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Introduction

This book is written from the perspective of several passionately held beliefs
about mathematical education. The first is that mathematics is a good story.
Theorems are not discovered in isolation, they happen as part of a culture and
they are generally motivated by paradigms. In this book we are going to show
how one result from antiquity can be used to illuminate the study of much
that forms the undergraduate curriculum in number theory at a typical UK
university. The result is the Fundamental Theorem of Arithmetic. Our hope
is that students will understand that number theory is not just a collection of
tricks and isolated results, but has a coherence fuelled directly by a connected
narrative that spans centuries.

The second belief is that mathematics students (and indeed professional
mathematicians) come to the subject with different preferences and evolving
strengths. Therefore, we have endeavoured to present differing approaches to
number theory. One way to achieve this is the obvious one of selecting ma-
terial from both the algebraic and the analytic disciplines. Less obviously, in
the early part of the book particularly, we sometimes present several different
proofs of a single result. The aim is to try to capture the imagination of the
reader and help her or him to discover her or his own taste in mathematics.
The book is written under the assumption that students are being exposed
to the power of analysis in courses such as complex variables, as well as the
power of abstraction in courses such as algebra. Thus we use notions from
finite group theory at several points to give alternative proofs. Often the re-
sulting approaches simplify and promote generalization, as well as providing
elegance. We also do this because we want to try to explain how different
approaches to elementary results are worked out later in different approaches
to the subject in general. Thus Euler’s proof of the Fundamental Theorem of
Arithmetic could be taken to prefigure the development of analytic number
theory with its ingenious use of the Euler product formula. When we move
further into the analytic aspects of arithmetic, Euler’s relatively simple obser-
vation might seem like a rather flimsy pretext. However, the view that many
19th Century mathematicians took of functions (complex functions particu-
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larly) was profoundly influenced by the Fundamental Theorem of Arithmetic.
In their view, many functions are factorizable objects, and we will try to
illustrate this in describing some of the great achievements of that century.

Having spoken of different approaches, it will surprise few readers that
number theory has many streams. A major surprise is the fact that some
of these meet again: Chapter 11 shows that many of the themes in Chap-
ters 1–10 become reconciled further on. The classical class number formula
reconciles the analytic current of ideas with the algebraic. We also discuss –
necessarily in general terms – the L-function associated to an elliptic curve
and the conjectures of Birch and Swinnerton–Dyer, which draw together the
elliptic, algebraic and analytic streams. The underlying motif is the theory
of L-functions. As we enter a new millennium, it has become clear that one
of the ways into the deepest parts of number theory requires a better under-
standing of these fundamental objects.

The third belief is that number theory is a living subject, even when stud-
ied at an elementary level. The onset of electronic computing gave the subject
an enormous boost and it is a pleasure to be able to record some recent devel-
opments. The language of arithmetical complexity has helped to change the
way we think about numbers. Modern computers can carry out calculations
with numbers that are almost unimaginably large. We recommend that any
reader unfamiliar with modern number theory packages tries a few experi-
ments using some of the excellent free software available from the internet. To
start to think of the issues raised by large integer calculation can be no bad
thing. Intellectually too, this computational topic illustrates an interesting
point about the enduring nature of the paradigm. Our story begins over two
millennia ago, yet it is the same questions that continue to fascinate. What
are the primes like? Where can they be found? How can the prime factors of
an integer be computed? Whether these questions will endure a while longer
nobody can tell. The history of these problems already presents a fascinating
story worth telling, and one that says a lot about one of the most important
and beautiful narratives of enquiry in human history – Mathematics.

One of the most striking and pleasurable aspects of number theory is
the extent of time and range of cultures over which it has been studied. We
do not go into a detailed history of the developments described here, but
the names and places given on p. XV should give some idea of how widely
number theory has been studied. The names in this list are rather crudely
Anglicized, and the locations somewhat arbitrarily modernized. The many
living mathematicians who have made significant contributions to the topics
covered here have been omitted, but may be found on the web site [110]. A
densely written comprehensive review of number theory up to about 1920 may
be found in Dickson’s history [42], [43], [44]; a discursive and masterly account
of the four millenia ending in 1798 is provided by Weil [154].

Finally we say something about the way this book could be used. It is
based on three courses taught at the University of East Anglia, on various
aspects of number theory (analytic, algebraic/geometric and computational),
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mostly at the final year undergraduate level. We were motivated in part by
G.A. & J.M. Jones’ attractive book [81]. Their book sets out to deal with
the subject as it is actually taught. Typically, third year students will not
have done a course in number theory and their experience will necessarily be
fragmentary. Like their book, ours begins in quite an elementary way. We have
found that the different years at university do not equate neatly with different
abilities: Students in their early years can often be stretched well beyond what
seems possible, and upper-level students do not complain about beginning in
simple ways. We will try to show how different chapters can be put together
to make a course – the book can be used as a basis for two upper-level courses
and one at an intermediate level.

We thank many people for contributing to this text. Notable among these
are Christian Röttger for writing up notes from an analytic number theory
course at UEA, Sanju Velani for making available notes from his analytic
number theory course, several cohorts of UEA undergraduates for feedback
on lecture courses, Neal Koblitz and Joe Silverman for their inspiring books
and Elena Nardi for help with the ancient Greek in Section 1.7.1. We thank
Karim Belabas, Robin Chapman, Sue Everest, Gareth & Mary Jones, Graham
Norton, Peter Pleasants, Christian Röttger, Alice Silverberg, Shaun Stevens,
Alan & Honor Ward and others for pointing out errors and suggesting im-
provements. Errors and solecisms that remain are entirely the authors’ re-
sponsibility.

Graham Everest & Thomas Ward

School of Mathematics

University of East Anglia

Norwich

g.everest@uea.ac.uk, t.ward@uea.ac.uk
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Notation and terminology

‘Arithmetic’ is used both as noun and adjective. Particular notation used is
collected at the start of the index. The symbols N = {1, 2, 3, . . .}, P, Z, Q, R, C

denote the natural numbers, prime numbers, integers, rational numbers, real
numbers, and complex numbers, respectively. Any field with q = pr ele-
ments, p ∈ P and r ∈ N, is denoted Fq, and F∗

q
denotes its multiplicative

group; the field Fp, p ∈ P, is identified with the set {0, 1, . . . , p− 1} under ad-
dition and multiplication modulo p. For a complex number s = a+ib, ℜ(s) = a

and ℑ(s) = b denote the real and imaginary parts of s respectively. The sym-
bol

∣

∣ means ‘divides’, so for a, b ∈ Z, a
∣

∣b if there is an integer k with ak = b.
For any set X, |X| denotes the cardinality of X. The greatest common divisor
of a and b is written gcd(a, b). Products are written using · as in 12 = 3 · 4
or n! = 1 · 2 · · · (n− 1) ·n. The order of growth of functions f, g (usually these
are functions N → R) is compared using the following notation:

f ∼ g if
f(x)

g(x)
−→ 1 as x → ∞;

f = O(g) if there is a constant A > 0 with f(x) ≤ Ag(x) for all x;

f = o(g) if
f(x)

g(x)
−→ 0 as x → ∞.

In particular, f = O(1) means that f is bounded. The relation f = O(g) will
also be written f ≪ g, particularly when it is being used to express the fact
that two functions are commensurate, f ≪ g ≪ f . A sequence a1, a2, . . . will
be denoted (an).

References

The references are not comprehensive, and material that is not explicitly cited
is nonetheless well-known. It is inevitable that we have borrowed ideas and
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Possible courses

A course on analytic number theory could follow Chapters 1, 8, 9 and 10;
one on Diophantine problems or elliptic curves could follow Chapters 1, 2, 5,
6 and 7. A lower-level course on algebraic number theory could be based on
Chapters 1, 2, 3 and 4; one on complexity could be based on Chapters 1 and 12
(this could also be used for the complexity part of a course on cryptography).
The exercises are generally routine applications of the methods in the text,
but exercises marked * are to be viewed as projects, some of them requiring
further reading and research.
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