaces that arise in the proof, and the ‘geometry’
of Q.

†
We will see throughout this section enough elements of G(R) to derive this transitivity

directly.
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We note that we define (and normalize) the Haar measure volV on V (R) by

the Lebesgue measure in R
d using the formula

volV (B) = m
R

d({tv | t ∈ [0, 1], v ∈ B}) (5.20)

for any measurable B ⊆ V(R).
For the following proof we further define G and let G = G(R) or G = G(R)o

and Γ = SOQ(Z) ∩G. We note that Go is a simple real Lie group except in the
case p = q = 2, in which case Go is semisimple without compact factors instead.

5.5.2 Reduction to orbit counting problems

Recall from the beginning of the section that V = V(R) is a single G(R)-
orbit. We start with a fundamental finite decomposition result due to Borel and
Harish-Chandra [9].

Proposition 5.27 (Borel–Harish-Chandra). The integer points of V are a
finite disjoint union

V(Z) =
⊔

i

G(Z)vi (5.21)

of G(Z)-orbits.

Since the connected component G(R)o has finite index in G(R), a version
of (5.21) also holds for G(Z) ∩Go instead of G(Z).

Proof of Proposition 5.27. We let G = SOQ(R) and Γ = SOQ(Z), choose
one v0 ∈ V(Z), and set H = StabG(v0). We associate to any point

v = g−1
.v0 ∈ V(Z)

with g ∈ G the orbitHg.Γ ⊆ X . We will show below that there exists some δ > 0
such that any H-orbit associated to some v ∈ V(Z) intersects the compact
set Xd(δ). This implies the proposition. Indeed, as X = G.SLd(Z) ⊆ Xd is
closed,

X ∩ Xd(δ) = B.Γ

is also compact and is the image of a compact set B ⊆ G. If now hgγ ∈ B
for v = g−1

.v0 ∈ V (Z), g ∈ G, h ∈ H , and γ ∈ Γ , then γ−1
.v = γ−1g−1h−1

.v0

belongs to the finite set F = V(Z) ∩B−1
.v0. Hence

V(Z) =
⋃

w∈F
Γ.w

is a finite union of orbits as desired.
We define the inner product

〈w, v〉Q = 1
2

(
Q(w + v)−Q(w)−Q(v)

)
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associated to Q and note that 〈Zd, v〉Q ⊆ 1
2Z is a subgroup containing a. Let us

also write
v⊥
Q =

{
w | 〈w, v〉Q = 0

}

for the orthogonal complement of v ∈ R
d with respect to 〈·, ·〉Q.

Index claim. Suppose therefore that v = g−1
.v0 ∈ V(Z), g ∈ G, and Λ = gZd.

Then v0 = g.v ∈ Λ and the orthogonal complement defined using Q is Λ-
rational, meaning that v⊥

0 ∩ Λ = g(v⊥ ∩ Z
d) spans v⊥

0 . We claim that

Zv0 + v⊥
0 ∩ Λ

has index no more than 2|a| within Λ. By applying g−1 we may instead con-

sider Zv+ v⊥ ∩Zd < Z
d. Let w ∈ Z

d be chosen with k = 〈w, v〉Q ∈ 1
2Z minimal

(and hence with a ∈ Zk). Subtracting from a given element of Zd a multiple of w

allows us to reduce to an element in v⊥, which shows that Zw + v⊥ ∩ Z
d = Z

d.
Moreover

〈akw − v, v〉Q = a
kk −Q(v) = 0,

which shows that a
kw ∈ Zv + v⊥ ∩ Z

d. As
∣∣a
k

∣∣ 6 2a, this proves the claim.

Reduction to complement. As our goal is to show a uniform lower bound
for the norms of the non-zero vectors in Λ = hgZd for some h ∈ H the index
claim above is helpful. Indeed the vectors in Λ ∩ Rv0 cannot be close to zero
as their image under Q belongs to Zr{0}. Suppose now that we can find a
uniform δ0 ∈ (0, 1] so that for any v ∈ V (Z) there exists some h ∈ H so that all

non-zero vectors in v⊥
0 ∩Λ = hg(v⊥∩Zd) have norm at least δ0. Then all non-zero

vectors in hg(Zv + v⊥ ∩ Z
d) have norm ≫ δ0 and by the index claim the same

applies to hgZd (where the implicit constant depends on the splitting Rv0 + v⊥
0

and on a).

Let Λ⊥ = g(v⊥ ∩ Z
d). We consider Λ⊥ as a lattice in v⊥

0
∼= R

d−1 and

equip R
d−1 with the quadratic form Q⊥ obtained by restricting Q to v⊥

0 .

A definite complement. Suppose now that Q restricted to v⊥
0 is definite. In

this case all non-zero vectors in v⊥
0 ∩ gZd = g(v⊥ ∩ Z

d) have image under Q
in Zr{0} and hence cannot be close to zero. This establishes the desired claim.

The three-dimensional case. Suppose now that d = 3 and the orthogonal
complement is indefinite of signature (1, 1). In this case there exists a basis of v⊥

0

with respect to which Q⊥ is in the coordinates of this basis a multiple of the
quadratic form x1x2. Moreover, SOQ⊥

(R) is in this basis the diagonal subgroup.
If Λ⊥ has a primitive short vector w1 ∈ Λ then Q⊥(w1) = 0 (as it is small and
belongs to Z), w1 belongs to one of the coordinate axes, and an element of H can

be used to map w1 to an element of norm one. Summarizing, either g(v⊥ ∩ Zd)
already has no short vector or we can find h ∈ H so that hg(v⊥∩Zd) contains an

element w1 of norm one with Q(w1) = 0. In the latter case hg(v⊥∩Zd) contains

no non-zero short vectors. Indeed, suppose otherwise and that w2 ∈ hg(v⊥∩Zd)
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is short. Then Q(w2) = 0 as it belongs to Z and 〈w1, w2〉Q = 0 as it belongs

to 1
2Z. In the basis v0, w1, w2 ∈ R

3 the quadratic form Q therefore has the
matrix representation 


a ∗ ∗
∗ 0 0
∗ 0 0


 (5.22)

which is a contradiction to Q being non-degenerate.

Higher dimensions. It remains to consider the case where d > 4 and Q re-
stricted to v⊥

0 is indefinite. In this case

H ∼= SOQ⊥
(R) < SLd−1(R)

is simple or semi-simple and generated by unipotent one-parameter subgroups,
and the standard representation of H on R

d−1 is irreducible. To see the latter,
suppose W < R

d−1 is a nontrivial subspace. If w0 ∈ W then h = LieH satis-
fies hw0 = w⊥

0 ⊆W (see Exercise 5.28). If Q⊥(w0) 6= 0, then w⊥
0 is a hyperplane

not containing w0 and we obtain W = R
d−1. If Q⊥(w0) = 0, then w⊥

0 con-

tains w0 but also contains a vector w1 with Q⊥(w1) 6= 0, leading to W = R
d−1

once more. Indeed, if Q⊥ were to vanish on w⊥
0 then 〈·, ·〉Q⊥

would also vanish
on this hyperplane and we would again obtain a contradiction (similar to (5.22))

by considering the matrix representation of Q⊥. We conclude that if W 6 R
d−1

is non-trivial and invariant under H , then W = R
d−1.

We claim that this implies that there exists some h ∈ Ho so that

λ1(hΛ⊥) ≍ · · · ≍ λd−1(hΛ⊥).

To see this we rescale Λ⊥ to an element Λ1
⊥ ∈ Xd−1 and apply quantitative

non-divergence (Theorem 4.11) with η = 1 and find h within a suitable one-
parameter unipotent subgroup U < Ho (see below). It now follows that hΛ⊥ has
no short vector, for otherwise it would have a Z-basis of short vectors and Q⊥ =
0 would again lead to a contradiction of Q being non-degenerate.

To find a choice of U for which we can indeed set η = 1 we start with a
one-parameter unipotent subgroup U0 < Ho that is not contained in a proper
normal subgroup of Ho. For a given non-trivial proper subspace V we consider
the variety

SV =
{
g ∈ G

∣∣ V is invariant under gU0g
−1}.

As G is irreducible, we see that either SV = G or all irreducible components
of SV have dimension strictly less than dimG. In the former case V would be
invariant under the normal subgroup generated by gU0g

−1 for g ∈ G. However,
by our choice of U0 and because G acts irreducibly we see that this is only
possible for V = {0} or for V = R

d−1. Finally note that there are only finitely
many non-trivial subspaces V with covolume less than 1. Picking g ∈ G outside
the union of the associated varieties we see that for U = gU0g

−1 none of these
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subspaces is invariant. Picking T > 0 large enough allows us to ensure that η = 1
satisfies the assumptions of Theorem 4.11. �

Exercise 5.28. Let Q be a non-degenerate quadratic form in d variables. Let g = Lie G

for G = SOQ(R). Show that gv = v
⊥

for any v ∈ R
d
, where v

⊥
is defined using the inner

product 〈·, ·〉Q associated to Q.

5.5.3 Finite volume assumptions

The standing assumptions in Section 5.4 were that Γ < G and Γ ∩H < H are
both lattices. We now check these assumptions in the setting of Corollary 5.26.

Since G = SOQ is, for d > 3, a semisimple algebraic group defined over Q it
follows by Theorem 4.18 that G(Z) is a lattice in G(R). This also implies that
the subgroup Γ = G(Z) ∩G is a lattice in G = SOQ(R)o.

If d > 4 then H = StabG(v0) is again a semisimple algebraic group defined
over Q (since a 6= 0 it is simply the orthogonal group of the non-degenerate
quadratic form on the orthogonal complement). Hence in that case H(Z) is a
lattice in H(R) which once more implies that Γ ∩H is a lattice in the group H =
H(R) ∩G.

In the remaining case where d = 3, we see that H is either SO2 or SO1,1.

In the former case there is nothing to prove. If 0 /∈ Q(Q3r{0}) then the same
is true for the restriction to the orthogonal complement and we may apply
Proposition 3.2.

So suppose now Q = Q0 and that a ∈ Z is not a square. Then Q0|v⊥

0

is a

rational non-degenerate binary quadratic form. We claim that Proposition 3.2
applies to this restriction, which implies once more that H(Z) is a lattice in H(R).
To see this we suppose for the purposes of a contradiction that Q0(w1) = 0

for some w1 ∈ Q
3 ∩ v⊥

0 . Let w2 ∈ Q
3 ∩ v⊥

0 be linearly independent to w1 so
that Q0(xw1 + yw2) = 2bxy + cy2 for some b, c ∈ Q. In the basis v0, w1, w2 the
quadratic form Q0 has the matrix representation



a

0 b
b c




with determinant −ab2. The determinant of the matrix representation of a
quadratic form changes by the square of the determinant of a coordinate change
matrix. In the standard basis the determinant is −1, which implies that b 6= 0
and that a must be a square, which contradicts our assumption.
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5.5.4 Proving the Equidistribution

The main dynamical assumption in Section 5.4 (and Section 5.4.2 in particular)
is the equidistribution of gH.Γ in X = G/Γ as gH → ∞ in G/H. We claim
that this follows in the context of this section once again from the same ‘mixing
argument’ that was used in Section 5.2. We will not repeat this argument in
detail, but will provide the technical input that reduces this repetition of the
mixing argument into a straightforward exercise.

What is needed in order to do this is an analogue of the local coordinate
system P−

a G
+
a from Section 5.2.2 and the Iwasawa decomposition from Sec-

tion 1.2.6. As this part of the argument only concerns G = SOQ(R)o (a real Lie
group) and its subgroup H we suppose for simplicity that:

• Q = Q0,
• G = G0 = SOp,q(R)o,
• v0 = e1 (by rescaling v0, swapping p and q if necessary), and
• H = H0 = StabG(e1).

We start by defining a one-parameter diagonalizable subgroup

A0 =




as =




cosh s 0 sinh s 0
0 Ip−1 0 0

sinh s 0 cosh s 0
0 0 0 Iq−1




∣∣∣∣∣∣∣∣
s ∈ R




,

and the compact subgroup

K0 =
(
SOp(R)× SOq(R)

)
∩G0.

The next lemma is not yet the analogous decomposition we are seeking, but is
needed nonetheless.

Lemma 5.29 (A first group decomposition). We have G0 = K0A0H0.

Proof. Let g ∈ G0 be an arbitrary element, and define

v = ge1 =

(
w1

w2

)

for w1 ∈ R
p and w2 ∈ R

q. Then

Q0(e1) = Q0(v) = ‖w1‖2 − ‖w2‖2 = 1.

If p = 1 the first coordinate of v = gv0 must be positive because G = SOQ0
(R)o.

Hence, in any case there exists some k ∈ K0 such that

kv = ‖w1‖e1 ± ‖w2‖ep+1.

Let s ∈ R be chosen so that cosh s = ‖w1‖ and sinh s = ±‖w2‖. Then
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kv = kgv0 = asv0,

equivalently a−skg = h ∈ H0, or

g = k−1ash ∈ K0A0H0

as required. �

As K0 is compact, the requirement that gnH0 → ∞ in G0/H0 is equivalent
to gn = knasn

hn with asn
→∞ as n→∞. Furthermore, as in the proof of (5.15)

on page 199, the sequence (kn) has no effect on the desired equidistribution
claim. Thus we can simply assume that gn = asn

with sn → ∞ or sn → −∞
as n → ∞. Below we will assume that sn → ∞ as n → ∞ (the other case is
similar). We now define the local coordinate system that is needed in the proof
of the equidistribution statement.

Lemma 5.30 (A coordinate system). The stable horospherical subgroup G−
a1

has the property that G−
a1
A0H0 is open and that the product map provides a

coordinate system on the image.

Proof. For the proof it is convenient to switch to the Lie algebra. The Lie
algebra element corresponding to A0 is

h =




01 0 1 0
0 0p−1 0 0
1 0 01 0
0 0 0 0q−1


 ,

where (for example) the second 0 represents (p − 1) zeros in a row. We claim
that the Lie algebra of Ga1

contains

W =




01 −wt
1 0 wt

2

w1 0p−1 w1 0

0 wt
1 01 −wt

2

w2 0 w2 0q−1


 (5.23)

for all w1 ∈ R
p−1 and w2 ∈ R

q−1. This requires two calculations, as follows.
Since WJ + JW t = 0 for the companion matrix

J =

(
Ip
−Iq

)
,

all elements W of the form (5.23) belong to the Lie algebra of G. Moreover,
since
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[h,W ] = hW −Wh

=




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0







0 −wt
1 0 wt

2

w1 0 w1 0

0 wt
1 0 −wt

2

w2 0 w2 0


−




0 −wt
1 0 wt

2

w1 0 w1 0

0 wt
1 0 −wt

2

w2 0 w2 0







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0




=




0 wt
1 0 −wt

2

0 0 0 0

0 −wt
1 0 wt

2

0 0 0 0


−




0 0 0 0
w1 0 w1 0
0 0 0 0
w2 0 w2 0




= −W,

it follows that W belongs to the Lie algebra of G−
a1

(where we have dropped the
dimension subscripts for brevity).

We recall that dim SOd = d(d−1)
2 , which follows by induction and also holds

for other signatures in dimension d. In particular,

dimCG0
(A0) > dimA0 + dim SOp−1,q−1 = 1 +

(d− 2)(d− 3)

2
.

The elements in (5.23) give a subspace of dimension (d − 2), and it follows
that dimG−

a1
> d − 2. Flipping the sign of v0 = e1 belongs to Op,q(R) and

conjugation by it maps as to a−s and G−
a1

to G+
a1

, so that dimG+
a1

> d − 2.
Taking the sums we have

1 +
(d− 1)(d− 3)

2
+ 2(d− 2) =

2 + d2 − 5d+ 6 + 4d− 8

2
=
d(d− 1)

2
.

Hence our inequalities were equalities and the elements in (5.23) comprise the
full Lie algebra of G−

a1
.

If now P = G−
a1
A0 and p = Lie(P ) is its Lie algebra, then we see from the

inverse function theorem that Pe1 must contain a neighbourhood of e1 ∈ V ,
since pe1 contains {0}×R

p+q−1 (which coincides with the tangent space at the
point e1 ∈ V ).

It follows that if g is sufficiently close to the identity, then ge1 = uase1 ∈ Pe1

for some uas ∈ P , which gives (uas)
−1g = h ∈ H0 and g = uash as required.

Suppose now that
u1as1

h1 = u2as2
h2

for u1, u2 ∈ G−
a1

, s1, s2 ∈ R, and h1, h2 ∈ H0. Then

a−1
s2
u−1

2 u1as1
= h2h

−1
1 ∈ H0

fixes e1. Note that ‖ate1‖2 = cosh 2t and that for u = a−1
s2
u−1

2 u1as2
we

have ‖atua−t‖ → 1 for t→∞. Using these facts after applying at to
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uas1−s2
e1 = a−1

s2
u−1

2 u1as1
e1 = e1

we obtain s1 = s2. If now u 6= I but ue1 = e1, then une1 = e1 for all n ∈ Z.
However, u belongs to a one-parameter unipotent subgroup of G−

0,a1
which than

has to fix e1 as well (since Z is Zariski dense in R). Taking the derivative gives an
element W in the Lie algebra of G−

0,a1
with We1 = 0, which contradicts (5.23).

That the image is open now follows as in Lemma 5.13. �

We return to the general case of a non-degenerate indefinite quadratic form Q
with signature (p, q) and integer coefficients, a ∈ Zr{0}, V = {v | Q(v) = 0},
and v0 ∈ V(Z) as in Corollary 5.26. For the asymptotic counting of points
in Γ.v0 we need the following equidistribution result.

Theorem 5.31 (Translated orbits). Let H = StabG(v0). Then the or-
bit gH.Γ equidistributes in the space X = G/Γ as gH →∞ in G/H.

Sketch of Proof. By our discussion in Section 3.1 and Theorem 3.5 in par-
ticular G = SOQ(R)o and G0 = SOp,q(R)o are conjugate by a coordinate change
in SLd(R). We may moreover assume that v0 ∈ V(Z) is mapped to a multiple
of e1 and hence H is conjugated to H0. We define the subgroups A,K < G by
this conjugation using A0,K0 < G0.

We may assume that g = as with s→∞. We set

P− = G−
a1
A

and deduce from Lemma 5.30 and Lemma 1.58 that the Haar measure on mG

restricted to P−H equals the direct product of the Haar measures on P− and
on H respectively.

Assume at first that H.Γ ⊆ X is compact. Then there exists some uniform

injectivity radius δ > 0 for all points in H.Γ . Let B = BP
−

δ be the corresponding
neighbourhood of the identity in P−, and set T = BH.Γ , which we should think
of as a tubular neighbourhood of H.Γ ⊆ X as in Figure 5.4.

Now pick some f ∈ Cc(X), some ε > 0, ensuring that δ > 0 is sufficiently
small to work for f and ε, and apply mixing (Theorem 2.41) to obtain the
desired contradiction for f , up to a precision controlled by ε.

If H.Γ is not compact, then the outline above needs to be adjusted (for
otherwise, the failure of injectivity in a cusp makes the proof break down).
Fortunately this case is not difficult either. Let κ > 0 be arbitrarily small and
let S ⊆ H.Γ be a compact set of measure

1

mH.Γ (H.Γ )
mH.Γ (S) > 1− κ.

Now apply the argument for the compact case above, with BH.Γ replaced
by BS to obtain the desired conclusion up to a precision ε+ ‖f‖∞κ. �

Exercise 5.32. a) Upgrade the sketch of proof of Theorem 5.31 to a real proof.
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Fig. 5.4: The shaded region depicts the tubular neighbourhood T of the orbit H.Γ
in the ‘centre of T ’.

b) The previous exercise notwithstanding, notice that the sketch proof applies a result
without the right hypotheses. If p = q = 2, then G is not simple but only semisimple,
and so the Howe–Moore theorem in the form of Theorem 2.41 cannot be applied. However,
Theorem 2.44 does apply in this case. Decide whether or not this makes a difference to
Theorem 5.31.

5.5.5 The Asymptotics of volV (B
V

R ) and Well-Roundedness

Recall from (5.20) that we can define the Haar measure on V using the (G-

invariant) Lebesgue measure on R
d. By a linear coordinate change and by choos-

ing the norm accordingly we may assume that Q = Q0. Using this, we get the
following result.

Lemma 5.33. volV
(
BVR
)
∼ vol(Sp−1) vol(Sq−1)

d(d− 2)
|a| d2

( R√
2

)d−2

as R→∞.

Proof. We will assume that a = 1 (which by a scaling argument allows the
case a > 0 to be deduced; the case a < 0 then follows by swapping p and q) and
that R > 1. Choose S > 0 with R2 = cosh 2S so that cosh2S + sinh2S = R2.
Let W+ ⊆ R

p−1 be open and Jordan measurable and let φ+ : W+ → S
p−1

be a smooth parameterization† of S
p−1 up to a set of measure 0. Similarly,

let W− ⊆ R
q−1 and φ− : W− → S

q−1 be a smooth paramaterization of S
q−1.

Therefore the G-invariant volume volV (BVR ) is given by

†
For example, using generalized spherical coordinates.
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m
R

d

({
t

(
cosh(s)φ+(w+)
sinh(s)φ−(w−)

) ∣∣∣∣ t ∈ [0, 1], s ∈ [0, S], w+ ∈W+, w− ∈ W−

})

=

1∫

0

S∫

0

∫

W+

∫

W−

∣∣∣∣det

((
cosh(s)φ+(w+)
sinh(s)φ−(w−)

)
,

(
t sinh(s)φ+(w+)
t cosh(s)φ−(w−)

)
,

(
t cosh(s) Dw+

φ+(w+)

0

)
,

(
0

t sinh(s) Dw−
φ−(w−)

))∣∣∣∣

dw− dw+ ds dt

=

1∫

0

S∫

0

∫

W+

∫

W−

tp+q−1 cosh(s)p−1 sinh(s)q−1·

∣∣∣∣det

((
cosh(s)φ+(w+)
sinh(s)φ−(w−)

)
,

(
sinh(s)φ+(w+)
cosh(s)φ−(w−)

)
,

(
Dw+

φ+(w+)

0

)
,

(
0

Dw−
φ−(w−)

))∣∣∣∣ dw− dw+ ds dt,

where Dw+
φ+ and Dw−

φ− are the total derivatives of φ+ and of φ− respectively.
Using multilinearity and anti-symmetry in the first two vectors allows us to split
the determinant above into three factors. This gives for volV (BVR ) that it is equal

to 1
d =

∫ 1

0 t
d−1 dt multiplied by

S∫

0

∫

W+

∫

W−

(cosh s)p−1(sinh s)q−1 det

(
cosh s sinh s
sinh s cosh s

)

·
∣∣∣∣det

((
φ+(w+)

0

)
,

(
0

φ−(w−)

)
,

(
Dw+

φ+(w+)

0

)
,

(
0

Dw−
φ−(w−)

))∣∣∣∣

dw+ dw− ds

=

∫

W+

∣∣∣det
(
φ+(w+),Dw+

φ+(w+)
)∣∣∣dw+

·
∫

W−

∣∣∣det
(
φ−(w−),Dw−

φ−(w−)
)∣∣∣dw− ·

S∫

0

cosh(s)p−1 sinh(s)q−1 ds

= vol
(
S
p−1) vol

(
S
q−1)

S∫

0

(
1

2p+q−2 es(p+q−2) + O(es(p+q−4))

)
ds

= vol
(
S
p−1) vol

(
S
q−1) 1

2d−2

1

d− 2
e(d−2)S + O

(
e(d−4)S

)
.

Recall that R2 = cosh 2S ∼ 1
2 e2S , so that eS ∼

√
2R. This gives
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volV
(
BVR
)
∼ vol

(
S
p−1) vol

(
S
q−1)

d(d− 2)

(
R√
2

)d−2

.

�

Lemma 5.34. The sets Bt = BV
e

t =
{
v ∈ V

∣∣ ‖v‖ 6 R = et
}

for t > 0 are
well-rounded in the sense of Definition 5.21.

Proof. Let δ > 0 and choose a neighbourhood U of I ∈ G such that

max
(
‖g‖, ‖g−1‖

)
< eδ

for all g ∈ G. Let v ∈ Bt−δ, so that ‖v‖ 6 et−δ, ‖g−1v‖ < et, and so v ∈ gBt
for g ∈ U . This gives

Bt−δ ⊆
⋂

g∈V
gBt.

Similarly we see that ⋃

g∈U
gBt ⊆ Bt+δ.

Finally, we have

volV (Bt+δ)

volV (Bt)
∼ e(d−2)(t+δ)

e(d−2)t
= e(d−2)δ < 1 + ε

for small enough δ. Therefore

volV (Bt+δ)

volV (Bt)
< 1 + ε (5.24)

for all t > T . From the proof of Lemma 5.33, we also see that volV (Bt) de-
pends continuously on t, so we can make δ even smaller if necessary to ensure
that (5.24) also holds for all t ∈ [0, T ]. �

5.5.6 Conclusion

Proof of Corollary 5.26. Let Q, d = p+ q, a ∈ Zr{0}, and

V = {v | Q(v) = 0}

be as in the statement of the corollary. Let G = SOQ(R)o and Γ = SOQ(Z)∩G.
By Proposition 5.27 we know that V(Z) is a finite union of disjoint Γ -orbits,
say
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V(Z) =

J⊔

j=1

Γ.vj . (5.25)

We use a linear coordinate change in SLd(R) to map Q to a multiple of Q0

and a fixed vector v0 ∈ V(R) to a multiple of e1. We also use this to define
the balls Bt as in Section 5.5.5. In particular we have by Lemma 5.34 that the
family of sets Bt for t > 0 are well-rounded.

Now fix some j ∈ {1, . . . , J} and define Hj = StabG(vj). The discussion
in Section 5.5.3 shows that Γ ∩ Hj is a lattice in Hj . By our discussion in
Section 5.5.4 and Theorem 5.31 in particular the translated H-orbits gH.Γ
equidistribute in X = G/Γ as gHj →∞ in G/Hj.

This allows us to apply Theorem 5.22. Assuming that the Haar measures onH
and G are chosen to be compatible with the Haar measure mV on V = V(R),
it follows that

lim
t→∞

1

mV (Bt)

∣∣Γ.vj ∩Bt
∣∣ =

mHj/Γ∩Hj
(Hj/Γ ∩Hj)

mG/Γ (G/Γ )
.

Taking the union in (5.25), this implies that

lim
t→∞

1

mV (Bt)

∣∣V(Z) ∩Bt
∣∣ =

J∑

j=1

mHj/Γ∩Hj
(Hj/Γ ∩Hj)

mG/Γ (G/Γ )
.

Together with Lemma 5.33 this gives the corollary. �

5.6 Counting Integer Matrices with Given Determinant

In this section we want to apply the results of Section 5.4 to prove the following
corollary.

Corollary 5.35. Let d ∈ {2, 3} and a ∈ Zr{0}. Then there exists a positive
constant ca such that

∣∣{M ∈Matd(Z) | detM = a and ‖M‖ 6 R}
∣∣ ∼ caRd(d−1).

We note that this implies in particular the asymptotic counting result for the
lattice elements of SLd(Z).

5.6.1 Reduction to orbit counting problems

We note that the asymptotic counting problem in Corollary 5.35 for a and −a
are equivalent (by simply changing the sign of one column). So let us assume
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that a > 0. We define the set

V (R) =
{
M ∈ Matd(R) | det(M) = a

} ∼= SLd(R)× SLd(R)/∆SLd(R),

where ∆SLd(R) = {(g, g) | g ∈ SLd(R}. In fact G = SLd(R) × SLd(R) acts on
matrices M ∈ V via

(g1, g2).M = g1Mg−1
2 .

Then, if M0 = d
√
aI,

StabG(M0) = ∆SLd(R)

and transitivity is easy.
Next we show that

V (Z) = {M ∈ Matd(Z) | detM = a}

is a finite union of Γ = SLd(Z) × SLd(Z)-orbits. Let M ∈ V (Z) be arbitrary.
Applying elements of Γ to M correspond to certain types of row and column
operations on M . Indeed using the elementary unipotent matrices of SLd(Z)
we can add any multiple of a row (or column) to any other row (or column).
Similarly we may permute rows and columns (potentially switching the sign of
one of them).

These steps allow a type of Euclidean algorithm: Assuming that the top left
corner is already the smallest non-zero entry of absolute value we may either
reduce the remaining entries on the first row and column to zero or produce a
smaller entry. Hence eventually we create a block matrix with a non-zero entry
in the top left corner, zeroes on the remainder of the first row and column, and
some matrix in the lower right block. We may repeat this procedure and arrive
at a diagonal integer matrix. As there are only finitely many integer diagonal
matrices with determinant equal to a the result follows.

As V (Z) is a finite union of Γ -orbits it suffices to establish the counting result
for each individual Γ -orbit.

5.6.2 Finite volume assumptions

We now check the standing assumptions of Section 5.4 that both homogeneous
spaces appearing there have finite volume.

By Theorem 1.54 Γ = SLd(Z)× SLd(Z) is a lattice in G = SLd(R)× SLd(R).
By the argument in the previous section it suffices to study the counting

problem for ΓM = SLd(Z)M SLd(Z) where M ∈ V (Z) is a diagonal matrix.
This defines our second group

H = StabG(M) = {(g1, g2) | g1, g2 ∈ SLd(R) and g2 = M−1g1M},

which clearly is isomorphic to SLd(R). In this isomorphism Γ ∩H corresponds
to {g ∈ SLd(Z) | M−1gM ∈ SLd(Z)}. The latter is a finite index subgroup
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of SLd(Z) (one way to see this is to note that it contains the congruence sub-
group {g ∈ SLd(Z) | a divides g − I}), which implies that H/(Γ ∩H) has finite
volume as required.

5.6.3 Proving the Equidistribution

The main dynamical assumption in Section 5.4 (see Section 5.4.2) is the equidis-
tribution of gHΓ in X = G/Γ as gH goes to infinity in G/H. The argument is
similar to that used in Section 5.2. We will not repeat the ‘mixing argument’,
but will instead discuss the technical requirements that make it work.

For these preparations we set H0 = ∆SL2(R).

Lemma 5.36 (A first group decomposition). Let A 6 SLd(R) denote the
full positive diagonal subgroup, and define

Ã = {(a, a−1) | a ∈ A},

K = SOd(R)× SOd(R).

Then G = KÃH0. Moreover, we have G = KÃ+H0, where Ã+ consists of
all (a, a−1) ∈ Ã with the diagonal entries of a monotonically increasing.

Proof. Multiplying (g1, g2) ∈ G on the right by (g−1
2 , g−1

2 ) ∈ H0 we see
that (g1, g2)H = (g, I)H for g = g1g

−1
2 ∈ SLd(R). Let g = k1ak2 be a KAK

decomposition of g, and let a1 ∈ A be a square root of a. Then

(g1, g2) ∈ (g, I)H0 = (k1a
2
1k

−1
2 , I)H0 = (k1, k2)(a1, a

−1
1 )H0 ⊆ KÃH0

as required. Finally recall that in the KAK decomposition of g we may assume
that the diagonal entries of the element of A are monotonically increasing. �

If we now consider a sequence (gnH0) going to infinity in G/H0, then it

is clear that we may replace gn by knãn ∈ KÃ+. As K is compact, we may
suppress the elements kn ∈ K by using compactness and considering them as
part of the function f (as in the proof of (5.15) on page 199) and consider simply
the case

ãnH0 −→∞
as n→∞ in G/H0, with ãn ∈ Ã.

Lemma 5.37 (A coordinate system). Let N 6 SLd(R) be the upper-
triangular unipotent subgroup, and let

Ñ =
{

(n1, n
t
2) | n1, n2 ∈ N

}
.

Then ÑÃH0 is open and the product map provides a coordinate system.
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Proof. We have

Lie(H0) = {(v, v) | v ∈ sld(R)},
Lie(Ã) = {(h,−h) | h diagonal, tr(h) = 0},

and Lie(Ñ) is the direct product of the upper and lower nilpotent triangular
Lie subalgebras of sld(R). It is easy to see that these subspaces are transversal,
and their dimension sums to the dimension of the Lie algebra of G. The lemma
follows by the inverse function theorem and the fact that (ÑÃ)∩H0 = {I}; see
also the proof of Lemma 5.13. �

Theorem 5.38. gH.Γ equidistributes in X = G/Γ as gH →∞ in G/H.

Sketch of proof. Here H = StabG(M) for a matrix M ∈ V (Z). As we may

assume that a > 0, we see that a
1
dM ∈ SLd(R) which implies thatH is conjugate

to H0 = ∆SLd(R) via the element

g̃ = (I, a− 1
dM).

It follows that
HΓ = g̃−1H0g̃Γ,

and it is enough to show that gH0g̃Γ equidistributes as gH0 → ∞ in G/H0.

By Lemma 5.37 we may safely assume that g = kã with ã ∈ Ã, and even
that g = ã ∈ Ã+.

Let ε > 0 be arbitrarily small, and choose a compact subset S ⊆ H0g̃Γ such
that

m
H0g̃Γ

(S) > (1− ε)m
H0g̃Γ

(H0g̃Γ ).

Fix f ∈ Cc(X) and choose δ > 0 smaller than the injectivity radius on S and
small enough to ensure that

d(x1, x2) < δ =⇒ |f(x1)− f(x2)| < ε.

Set P = ÑÃ and let B = BPδ be the δ-neighbourhood of I ∈ P . Now re-
place H0g̃Γ first by S and then by BS, use the mixing property (Theorem 2.44),

use the fact that gn = ãn ∈ Ã+ does not expand N , and deduce the proof of
the theorem. �

5.6.4 The Asymptotics of volV (B
V

R ) and Well-Roundedness

Clearly for any a > 0 there is a bijection

V = {M ∈Matd(R) | detM = a} ←→ SLd(R),
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5.6 Counting Integer Matrices with Given Determinant 221

obtained by multiplying by a− 1
d . Thus it is sufficient to study the volume of

‘balls’ in SLd(R).

Proposition 5.39 (Asymptotics of balls in SLd(R)). The asymptotic growth
in the volume of balls in SLd(R) for d ∈ {2, 3} has the form

mSLd(R)

({
g ∈ SLd(R)

∣∣ ‖g‖ < R
})
∼ cdRd(d−1)

for some cd > 0. Moreover, the sets Bt =
{
g ∈ SLd(R)

∣∣ ‖g‖ < et
}

are well-
rounded.

We normalize the Haar measure on SLd(R) by giving the definition

mSLd(R)(B) = m
R

d
2 ({tb | t ∈ [0, 1], b ∈ B})

for any measurable B ⊆ SLd(R).

Proof of Proposition 5.39 for d = 2. We note that this case follows
quickly from hyperbolic geometry and the connection between the Haar mea-
sures on SL2(R) and H. However, as the proof of Proposition 5.39 for d = 3
below uses a more complicated version of the following calculation, we give an
independent argument also for d = 2.

We define BR = {g ∈ SL2(R) | ‖g‖ 6 R}. We are going to use the KAK
decomposition for

g = kφ

(
r

r−1

)
kψ ∈ SL2(R) (5.26)

with r > 1, φ ∈ [0, 2π), and ψ ∈ [0, π). Using the definition of the Haar measure
on SL2(R) via the Lebesgue measure on Mat2(R) we have

mSL2(R) (BR) = m
R

4 ({tg | g ∈ BR, t ∈ [0, 1]})

=

1∫

0

R0∫

1

2π∫

0

π∫

0

∣∣∣∣det

(
kφ

(
r

r−1

)
kψ , tkφ

(
1

−r−2

)
kψ ,

tkφ

(
1

−1

)(
r

r−1

)
kψ, tkφ

(
r

r−1

)(
1

−1

)
kψ

)∣∣∣∣

dψ dφdr dt.

Here the parameter R0 > 1 is chosen so that

√
R2

0 +R−2
0 = R, and the 2 × 2

matrices in the determinant above are the partial derivatives of the parame-
terization in (5.26), and these should be converted into ordinary 4-dimensional
vectors before the determinant is taken. This calculation leads to

mSL2(R) (BR) =

1∫

0

t3 dt

2π∫

0

dφ

π∫

0

dψ

R0∫

1

∣∣∣∣det

(
r 1

r−1 −r−2

)
det

(
−r −r−1

r−1 r

)∣∣∣∣ dr
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222 5 Horospherical Subgroups and Counting Results

by taking the factor t out of the determinant, noticing that the matrices kφ, kψ
on the left (respectively, right) appear in each matrix and do not affect the total
determinant, and by splitting the resulting determinant into the determinant
of the diagonal (respectively, the determinant of the off-diagonal) entries. The
first three integrals define a constant c2 and we obtain the asymptotics

mSL2(R)(BR) ∼ c2

R0∫

1

2r−1(r2 − r−2) dr

∼ c2

(
R2

0 − 1
)
− c2

(
R−2

0 − 1
)
∼ c2R

2
0.

The well-roundedness now follows in the same way as in Lemma 5.34. �

Proof of Proposition 5.39 for d = 3. We set K = SO3(R) and let

W ∋ φ 7−→ kφ ∈ K

be a piecewise smooth parameterization of a conull set in K on a Jordan mea-
surable subset W ⊆ R

3 and write

ar1,r2
=



r1

r2
1

r1r2




for r1, r2 > 0. Let us write ≈ for asymptotic up to a positive multiple. As in the
case d = 2, we have

mSL3(R) (BR) = m
R

9 ({tg | g ∈ BR, t ∈ [0, 1]})

and we can calculate the latter by the Cartan decomposition and substitution.
The integral with respect to the variable t ∈ [0, 1] produces the factor 1

9 and
hence we are interested in the remaining eight-dimensional integral

∫

SR

∫

W

∫

W

det
(
kφar1,r2

kt
ψ, kφ∂r1

ar1,r2
kt
ψ , kφ∂r2

ar1,r2
kt
ψ ,

(
Dφkφ

)
ar1,r2

kt
ψ , kφar1,r2

(
Dψk

t
ψ

))
dψ dφd(r1, r2),

where

SR =
{

(r1, r2) ∈ R
2
∣∣∣ r1 > r2 > 1

r1r2
> 0 and

√
r2

1 + r2
2 + 1

r
2

1r
2

2

6 R
}
.

Just as in the case d = 2, the main interest arises from the integration
over (r1, r2) ∈ SR. There are, however, some differences between the two cases.
Firstly, the domain SR is more complicated, and for part of the calculation

we will slightly simplify this domain by using a different set S̃R. Secondly, the
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paramaterization of K does not have a constant Jacobian.† As we do not care
about scale factors like mK(K) we instead concentrate on the distortion of
measure in moving from K × SR × K to R

9. We do this by working with the
left-invariant vector fields defined by

b1 =




0 1 0
−1 0 0
0 0 0


 ,b2 =




0 0 1
0 0 0
−1 0 0


 ,b3 =




0 0 0
0 0 1
0 −1 0




for φ ∈ W instead of the partial derivatives with respect to φ1, φ2, φ3 (and
similarly ψ1, ψ2, ψ3). This makes the determinant function invariant under φ
(respectively, under ψ) since each of the matrices in the determinant again
has kφ on the left and kt

ψ on the right. This gives

mSL3(R)(BR) ≈
∫

SR

∣∣det
(
ar1,r2

, ∂r1
ar1,r2

, ∂r2
ar1,r2

,b1ar1,r2
,

b2ar1,r2
,b3ar1,r2

, ar1,r2
b1, ar1,r2

b2, ar1,r2
b3

)∣∣ dr1 dr2.

As before, each matrix ar1,r2
and so on should be thought of as a 9-dimensional

vector, so that we can take the determinant of the resulting 9× 9 matrix. The
matrix has block form, with

ar1,r2
, ∂r1

ar1,r2
=




1
0
− 1

r
2

1r2


 , ∂r2

ar1,r2
=




0
1
− 1

r1r
2

2




forming one 3× 3 block, and

b1ar1,r2
=




0 r2 0
−r1 0 0

0 0 0


 , ar1,r2

b1 =




0 r1 0
−r2 0 0

0 0 0


 ,

respectively

b2ar1,r2
=




0 0 1
r1r2

0 0 0
−r1 0 0


 , ar1,r2

b2 =




0 0 r1

0 0 0
− 1
r1r2

0 0


 ,

respectively

b3ar1,r2
=




0 0 0
0 0 1

r1r2

0 −r2 0


 , ar1,r2

b3 =




0 0 0
0 0 r2

0 − 1
r1r2

0




†
For a convenient reference for the change of variables formula involved here we refer to

Lee [99].
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the other three 2×2 blocks. This allows us to calculate the determinant without
too much pain, giving

mSL3(R)(BR) ≈
∫

SR

(
2

r1r2

)(
r2

1 − r2
2

)(
r2

1 −
1

r2
1r

2
2︸ ︷︷ ︸

∼r2

1

)(
r2

2 −
1

r2
1r

2
2︸ ︷︷ ︸

(∗)

)
dr1 dr2.

Notice that 1
r1r2
→ 0 as R→∞ and r1 →∞, so we may replace r2

1− 1

r
2

1r
2

2

by r2
1

without affecting the asymptotic behaviour. This argument does not apply in
the same way to the last term (∗).

As mentioned earlier, the original domain of integration is difficult to work
with, so we instead consider the set

S̃R =

{
(r1, r2) ∈ R

2

∣∣∣∣ r1 > r2 > 1
r1r2

> 0 and

√
r2

1 + r2
2 6 R

}
⊇ SR

(which is only slightly less annoying). For any ε > 0 the portion of S̃R on
which 1

r
2

1r
2

2

> εr2
2 is negligible as R → ∞. Hence we may simplify (∗) to r2

2 .

Denote by B̃R ⊇ BR the set corresponding to S̃R, and calculate

mSL3(R)(B̃R) ≈
∫

S̃R

1

r1r2

(
r2

1 − r2
2

)
r2

1r
2
2 dr1 dr2 =

∫

S̃R

(
r3

1r2 − r1r
3
2

)
dr1 dr2.

r1

r2

Fig. 5.5: Splitting the region S̃R.

Splitting S̃R into two regions depending on whether r1 6 R√
2

or r1 > R√
2

(see

Figure 5.5) this integral can be evaluated in an elementary way. This leads to
the asymptotics

mSL3(R)

(
B̃R
)
≈ R6.
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5.7 Computing the Volume of Xd 225

Recall that BR ⊆ B̃R. However, for any κ > 0 we also have B̃R−κ ⊆ BR
for all sufficiently large R. Therefore, mSL3(R)(BR) has the same asymptotics.
Well-roundedness follows once more from this, giving the proposition. �

Corollary 5.35 now follows once more by combining the discussions of this
section with those of Section 5.4.

5.7 Computing the Volume of Xd

In this section we will describe a method for calculating vol(Xd) without actu-
ally finding a fundamental domain for SLd(Z) < SLd(R). Of course the answer
depends on a normalization of the Haar measure on SLd(R). Both the normal-
ization and the method to find the volume work inductively.

Theorem 5.40 (Volume of Xd+1). For d > 1 define the subgroup

Hd =

{(
1 wt

0 g

) ∣∣∣∣ g ∈ SLd(R), w ∈ R
d

}
< SLd+1(R).

Assume that mSLd(R) has been defined by induction as follows. We start from

the normalization mSL1(R)({I}) = 1. Using the Lebesgue measure on R
d (and

Lemma 1.58) this defines a normalization of the Haar measure

mHd
= mSLd(R) ×mR

d .

Now use the identification V = SLd+1(R)/Hd
∼= R

d+1r{0} to normalize mSLd+1(R)

to also be compatible with the Lebesgue measure on R
d+1. Then

vol(Xd+1) = ζ(d+ 1)ζ(d) · · · ζ(2).

The standing assumption in Section 5.4 were that

vol
(
G/Γ

)

and
vol
(
H/Γ ∩H

)

were both finite. This follows in the case at hand for G = SLd+1(R) and H = Hd

from Theorem 1.54 and the fact that
{(

1 wt

1

) ∣∣∣∣ w ∈ R
d

}

intersects SLd+1(Z) in a lattice with covolume 1.
The dynamical assumption of equidistribution of gH.Γ in

X = Xd+1 = G/Γ
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226 5 Horospherical Subgroups and Counting Results

for G = SLd+1(R), Γ = SLd+1(Z) and gH → ∞ in G/H is easy to establish—
where it is true. In order to do this, we again need to exploit two decompositions
of G (see Exercise 5.44).

Lemma 5.41 (A first group decomposition). Write

K = SOd+1(R)

and

A =

{(
a

a− 1
d I

) ∣∣∣∣ a > 0

}
.

Then G = KAH.

Lemma 5.42 (A coordinate system). Let

a1 =

(
e

e− 1
d I

)
∈ A

and

G−
a1

=

{(
1
v 1

) ∣∣∣∣ v ∈ R
d

}
.

Then G−
a1
AH is open and the product map from G−

a1
× A ×H gives a homeo-

morphism to the image G−
a1
AH.

Theorem 5.43 (Translated orbits). The orbit gH.Γ equidistributes on av-
erage as gH →∞ in G/H.

Outline of proof. By Lemma 5.41 it is enough to consider the case gH = atH
where

at =

(
et

e− t
d I

)
∈ A

with |t| → ∞.
Notice that taking t 6 0 in at cforresponds to non-zero elements in the unit

ball of Rd+1, and that the unit ball has finite Haar measure on

G/H ∼= R
d+1r{0}

(since the Haar measure coincides with the restriction of the Lebesgue measure).
As a result we may ignore the case t→ −∞ in the equidistribution claim sought.

The remaining case t→∞ may be carried out as in Theorem 5.38. �

The geometric hypothesis that the sets

Bt = BR
d

e
t =

{
v ∈ R

d
∣∣∣ ‖v‖ 6 et

}
(5.27)

are well-rounded for t > 0 is easy to check (see Exercise 5.46).
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Proof of Theorem 5.40. For d = 2 we have

H =

{(
1 ∗

1

)}

and vol(H/Γ ∩H) = 1. Furthermore, notice that

SL2(Z)

(
1
0

)
= Z

2
prim =

{
n ∈ Z

2
∣∣∣ gcd(n) = 1

}
.

Hence

lim
R→∞

∣∣Z2
prim ∩BR

2

R

∣∣
πR2 =

1

mX2
(X2)

by (5.18). By Exercise 1.2 we also know that

lim
R→∞

∣∣Z2
prim ∩BR

2

R

∣∣
πR2 =

1

ζ(2)
,

which implies that mX2
(X2) = ζ(2) =

π2

6
.

For d > 2 we have
vol (H/Γ ∩H) = vol(Xd)

and
SLd(Z)e1 = Z

d
prim =

{
n ∈ Z

d
∣∣∣ gcd(n) = 1

}
. (5.28)

Combining (5.18) and Exercise 1.2 we get once more

lim
R→∞

∣∣Zdprim ∩BR
d

R

∣∣
VdRd

=
1

ζ(d)
=

vol(Xd)

vol(Xd+1)

which gives the theorem. �

We leave the details of the arguments above to the exercises below.

Exercise 5.44. Prove Lemmas 5.41 and 5.42.

Exercise 5.45. Prove Theorem 5.43.

Exercise 5.46. Prove that the sets Bt = B
R

d

e
t =

{
v ∈ R

d
∣∣ ‖v‖ 6 e

t
}

are well-rounded

(see (5.27)).

Exercise 5.47. Prove (5.28) for d > 2.

Exercise 5.48. Prove that

NR =
∣∣{W 6 R

d
∣∣ dim(W ) = m, W is rational, and covol(W ∩ Z

d
) 6 R

}∣∣

has an asymptotic of the form NR ∼ cR
d
.
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228 NOTES TO CHAPTER 5

Notes to Chapter 5

(27)
(Page 182) We refer to [45, Ex. 3.3.1, 9.6.3] for one example of such a construction.

McMullen [112] gives explicit constructions of bounded geodesics of arbitrary length asso-
ciated to elements of any given quadratic field, and relates the construction to continued
fractions.
(28)

(Page 186) This is an example of a circle of results developed among others by Dani [19,
23] and Veech [161].
(29)

(Page 192) Results of this sort in greater generality are also known as the Každan–
Margulis lemma. Various versions may be found in the original lecture notes of Zassen-
haus [169], the monograph of Raghunathan [128], and for an accessible modern treatment
we refer to Winkelmann [167].
(30)

(Page 205) This was shown by Witt [168], and a modern treatment may be found in
the monograph of Elman, Karpenko and Merkurjev [50].
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