
Chapter 5

Compact Groups

In this chapter we will obtain fundamental results concerning all unitary
representations of compact groups. We will assume implicitly that the group
considered is metric as well and simply refer to it as the compact group G.
As we will see, the description of general unitary representations in terms
of irreducible representations is easier from the analytic point of view than
in the abelian case, due to complete reducibility of unitary representations
into irreducible representations. However, from an algebraic point of view
the discussions here are harder, since the irreducible representations can be of
any finite dimension instead of just one-dimensional. For convenience, we will
assume throughout the chapter that the Haar measure m on G is normalized
to satisfy m(G) = 1. We recall that any compact group is unimodular (see
Exercise 1.14(a) and its hint on p. 473).

We begin the chapter, however, by discussing two fundamental construc-
tions for unitary representations that are particularly important for compact
groups.

5.1 The Contragredient Representation

For the first construction, recall from the Fréchet–Riesz representation theo-
rem that any Hilbert space H is isometrically isomorphic to its dual H′. How-
ever, this canonical isomorphism sending w ∈ H to the map w′ : v 7→ 〈v, w〉
in H′ is semi-linear over C, and so in particular is not an isomorphism of com-
plex Hilbert spaces. Transporting a unitary representation π via this semi-
linear isomorphism to the dual H′

π may therefore create a representation not
unitarily isomorphic to π.

Definition 5.1 (Contragredient). For a Hilbert space H the dual H′ may
be endowed with the inner product

〈
v′, w′〉

H′ = 〈v, w〉H = 〈w, v〉H (5.1)
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218 5 Compact Groups

for any v, w ∈ H and this inner product induces the operator norm onH′
π . For

a unitary representation π of G on Hπ the contragredient representation π

is defined as the unitary representation on Hπ = H′
π induced by the dual

operators. That is,

πg(v
′) = v′ ◦ π−1

g ∈ Hπ = H′
π

for v′ ∈ H′
π and g ∈ G.

Let us make a few comments that should help the reader to become familiar
with this construction, which may be confusing at first sight.

We verify that π is as claimed a unitary representation. First, it is easy to
see that H′

π is again a (complex) Hilbert space. For example, by (5.1),

〈
v′, w′〉

H′ = 〈w, v〉H

depends linearly on v′ ∈ H′
π and semi-linearly on w′ ∈ H′

π by semi-linearity
of the isomorphism.

For the representation π we first note that for g ∈ G and v′ ∈ H′ the linear
functional πg(v

′) = v′ ◦ π−1
g sends any w ∈ H to

v′(π−1
g (w)) =

〈
π−1
g w, v

〉
Hπ

=
〈
w, πgv

〉
Hπ

= (πgv)
′(w),

which shows that πg(v
′) = (πgv)

′, in other words the diagram

Hπ ∋ v πgv ∈ Hπ

H′
π ∋ v′ πgv

′ ∈ H′
π

πg

πg

commutes. From this, we see that

πg(α1v
′
1 + α2v

′
2) = πg((α1v1 + α2v2)

′)

= (πg(α1v1 + α2v2))
′

= (α1πgv1 + α2πgv2)
′ = α1πgv

′
1 + α2πgv

′
2

for any α1, α2 ∈ C and v′1, v
′
2 ∈ H′

π . Similarly, we have

‖πgv′‖H′
π
= ‖(πgv)′‖H′

π
= ‖πgv‖Hπ

= ‖v‖Hπ
= ‖v′‖H′

π

for all v ∈ H and g ∈ G, which shows that πg is unitary for all g ∈ G. The
homomorphism property and the continuity requirement follow in the same
way from the respective properties of π.

Next we calculate the matrix coefficient
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5.1 The Contragredient Representation 219

ϕπv′,w′(g) =
〈
πgv

′, w′〉
H′
π
=
〈
(πgv)

′, w′〉
H′
π

=
〈
w, πgv

〉
Hπ

=
〈
πgv, w

〉
Hπ

= ϕπv,w(g) (5.2)

of v′, w′ ∈ H′
π at g ∈ G, and obtain the conjugate of the matrix coefficient

of v, w ∈ Hπ. In particular, if the operator πg is described by a matrix with
respect to some orthonormal basis of H, then πg is described by the complex

conjugate of the same matrix with respect to the dual basis of H′.
In the special case of a one-dimensional unitary representation defined

by a unitary character χ on G, this shows that the contragredient is the
unitary representation defined by the complex conjugate character χ on G.
If χ does not have purely real values then χ is not isomorphic to χ as a
unitary representation.

We remark that π is irreducible if and only if π is, since there is a semi-
linear equivariant isomorphism v 7→ v′ between π and π.

Exercise 5.2. (a) Show that the contragredient of the left-regular representation is iso-
morphic to the left-regular representation.

(b) Give a sufficient criterion for a general unitary representation π to be isomorphic to
its contragredient π, that in particular applies to (a).

Exercise 5.3. Let G be abelian as in Chapter 2, and let π be a unitary representation
of G. Apply the spectral theorem (Corollary 2.12, or the more refined Theorem 2.65) to π.
Describe the contragredient of π in terms of the data arising in the spectral theorem.

Exercise 5.4. (a) Calculate the contragredient representation of all elements of Ĝ for the

group G = SO2(R) ⋉ R2
as in Section 3.3.1.

(b) Repeat this for the affine ‘ax+ b’ group in Section 3.3.2.
(c) Repeat this for the Heisenberg group in Section 3.3.4.

5.1.1 Continuity

We now prove continuity of the ‘contragredient map’ with respect to the Fell
topology.

Proposition 5.5 (Continuity of contragredient). The contragredient
map defined by

U (G) ∋ π 7−→ π ∈ U (G)

is continuous with respect to the Fell topology on U (G).

Proof. We note that for any φ ∈ P1(G), compact K ⊆ G, ε > 0, unitary
representation π ∈ U (G), and unit vector v ∈ Hπ we have

ϕv
′

π = ϕvπ ∈ CO(φ,K, ε)

if and only if ϕvπ ∈ CO(φ,K, ε), which implies that the image of FOdiag(φ,K, ε)

is precisely FOdiag(φ,K, ε). �
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220 5 Compact Groups

Exercise 5.6. Prove Proposition 5.5 using the principal Fell open sets FO(f, α) for all

values α ∈ R and f ∈ L1
(G).

5.2 The Tensor Product Representation

The second construction we wish to present is the definition of the ten-
sor product of two representations, which will include the definition in
Lemma 1.26 as a very special case.

5.2.1 Basic Construction and Properties

In the following, we let V and W denote two separable Hilbert spaces.

Proposition 5.7 (Tensor product). There exists a Hilbert space V ⊗ W
together with a bilinear map V ×W ∋ (v, w) 7→ v ⊗w ∈ V ⊗W such that for
all v, v1, v2 ∈ V and w,w1, w2 ∈ W we have

(1) 〈v1 ⊗ w1, v2 ⊗ w2〉V⊗W = 〈v1, v2〉V 〈w1, w2〉W ,
(2) ‖v ⊗ w‖V⊗W = ‖v‖V‖w‖W , and
(3) {v ⊗ w | v ∈ V , w ∈ W} spans a dense subspace of V ⊗W.

Moreover, the subspace spanned by {v ⊗ w | v ∈ V , w ∈ W} is isomorphic to
the tensor product in the sense of linear algebra V ⊗laW, the map

V ×W ∋ (v, w) 7−→ v ⊗ w

is continuous, and the tensor product V ⊗W is separable.

Recall that the tensor product in the sense of linear algebra, written
as V ⊗la W , of the complex vector spaces V and W is defined as the uni-
versal vector space together with the bilinear map

V ×W ∋ (v, w) 7−→ v ⊗ w ∈ V ⊗laW

with the property that for any other bilinear map

B : V ×W ∋ (v, w) 7−→ B(v, w) ∈ Z

with values in another complex vector space Z there is a unique linear map

L : V ⊗laW −→ Z

such that B(v, w) = L(v ⊗ w) for all (v, w) ∈ V × W . Moreover, we recall
that V ⊗laW can be constructed by taking the formal linear hull of all pure
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5.2 The Tensor Product Representation 221

tensors v ⊗ w and taking the quotient by the subspace generated by the
necessary relations to enforce bilinearity of the map

V ×W ∋ (v, w) 7−→ v ⊗ w ∈ V ⊗laW ;

we refer to Hungerford [34, Sec. IV.5] for the details and the general setting of
tensor products of modules. We will use this construction to give a canonical
definition of the inner product on V⊗laW , and define V⊗W as its completion.
After the following abstract and coordinate-free construction, we will discuss
a more concrete viewpoint in Corollary 5.10.

Proof of Proposition 5.7. We want to define V ⊗ W as the completion
of the tensor product in the sense of linear algebra V ⊗laW with respect to
some inner product, which we now construct.

Fix some v1 ∈ V and w1 ∈ W . Then the map

V ×W ∋ (v, w) 7−→ 〈v, v1〉 〈w,w1〉 ∈ C

is bilinear, and so by the universal property of the tensor product there exists
a unique linear functional L(v1,w1)

: V ⊗laW ∋ t 7→ L(v1,w1)
(t) ∈ C with

L(v1,w1)
(v ⊗ w) = 〈v, v1〉 〈w,w1〉 (5.3)

for all v ∈ V and w ∈ W .
We now take the conjugate and note that the expression L(v1,w1)

(t) de-
pends bilinearly on (v1, w1) for any fixed t ∈ V ⊗la W . Indeed, for a pure
tensor t = v ⊗ w this follows from (5.3), and the general case follows by
taking sums of pure tensors. In other words, V ×W ∋ (v1, w1) 7→ L(v1,w1)

is
bilinear and has values in the complex vector space

Z = {S : V ⊗laW → C | S is semi-linear}.

By the universal property of the tensor product, it follows that there exists
a linear map Ip : V ⊗laW → Z with Ip(v1 ⊗ w1) = L(v1,w1)

and so, by (5.3),

Ip(v1 ⊗ w1)(v2 ⊗ w2) = L(v1,w1)
(v2, w2) = 〈v1, v2〉〈w1, w2〉

for all v1, v2 ∈ V and w1, w2 ∈ W .
We claim that

〈t1, t2〉⊗ = Ip(t1)(t2)

defines an inner product for tensors t1, t2 ∈ V ⊗laW , which will allow us to
define V⊗W as its completion. From the construction (and in particular, from
the definition of Z), it is clear that Ip(t1)(t2) depends linearly on t1 ∈ V⊗laW
and semi-linearly on t2 ∈ V ⊗W . For the conjugate symmetry we note that
for pure tensors v1 ⊗ w1, v2 ⊗ w2 ∈ V ⊗laW we have

Ip(v1 ⊗ w1)(v2 ⊗ w2) = 〈v2, v1〉 〈w2, w1〉 = Ip(v2 ⊗ w2)(v1 ⊗ w1).
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222 5 Compact Groups

By sesqui-linearity, this extends to the identity

〈t1, t2〉⊗ = Ip(t1)(t2) = Ip(t2)(t1) = 〈t2, t1〉⊗
for all tensors t1, t2 ∈ V ⊗laW = 〈v ⊗ w | v ∈ V , w ∈ W〉C.

For definiteness, let t ∈ V ⊗laW be non-zero and write t as a sum

t =
∑

ℓ

vℓ ⊗ wℓ

for some v1, . . . , vL ∈ V , and w1, . . . , wL ∈ W . Now choose an orthonor-
mal basis (e1, . . . , eJ) of 〈vℓ | ℓ = 1, . . . , L〉C ⊆ V and an orthonormal ba-
sis (f1, . . . , fK) of 〈wℓ | ℓ = 1, . . . , L〉C ⊆ W for some J,K ∈ N. Expressing
each vℓ (resp. wℓ) in terms of this orthonormal basis, putting these into the
expression for t, and expanding bilinearly, we obtain

t =
∑

j,k

tj,kej ⊗ fk

with tj,k ∈ C for 1 6 j 6 J and 1 6 k 6 K. If all of these coefficients
vanish, then clearly t = 0. If not, we use sesqui-linearity and the construction
of 〈·, ·〉⊗ to obtain

〈t, t〉⊗ =
∑

j1,k1
j2,k2

tj1,k1tj2,k2
〈
ej1 ⊗ fk1 , ej2 ⊗ fk2

〉
⊗

=
∑

j1,k1
j2,k2

tj1,k1tj2,k2
〈
ej1 , ej2

〉 〈
fk1 , fk2

〉
=
∑

j,k

|tj,k|2 > 0.

Having shown that 〈·, ·〉⊗ is an inner product on V⊗laW , we define V⊗W
as the completion of V⊗laW with respect to the norm ‖·‖⊗ induced by 〈·, ·〉⊗.
This shows the existence.

To see that the properties of V ⊗W imply that 〈v ⊗ w | v ∈ V , w ∈ W〉C is
isomorphic to V ⊗laW , note that the universal property of V ⊗laW applied
to the bilinear map ⊗ : V ×W → V ⊗W provides a linear map

L : V ⊗laW → 〈v ⊗ w | v ∈ V , w ∈ W〉C
with L(v⊗w) = v⊗w, which is an isometric bijection when V ⊗laW is given
the inner product 〈·, ·〉⊗ constructed above. (This also implies uniqueness;
see Exercise 5.8.)

It remains to show continuity of the tensor product map, since this will
then imply that {v ⊗ w | v ∈ V , w ∈ W} is separable, and hence its closed
linear hull V⊗W is also separable. So suppose that vn → v in V and wn → w
in W as n→∞. Then
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5.2 The Tensor Product Representation 223

‖vn ⊗ wn − v ⊗ w‖⊗ 6 ‖vn ⊗ wn − v ⊗ wn‖⊗ + ‖v ⊗ wn − v ⊗ w‖⊗
= ‖vn − v‖‖wn‖+ ‖v‖‖wn − w‖ −→ 0

as n→∞, as required. �

Exercise 5.8. Show that the properties (1) to (3) in Proposition 5.7 uniquely deter-
mine V ⊗W up to isomorphism.

Exercise 5.9. (a) Let v1, v2 ∈ V be linearly independent and w1, w2 ∈ W be linearly
independent. Show that an element of the form v1 ⊗w1 + v2 ⊗w2 is not of the form v⊗w
for any v ∈ V and w ∈ W .
(b) Show that V⊗W ′

is canonically isomorphic to the space HS(W ,V) of Hilbert–Schmidt
operators from W to V (see [21, Ex. 6.53]).
(c) Show that if both V andW are infinite dimensional, then V ⊗laW is a proper subspace
of V ⊗W .

Corollary 5.10 (Tensor products of L2-spaces). Let µ and ν be locally
finite measures on X respectively on Y . Then the tensor product

L2
µ(X)⊗ L2

ν(Y )

is canonically isomorphic to L2
µ×ν(X × Y ). Under this isomorphism the ten-

sor product fX ⊗ fY of fX ∈ L2
µ(X) and fY ∈ L2

ν(Y ) corresponds to the
function fX ⊗ fY (x, y) = fX(x)fY (y) for (x, y) ∈ X × Y . Moreover, for
closed subspaces V ⊆ L2

µ(X) and W ⊆ L2
ν(Y ) the tensor product V ⊗ W is

canonically isomorphic to the closed subspace of L2
µ×ν(X × Y ) generated by

elements fX ⊗ fY for fX ∈ V and fY ∈ W.
In particular, given bases

(
ej | j ∈ J

)
and (fk | k ∈ K) of separable Hilbert

spaces V and W respectively, with J,K ⊆ N, we obtain an isomorphism

V ⊗W ∼= ℓ2(J)⊗ ℓ2(K) = ℓ2(J ×K).

In other words, the family (ej ⊗ fk | j ∈ J, k ∈ K) forms an orthonormal
basis of V ⊗W.

Proof. Let B : L2
µ(X)× L2

ν(Y )→ L2
µ×ν(X × Y ) be defined by

B(fX , fY )(x, y) = fX(x)fY (y)

for fX ∈ L2
µ(X), fY ∈ L2

ν(Y ) and (x, y) ∈ X × Y . By Fubini’s theorem we

have B(fX , fY ) ∈ L2
µ×ν(X × Y ) and ‖B(fX , fY )‖2 = ‖fX‖2‖fY ‖2. Since B

is bilinear, it induces a linear map

ı : L2
µ(X)⊗la L

2
ν(Y ) −→ L2

µ×ν(X × Y )

with ı(fX⊗fY ) = B(fX , fY ) for all fX ∈ L2
µ(X) and fY ∈ L2

ν(Y ). Moreover,
by Proposition 5.7 and Fubini’s theorem again, we have
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224 5 Compact Groups

〈
fX ⊗ fY , f̃X ⊗ f̃Y

〉
⊗
=
〈
fX , f̃X

〉〈
fY , f̃Y

〉

=

∫

X

fX f̃X dµ

∫

Y

fY f̃Y dν

=

∫

X×Y
fX(x)fY (y)f̃X(x)f̃Y (y) dµ(x) dν(y)

=
〈
ı(fX ⊗ fY ), ı(f̃X ⊗ f̃Y )

〉
L

2
(X×Y )

for all fX , f̃X ∈ L2
µ(X) and fY , f̃Y ∈ L2

ν(Y ). For any tensor

t ∈ L2
µ(X)⊗la L

2
ν(Y )

we write t =
∑

ℓ vℓ ⊗ wℓ and use the above to obtain

〈t, t〉⊗ =
∑

ℓ1,ℓ2

〈
vℓ1 ⊗ wℓ1 , vℓ2 ⊗ wℓ2

〉
⊗

=
∑

ℓ1,ℓ2

〈
ı(vℓ1 ⊗ wℓ1), ı(vℓ2 ⊗ wℓ2)

〉
L

2
µ×ν(X×Y )

= 〈ı(t), ı(t)〉
L

2
µ×ν(X×Y )

.

Thus ı is an isometry and it extends from L2
µ(X) ⊗la L

2
ν(Y ) to its comple-

tion L2
µ(X)⊗L2

ν(Y ). Since the image of the unique extension is complete, and
contains all characteristic functions of the form 1BX×BY for finite measure
sets BX ⊆ X and BY ⊆ Y , it follows that ı is an isomorphism.

The argument above also applies to closed subspaces V and W of L2
µ(X)

and L2
ν(Y ) respectively, and defines an isomorphism between V ⊗ W and a

closed subspace of L2
µ×ν(X × Y ).

Recalling that ℓ2(J) for a finite or countably infinite index set J is equal
to L2(J) with respect to the counting measure, the final claim follows from
the above. �

With the exception of not being canonical, the final claim in Corollary 5.10
gives a convenient way of thinking about the tensor product of Hilbert spaces.
Fix a basis (ej | j ∈ J) of V and a basis (fk | k ∈ K) of W for some finite
or countable index sets J and K. Then let us write ej ⊗ fk for the basis

vector in ℓ2(J ×K) corresponding to the index (j, k) ∈ J ×K. This gives the
identification

V ⊗W ∼= ℓ2(J)⊗ ℓ2(K) = ℓ2(J ×K),

and for v =
∑

j αjej and w =
∑

k βkfk the tensor product map

v ⊗ w =
∑

j,k

αjβkej ⊗ fk. (5.4)

Exercise 5.11. Show that for convergent series v =
∑∞
m=1 vm in V and w =

∑∞
n=1 wn

in W , we have that v ⊗ w =
∑∞
m=1

∑∞
n=1 vm ⊗wn converges also.
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5.2 The Tensor Product Representation 225

Corollary 5.12 (Tensor operators). Let A : V → V and B : W → W be
bounded operators. Then there exists a uniquely determined bounded operator

A⊗B : V ⊗W → V ⊗W

with
A⊗B(v ⊗ w) = Av ⊗Bw (5.5)

for v ∈ V and w ∈ W. Moreover,

• ‖A⊗B‖op = ‖A‖op‖B‖op;
• (A⊗B)∗ = A∗ ⊗B∗;
• if A and B are self-adjoint, then A⊗B is self-adjoint;
• if A and B are unitary, then A⊗B is unitary; and
• (A⊗B)(A′ ⊗B′) = (AA′)⊗ (BB′)

for bounded operators A′ : V → V and B′ : W →W.

Proof. Let (fk) be a basis ofW , where we implicitly let k run over all k ∈ N
with k 6 dimW . We define

A⊗ I : V ⊗W −→ V ⊗W

by using the isomorphism†

VdimW ∋ (vk)k 7−→
∑

k

vk ⊗ fk ∈
⊕

k

V ⊗ fk = V ⊗W (5.6)

and applying A in each component. More formally, we use the isomorphism
in (5.6) and its inverse to make the definition

(A⊗ I)
(∑

k

vk ⊗ fk
)
=
∑

k

(Avk)⊗ fk

for any sequence (vk) ∈ VdimW with
∑

k ‖vk‖
2 < ∞. We claim that this

indeed defines a bounded operator satisfying ‖A⊗ I‖op = ‖A‖op. In fact, for
any t =

∑
k vk ⊗ fk ∈ V ⊗W we have

‖(A⊗ I)t‖2⊗ =
∥∥∥
∑

k

(Avk)⊗ fk
∥∥∥
2

⊗

=
∑

k

‖(Avk)⊗ fk‖2⊗

=
∑

k

‖Avk‖2 6 ‖A‖2op
∑

k

‖vk‖2 = ‖A‖2op‖t‖2,

†
To see that this is indeed an isomorphism, choose a basis of V and use the last statement

of Corollary 5.10.
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226 5 Compact Groups

which gives ‖A⊗ I‖op 6 ‖A‖op. Together with

sup
v∈V,‖v‖61

‖(A⊗ I)(v ⊗ fk)‖⊗ = sup
v∈V,‖v‖61

‖Av‖ = ‖A‖op

for any k, we in fact obtain ‖A⊗ I‖op = ‖A‖op.
By continuity of A⊗I and bilinearity and continuity of the tensor product,

we also have

A⊗ I(v ⊗ w) =
∑

k

βk (A⊗ I)(v ⊗ fk)︸ ︷︷ ︸
(Av⊗fk)

= Av ⊗ w (5.7)

for v ∈ V and w =
∑

k βkfk ∈ W .
Given another bounded operator B : W → W we define I ⊗ B similarly,

also satisfying ‖I ⊗B‖ = ‖B‖ and the relation

(I ⊗B)(v ⊗ w) = v ⊗Bw

for all v ∈ V and w ∈ W . Using (5.7) and the latter identity we obtain

(A⊗ I)(I ⊗B) = (I ⊗ B)(A⊗ I),

which suggests the definition

A⊗B = (A⊗ I)(I ⊗ B),

satisfying (5.5). The remaining properties we leave as an exercise. �

Essential Exercise 5.13. Prove the remaining properties of A⊗B claimed
in Corollary 5.12.

Proposition 5.14 (Outer tensor product). Given unitary representa-
tions π of G and ρ of H, there exists a unitary representation π⊗ρ of G×H,
called the outer or Kronecker tensor product representation, on the tensor
product Hπ ⊗Hρ with the property that

〈
(π ⊗ ρ)(g,h)(v1 ⊗ w1), v2 ⊗ w2

〉
=
〈
πgv1, v2

〉
〈ρhw1, w2〉 (5.8)

for all g ∈ G, h ∈ H, v1, v2 ∈ Hπ, and w1, w2 ∈ Hρ.

Proof. We define (π ⊗ ρ)(g,h) = πg ⊗ ρh for g ∈ G and h ∈ H , which
satisfies (5.8) due to the definition of πg ⊗ ρh in (5.5) and the definition
of the tensor product in Proposition 5.7. Moreover, Corollary 5.12 also im-
plies that (π ⊗ ρ)(g,h) is unitary for all (g, h) ∈ G × H and that π ⊗ ρ
is a homomorphism. It remains to prove continuity, where we will apply
Lemma 1.9 for D = {v ⊗ w | v ∈ V , w ∈ W}. So assume v ∈ V and w ∈ W .
Then G ∋ g 7→ πgv ∈ V and H ∋ h 7→ ρhw ∈ W are continuous by assump-
tion, and
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G×H ∋ (g, h) 7−→ (πg ⊗ ρh)(v ⊗ w) = πgv ⊗ ρhw

is therefore continuous by Proposition 5.7. This shows the continuity of the
representation. �

Exercise 5.15 (Tensor product of cyclic representations). Let π be a cyclic rep-
resentation of G with generator v0 ∈ Hπ and let ρ be a cyclic representation of H with
generator w0 ∈ Hρ. Show that v0 ⊗ w0 ∈ Hπ ⊗Hρ is a generator for π ⊗ ρ.

In the case of G = H we define the inner tensor representation π⊗ ρ of G
by

(π ⊗ ρ)g = πg ⊗ ρg (5.9)

for all g ∈ G. We will always make clear whether we are dealing with an
inner or an outer tensor product. This concludes the material required for
the discussion of unitary representations of compact groups.

Exercise 5.16. Let K ⊆ G be a compact subset. Show that the linear hull of all diag-
onal and non-diagonal matrix coefficients of all irreducible unitary representations of G
restricted to K spans a dense subspace of C(K).

Exercise 5.17. Let G and H be abelian groups as in Chapter 2. Let π be a unitary
representation of G, and let ρ be a unitary representation of H.
(a) Describe the spectral measure of v ⊗ w for v ∈ Hπ and w ∈ Hρ with respect to the
outer tensor product representation π ⊗ ρ of G×H on Hπ ⊗Hρ in terms of the spectral
measures of v and w.
(b) Assume that G = H and repeat the above for the inner tensor product representation.

Exercise 5.18. (a) Let G = SO2(R) ⋉ R2
be the isometry group of the plane as in Sec-

tion 3.3.1. Let π, ρ ∈ Ĝ be irreducible unitary representations. Describe when the inner
tensor product representation π⊗ ρ is again irreducible, and describe the support of π⊗ ρ.
(b) Repeat the above for the ‘ax+ b’ group in Section 3.3.2.
(c) Repeat the above for the Heisenberg group in Section 3.3.4.

5.2.2 Irreducibility of Outer Tensor Products

Proposition 5.19 (Irreducibility of tensor products). Given irreducible
unitary representations π of G and ρ of H, the outer tensor product repre-
sentation π ⊗ ρ of G×H on Hπ ⊗Hρ is again irreducible.

The following lemma, which is based on Schur’s lemma, will be essential
for the proof.

Lemma 5.20. Let π be an irreducible unitary representation of G and W a
Hilbert space. Suppose that T ∈ B(Hπ ⊗W) is equivariant for the represen-
tation π ⊗ I of G defined by (π ⊗ I)g = πg ⊗ I for g ∈ G. Then T = I ⊗ B
for some B ∈ B(W).

Page: 227 job: unitaryrepresentationtheory macro: svmono.cls date/time:21-Nov-2019/16:23



228 5 Compact Groups

Proof. We fix a basis (fk) ofW , and will again use the unitary isomorphism

Hπ ⊗W =
⊕

k

Hπ ⊗ fk ∼= HdimW
π . (5.10)

By the properties of tensor operators in Corollary 5.12, this isomorphism is
also equivariant between π ⊗ I and πdimW on HdimW

π . For an index k ∈ N
with k 6 dimW , we write

ık : Hπ ∋ v 7−→ v ⊗ fk ∈ Hπ ⊗W

for the equivariant embedding into the kth subspace Hπ⊗fk ⊆ Hπ⊗W , and

Pk : Hπ ⊗W ∋ t =
∑

ℓ

vℓ ⊗ fℓ 7−→ vk

for the equivariant projection.
For T ∈ B(Hπ ⊗W) as in the lemma and indices k, ℓ 6 dimW we then

have an equivariant operator

Tk,ℓ = Pk ◦ T ◦ ıℓ : Hπ −→ Hπ,

which by Schur’s lemma (Theorem 1.27) must equal bk,ℓI for some bk,ℓ ∈ C,
where I denotes the identity on Hπ. For a unit vector v ∈ Hπ and the basis
vector fℓ, this shows that

T (v ⊗ fℓ) =
∑

k

Pk
(
T (v ⊗ fℓ)

)
︸ ︷︷ ︸

=Tk,ℓ(v)

⊗fk (5.11)

=
∑

k

v ⊗ (bk,ℓfk)

= v ⊗
∑

k

bk,ℓfk. (5.12)

In fact the sum in (5.11) over k ∈ N converges due to the unitary isomorphism
in (5.10), and (5.12) follows since

W ∋ w 7−→ v ⊗ w ∈ v ⊗W (5.13)

is an isometry.
Said differently, the above shows that T (v ⊗ W) ⊆ v ⊗ W for any unit

vector v ∈ Hπ. Using the isometry in (5.13) and its inverse, it follows that
there exists a bounded operator Bv ∈ B(W) with

T (v ⊗ w) = v ⊗Bvw (5.14)

for all w ∈ W .
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Let e1, e2, · · · ∈ Hπ be an orthonormal basis, let j, k 6 dimHπ with j 6= k
be two indices, and define v = 1√

2
(ej + ek). Then for w ∈ W we have

ej ⊗Bejw + ek ⊗Bekw = T (ej ⊗ w + ek ⊗ w)

= T
(

1√
2
(ej + ek)︸ ︷︷ ︸

v

⊗
√
2w
)

= 1√
2
(ej + ek)⊗Bv(

√
2w)

= ej ⊗Bv(w) + ek ⊗Bv(w),

which implies that B = Bej = Bek is independent of the basis vector. Using
the fact that the linear hull of the subspaces ej ⊗W for j 6 dimHπ is dense
and T is bounded, we obtain T = I ⊗B. �

With this lemma, we are ready to prove the proposition.

Proof of Proposition 5.19. Suppose that T ∈ B(Hπ ⊗ Hρ) is equivari-
ant for the unitary representation π ⊗ ρ of G × H . Restricting the unitary
representation to G, we may apply Lemma 5.20 and obtain T = I ⊗B for a
bounded operator B on Hρ. Similarly, we obtain T = A ⊗ I for a bounded
operator A on Hπ . We claim that this implies T = sI for some s ∈ C. Ap-
plying this to the equivariant projection operator A = PV corresponding to a
closed π ⊗ ρ-invariant subspace V ⊆ Hπ ⊗Hρ, it follows that either V = {0}
or V = Hπ ⊗Hρ and so π ⊗ ρ is irreducible.

To see the claim, suppose first that v ∈ Hπ and w ∈ Hρ are unit vectors
and extend these to orthonormal bases (ej) of Hπ with e1 = v and (fk)
of Hρ with f1 = w. By the last claim in Corollary 5.10 the vectors ej ⊗ fk
for (j, k) ∈ J ×K form an orthonormal basis of Hπ ⊗Hρ. Let (j, k) 6= (1, 1).
If j 6= 1 then we use T = I ⊗B to obtain

〈T (v ⊗ w), ej ⊗ fk〉 = 〈v ⊗Bw, ej ⊗ fk〉 = 〈v, ej〉︸ ︷︷ ︸
=0

〈Bw, fk〉 = 0.

Similarly, if k 6= 1 then we use T = A⊗I to obtain that T (v⊗w) is orthogonal
to ej ⊗ fk. As this holds for any (j, k) 6= (1, 1) it follows that

T (v ⊗ w) = sv,wv ⊗ w

for some sv,w ∈ C depending on the unit vectors v ∈ Hπ and w ∈ Hρ.
Let us now fix an orthonormal basis e1, e2, . . . of Hπ and an orthonormal
basis f1, f2, . . . ofHρ. By the above, there exists for every pair (j, k) of indices
some sj,k ∈ C with T (ej ⊗ fk) = sj,kej ⊗ fk. Using also v = 1√

2
(ej + ej′) for

a second index j′ 6 dimHπ, we obtain

sj,kej⊗fk+sj′,kej′ ⊗ fk =
√
2T
(

1√
2
(ej + ej′)︸ ︷︷ ︸

v

⊗fk
)
= sv,ek(ej+ej′)⊗fk
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which implies that sj,k = sj′,k = sk is independent of the first index. The

argument for the second index is similar. Hence T (ej ⊗ fk) = sej ⊗ fk for a
fixed s ∈ C and any pair (j, k) of indices. Since the vectors ej ⊗ fk for all
pairs (j, k) form a basis, it follows that T = sI, as claimed. �

The converse to Proposition 5.19 does not hold for all pairs of groups, but
does hold if at least one of the two groups is somewhat reasonable (the groups
with unreasonable unitary dual considered in Chapter 3 are also unreasonable
in this sense).

Proposition 5.21 (Partial characterization for products). Let τ be an
irreducible unitary representation of G×H. Suppose that there exists a unitary
representation π ∈ Ĝ and K ∈ N∪{∞} such that for the restriction of τ to G

we have Hτ ∼= HKπ . Then there exists an irreducible representation ρ ∈ Ĥ so
that τ is isomorphic to the outer tensor product representation π ⊗ ρ.

Proof. Let W be a K-dimensional Hilbert space so that

Hτ ∼= HKπ ∼= Hπ ⊗W

as in (5.10). We may therefore assume that Hτ = Hπ ⊗ W , and that τ
restricted to G is equal to π ⊗ I. Note that τh for h ∈ H is equivariant
for τ |G = π ⊗ I. By Lemma 5.20 this implies for h ∈ H that τh = I ⊗ ρh for
an operator ρh ∈ B(W). Since τ |H is a unitary representation andW ∼= v⊗W
for any unit vector v ∈ Hπ , it follows that ρ is a unitary representation of H
on Hρ = W . Thus τ is the outer tensor product π ⊗ ρ on Hτ = Hπ ⊗ Hρ.
Irreducibility of τ now also implies that ρ must be irreducible. �

To summarize, Proposition 5.19 shows that the outer tensor product of ir-
reducible unitary representations of G and H give rise to irreducible unitary
representations of G×H . Conversely, by Proposition 5.21 irreducible unitary
representations of G × H arise in this way if the restriction to G is easily
described with one irreducible representation of G. It may feel like the lat-
ter should always hold, since different irreducible representations should give
rise to invariant subspaces, but this line of argument only works if it is some-
how possible to separate different elements of Ĝ by, for example, equivariant
operators.

Example 5.22. Let G = SO2(R) ⋉ R2 be the group of isometries considered
in Section 3.3.1, and let H simply satisfy our standing assumptions. We will
show that any irreducible unitary representation τ of G×H is isomorphic to
the outer tensor product π ⊗ ρ for some π ∈ Ĝ and ρ ∈ Ĥ .

So let τ ∈ Ĝ×H . To prove the assumption of Proposition 5.21, we apply
the arguments to Proposition 3.13. Indeed, if the restriction of τ to R2

⊳ G
is trivial, then τ induces an irreducible unitary representation of SO2(R)×H
and τ = χn ⊗ ρ for a character χn ∈ ̂SO2(R) and a representation ρ ∈ Ĥ, by
Example 1.33.
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So suppose the restriction of τ to R2 is non-trivial. We again define the ra-
dius function R : R2 → [0,∞), which is invariant under the action of SO2(R)
on R2. As in the proof of Proposition 3.13, this shows that the operator τFC(R)
is equivariant for τ |G. By the properties of the measurable functional calcu-
lus (Proposition 2.55(5) applied to τh for h ∈ H), τFC(R) is also equivariant
under τ |H . Hence Schur’s lemma (Theorem 1.27) applies again, and we see
that τFC(R) = rI for some r > 0.

Let Wn < Hτ denote the eigenspace for τ |SO2(R)
and a character χn for

some n ∈ Z. Also let D : R2 → S1 ⊆ C denote the direction function as in
the proof of Proposition 2.55. Then τFC(D) is a unitary operator sendingWn

onto Wn−1 for all n ∈ Z. Therefore K = dimWn is independent of n ∈ Z.
Given a unit vector v ∈ W0, we define V = 〈τFC(D

n)v | n ∈ Z〉 and apply the
proof of Proposition 2.55 to see that τ restricted to G and V is isomorphic
to the representation πr. Hence τ restricted to G is isomorphic to πKr , and
Proposition 5.21 shows that τ is isomorphic to πr ⊗ ρ for some ρ ∈ Ĥ .

Exercise 5.23. Repeat Example 5.22 for any metabelian group G satisfying the assump-
tions in Section 3.5.

5.2.3 Compatibility and Continuity of Tensor Products

We now establish compatibility with weak containment, and continuity with
respect to the Fell topology, for the tensor product construction.

Proposition 5.24 (Compatibility and continuity). Let π1 and π2 be uni-
tary representations of G and let ρ1 and ρ2 be unitary representations of H.
If π1 ≺ π2 and ρ1 ≺ ρ2 then the outer tensor products also satisfy

π1 ⊗ ρ1 ≺ π2 ⊗ ρ2.

Moreover, the tensor product construction

U (G)×U (H) ∋ (π, ρ) 7−→ π ⊗ ρ ∈ U (G×H)

is continuous. If G = H then both claims also hold for the inner tensor
products.

Proof. Suppose first that π1 and ρ1 are cyclic with generators v ∈ Hπ1

and w ∈ Hρ1 respectively. Then π1 ≺ π2 and ρ1 ≺ ρ2 imply that, for any

compact subsets K ⊆ G and L ⊆ H and any ε > 0, there exist φπ2 ∈ P1
π2

and φρ2 ∈ P1
ρ2

with ‖ϕπ1
v − φπ2‖K,∞ < ε and ‖ϕρ1w − φρ2‖L,∞ < ε. We

recall that ϕ
π1⊗ρ1
v⊗w = ϕπ1

v ⊗ ϕρ1w (that is, ϕ
π1⊗ρ1
v⊗w (g, h) = ϕπ1

v (g)ϕρ1w (h) for

all (g, h) ∈ G ×H), which extends by linearity to φ = φπ2 ⊗ φρ2 ∈ P1
π2⊗ρ2 .

Multiplying the approximation claims above with ‖ϕρ1w ‖L,∞ and ‖φπ2‖K,∞
respectively gives
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∥∥ϕπ1⊗ρ1
v⊗w −φ

∥∥
K×L,∞6

∥∥ϕπ1
v −φπ2

∥∥
K,∞‖ϕ

ρ1
w ‖L,∞+

∥∥φπ2
∥∥
K,∞

∥∥ϕρ1w −φρ2
∥∥
L,∞

< 2ε.

We also note that v ⊗ w ∈ Hπ1
⊗ Hρ1 is a generator for π1 ⊗ ρ1 by Exer-

cise 5.15. As the compact subsets and ε > 0 were arbitrary, we obtain from
Corollary 4.32 that π1 ⊗ ρ1 ≺ π2 ⊗ ρ2.

If now π1 (resp. ρ1) is not cyclic, we write π1 =
⊕∞

m=1 π1,m (and, re-
spectively, ρ1 =

⊕∞
n=1 ρ1,n) as a direct sum of cyclic representations. This

gives

π1 ⊗ ρ1 =

∞⊕

m,n=1

π1,m ⊗ ρ1,n ≺
(
π2 ⊗ ρ2

)∞ ≺ π2 ⊗ ρ2,

and hence the first part of the proposition.
The proof of the second part is similar. Suppose that (πn) is a sequence

in U (G) converging to π ∈ U (G), and (ρn) is a sequence in U (H) converging
to ρ ∈ U (H). We claim that π ⊗ ρ ≺⊕∞

n=1 πn ⊗ ρn.
For the proof of the claim, we first assume that v ∈ Hπ and w ∈ Hρ are

generators so that v⊗w is a generator for π⊗ρ by Exercise 5.15. By Proposi-
tion 4.49 we can find, for compact subsets K ⊆ G and L ⊆ H , ε > 0 and ev-
ery large enough n ∈ N, positive-definite functions φπn ∈ P1

πn
and φρn ∈ P1

ρn
with ‖ϕπv − φπn‖K,∞ < ε and ‖ϕρw − φρn‖L,∞ < ε. As in the first part of the
proof, this implies that

‖ϕπ⊗ρv⊗w − φπn ⊗ φρn‖K×L,∞ < 2ε.

Together with Corollary 4.32, we see that π⊗ ρ ≺⊕∞
n=1 πn⊗ ρn as claimed.

As the claim holds for any sequences (πn) and (ρn) converging to π and ρ
respectively, we can also apply it to subsequences. By Corollary 4.42, this
shows that πn ⊗ ρn → π ⊗ ρ as n → ∞. If π (resp. ρ) is not cyclic, we can
apply the above to all its cyclic subspaces, and conclude the argument as in
the first part of the proof.

By restricting the uniform approximation in the weak containment state-
ment or the convergence statement to compact subsets of

∆G = {(g, g) | g ∈ G} ⊆ G×G,

we obtain the two statements also for the inner tensor product representa-
tions. �

Exercise 5.25. Let G have property (T) and let π ∈ Ĝ be a finite-dimensional irreducible
representation. Show that for any unitary representation ρ of G we have that π ≺ ρ
implies π < ρ.
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5.3 Structure of Unitary Representations

As mentioned in the introduction to the chapter, compactness of G has im-
portant consequences for its unitary representations.

Theorem 5.26 (Finite dimension). Let π be an irreducible unitary repre-
sentation of the compact group G. Then Hπ has finite dimension.

For non-compact groups this can fail quite badly. Indeed, Exercise 1.79
shows for the group SL2(R) that there are no non-trivial finite-dimensional
unitary representations.

Theorem 5.27 (Decomposability(7)). Let ρ be a unitary representation of
the compact group G. Then Hρ is a direct sum of mutually orthogonal irre-

ducible subspaces. More precisely, for every [π] ∈ Ĝ define the linear hull H[π]
ρ

of all subspaces V ⊆ Hρ such that ρ|V ∼= π. Then these subspaces are closed,
mutually orthogonal,

Hρ =
⊕

[π]∈Ĝ

H[π]
ρ ,

and ρ restricted to H[π]
ρ is isomorphic to mult(π, ρ) ∈ N0 ∪ {∞} many copies

of π. Here the multiplicity mult(π, ρ) is uniquely determined by ρ, but the

isomorphism between H[π]
ρ and Hmult(π,ρ)

π is not.

We have already seen in the paragraph after Exercise 2.3 (see also Theo-
rem 2.15 and Proposition 2.54) that the regular representation of R on L2(R)
does not even contain one irreducible subspace, also showing how Theo-
rem 5.27 is a special property of compact groups.

To lighten the notation, we will sometimes write π as an abbreviation
for [π], as for example in the notation mult(π, ρ) for [π] ∈ Ĝ and an arbitrary
unitary representation ρ of G.

5.3.1 Equivariant Maps

For the proof of Theorems 5.26 and 5.27 we will need to construct equivariant
maps using the next two lemmas.

Lemma 5.28 (Existence of equivariant operator). Let π and ρ be uni-
tary representations of the compact group G, and let A ∈ B(Hπ,Hρ) be a
bounded operator. Then

Ãv =

∫

G

ρgAπg−1v dm(g) (5.15)

for v ∈ Hπ defines another bounded operator from Hπ to Hρ that is equivari-
ant.
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Proof. The integral in (5.15) is to be understood weakly, as in our definition

of convolution operators. More precisely, for v ∈ Hπ we define Ãv ∈ Hρ using
the Fréchet–Riesz representation theorem and the formula

〈Ãv, w〉 =
∫

G

〈ρgAπg−1v, w〉dm(g)

for every w ∈ Hρ, where the function g 7→ 〈ρgAπg−1v, w〉 = 〈Aπ
g
−1v, ρ

g
−1w〉

is continuous (by continuity of the unitary representation and the inner prod-

uct) and satisfies |〈ρgAπg−1v, w〉| 6 ‖A‖‖v‖‖w‖. Hence Ã is a well-defined

linear operator with ‖Ã‖ 6 ‖A‖ (see also the argument in Section 1.4.3).

Equivariance of Ã now follows quickly from the properties of Haar measure.
Indeed,

Ãπg0v =

∫

G

ρgAπg−1
g0
v dm(g) =

∫

G

ρg0ρkAπk−1v dm(k) = ρg0Ãv

for g0 ∈ G by the substitution k = g−1
0 g. �

Lemma 5.29 (Existence of compact equivariant operator). Let π be a
unitary representation of the compact group G. For a given unit vector u ∈ Hπ
we define the operator T by

Tv =

∫

G

〈v, πgu〉πgu dm(g)

for all v ∈ Hπ Then T is positive, self-adjoint, equivariant, non-trivial, and
compact. Moreover, u ∈ (kerT )⊥.

Proof. The equivariance of T follows from Lemma 5.28, since for Av =
〈v, u〉u and g ∈ G we have

πgAπg−1v = 〈π
g
−1v, u〉πgu = 〈v, πgu〉πgv

for all v ∈ Hπ. Hence Ã = T .
To prove positivity, let v ∈ Hπ and calculate

〈Tv, v〉 =
∫

G

〈v, πgu〉〈πgu, v〉︸ ︷︷ ︸
=|〈v,πgu〉|

2

dm(g) > 0.

Positivity also implies that T is self-adjoint, which can also be checked di-
rectly.

If now v ∈ kerT , then 〈Tv, v〉 = 0 and so by the argument above and the
continuity of the map g 7→ 〈v, πgu〉 it follows that 〈v, πgu〉 = 0 for all g ∈ G.
In particular, u ⊥ kerT and so T 6= 0.
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It remains to prove that T is compact, which we will do by approximat-
ing T uniformly by operators with finite-dimensional range. For this, note
first that g 7→ πgu is uniformly continuous on G by compactness. Hence,
given some ε > 0 there exists a finite measurable partition P = {B1, . . . , Bn}
of G with max{diamBj | j = 1, . . . , n} small enough to ensure that g, gj ∈ Bj
implies that ‖πgu− πgju‖ < ε. Hence

‖〈v, πgu〉πgu− 〈v, πgju〉πgju‖
6 |〈v, πgu〉|‖πgu− πgju‖+ |〈v, πgu− πgju〉|‖πgju‖ 6 2ε‖v‖

for all v ∈ Hπ , since u is a unit vector. Using this partition and the sample
points gj ∈ Bj for j = 1, . . . , n we define the Riemann sum approximation

TP : Hπ ∋ v 7−→ TPv =

n∑

j=1

〈v, πgju〉m(Bj)πgju

with values in 〈πg1u, . . . , πgnu〉. This defines a bounded operator on Hπ with

‖T − TP‖ = sup
‖v‖61

‖Tv − TPv‖

= sup
‖v‖61

∥∥∥∥∥
n∑

j=1

∫

Bj

(
〈v, πgu〉πgu− 〈v, πgju〉πgju

)
dm(g)

∥∥∥∥∥ 6 2ε.

As TP has finite-dimensional range and ε > 0 was arbitrary, the lemma
follows from [21, Lemma 6.7]. �

5.3.2 Proof of Theorems

Proof of Theorem 5.26. Suppose that π is an irreducible unitary repre-
sentation and that u ∈ Hπ is a unit vector. Applying Lemma 5.29 we find
a non-trivial compact equivariant operator T ∈ B(Hπ). By Schur’s lemma
(Theorem 1.27), irreducibility implies that T = λI for some λ ∈ C. However,
as T 6= 0 is a compact operator, we see that dimHπ <∞ (see, for example,
the discussion after [21, Def. 6.2]). �

Proof of Theorem 5.27: Decomposability. Let ρ be a unitary rep-
resentation of the compact group G and let u ∈ Hρ be a unit vector.
Apply Lemma 5.29 again to obtain an equivariant compact operator T so
that u ∈ (kerT )⊥. Since T is compact and self-adjoint, there exists a (possi-
bly finite) sequence (λn) of non-zero eigenvalues of T such that
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Hρ =
⊕

n>1

Wn ⊕ kerT,

where Wn = {v ∈ Hρ | Tv = λnv} is the finite-dimensional eigenspace of T
with eigenvalue λn (see [21, Th. 6.27]). As T is equivariant it follows that
each subspace Wn is ρ-invariant. Indeed g ∈ G and v ∈ Wn implies that

Tρgv = ρgTv = λnρgv,

and so ρgv ∈ Wn. Using induction on the dimension and the fact that every
invariant subspace has an invariant complement (see Exercise 1.21) it fol-
lows that every finite-dimensional representation, and in particular each of
the subspaces Wn is a finite direct sum of irreducible subspaces. It follows
that

⊕
n>1Wn is at most a countable direct sum of irreducible subspaces.

Recall that u ∈⊕n>1Wn.
To deduce the theorem from this, let v1, v2, . . . be an orthonormal basis

of Hρ. Apply the argument above, first to u = v1 to obtain a direct sum W
of irreducible subspaces that contains v1. Choose the next integer n > 2
with vn /∈ W , project this vector to W⊥, and define the operator T as above
but for the restriction of π toW⊥ and the normalized projection of vn toW⊥.
This produces a further collection of mutually orthogonal irreducible sub-
spaces in W⊥ such that v1, . . . , vn belongs to the direct sum W̃ of W and
these new irreducible subspaces.

Repeating the argument inductively produces mutually orthogonal irre-
ducible subspaces whose direct sum contains all basis vectors. �

To complete the proof of Theorem 5.27 it remains to discuss the sub-

spaces H[π]
ρ and the multiplicity mult(π, ρ) for all [π] ∈ Ĝ. For this, let us

first summarize what we have obtained thus far in a convenient notation.
Given the representation ρ we have found (finite-dimensional) irreducible

subspaces V1,V2, · · · < Hρ such that Hρ =
⊕

n>1 Vn. For any [π] ∈ Ĝ we de-

note those subspaces Vn with ρ|Vn ∼= π by Vπℓ for ℓ = 1, . . . ,m([π]) = m(π),
wherem(π) ∈ N∪{∞} is the total number of such subspaces. In this notation,
we have shown that

Hρ =
⊕

[π]∈Ĝ

m(π)⊕

ℓ=1

Vπℓ
︸ ︷︷ ︸
=Wπ

=
⊕

[π]∈Ĝ

Wπ. (5.16)

The following lemma will be useful for the second part of the proof of Theo-
rem 5.27, but is also of independent interest (see also Exercise 5.31).

Lemma 5.30 (Bound on multiplicity). If ρ is a cyclic representation of
the compact group G and
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Hρ =
⊕

[π]∈Ĝ

m(π)⊕

ℓ=1

Vπℓ ,

then m(π) 6 dimHπ for every [π] ∈ Ĝ.

Proof. Fix some [π] ∈ Ĝ. Projecting the generator to
⊕m(π)

ℓ=1 V
π
ℓ it follows

that the latter is also cyclic, and we may suppose that

Hρ =
m(π)⊕

ℓ=1

Vπℓ .

Let d = dimHπ and suppose that m = m(π) > d. Projecting the generator
to the orthogonal sum of the first d + 1 subspaces, we may assume that m
is d + 1 and that Hρ = Hd+1

π is cyclic with generator v = (v1, . . . , vd+1).
Permuting the indices if necessary, it follows that vd+1 = α1v1 + · · ·+ αdvd
for some α1, . . . , αd ∈ C. Now define the proper subspace

W =
{
(w1, . . . , wd, α1w1 + · · ·+ αdwd) | w1, . . . , wd ∈ Hπ

}
< Hd+1

π

and notice that it is invariant under ρ =
⊕d+1

ℓ=1 π and contains the vector v

that generates Hd+1
π . This contradiction proves the lemma. �

Proof of Theorem 5.27 continued: multiplicities. Let ρ be unitary
representation of G. As already done in the theorem, we define for every

irreducible representation π the subspace H[π]
ρ as the linear hull over those

subspaces V ⊆ Hρ such that ρ|V ∼= π. Furthermore, let Vπℓ for ℓ = 1, . . . ,m(π)

and Wπ =
⊕m(π)

ℓ=1 V
π
ℓ for all π ∈ Ĝ be as in (5.16) so that the space Hρ is

the orthogonal direct sum of the subspaces Wπ for π ∈ Ĝ. We wish to show

that H[π0]
ρ =Wπ0 for every [π0] ∈ Ĝ.

Suppose for a moment that π1 and π2 are inequivalent irreducible repre-
sentations of G and V1,V2 ⊆ Hρ are invariant subspaces such that ρ|Vj is
isomorphic to πj for j = 1, 2. Using invariance of V2 we see first that the
orthogonal projection P : Hρ → V2 is equivariant. Composing the projec-
tion with the equivariant isometries Hπ1

→ V1 and V2 → Hπ2
gives now an

equivariant map Hπ1
→ Hπ2

. By Schur’s lemma (Theorem 1.27) it follows
that P |V1

= 0 and so V1 ⊥ V2.
We fix some [π0] ∈ Ĝ and return to our discussion of the subspaces Wπ0

and H[π0]
ρ . Let V0 ⊆ Hρ be an irreducible subspace with ρ|V0

∼= π0, let π be
an irreducible representation with π 6= [π0], and let Vπℓ ⊆ Wπ be one of the
subspaces in the definition of Wπ. Then the argument above shows V0 ⊥ Vπℓ .
Varying the subspaces we obtain H[π0]

ρ ⊥ Wπ and varying [π] ∈ Ĝr{[π0]}, we
obtain H[π0]

ρ ⊆ Wπ0 , since Hρ equals the orthogonal direct sum
⊕

[π]∈ĜW
π.
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For the converse inclusion, let v ∈ Wπ0r{0} and apply the first part of
the theorem to the cyclic representation 〈v〉ρ ⊆ Wπ0 generated by v. This

shows that 〈v〉ρ =
⊕K

k=1 V
′
k for some irreducible subspaces V ′

k ⊆ 〈v〉ρ and K

in N∪ {∞}. By the above we also have H[π]
ρ ⊆ Wπ for [π] ∈ Ĝr{[π0]}, which

implies that ρ|V′
k

∼= π0 for all k. By Lemma 5.30 we now see that K 6 dimHπ
and hence that 〈v〉ρ is a finite sum of irreducible subspaces, which implies

that v ∈ H[π0]
ρ . As v ∈ Wπr{0} was arbitrary, we see that Wπ0 = H[π0]

ρ , and

in particular that H[π0]
ρ is closed.

As H[π0]
ρ is canonically defined, it follows that

dimH[π0]
ρ = m(π0) dimHπ0

is independent of the choices that were made to arrive at the splitting of H
into irreducible subspaces V1,V2, . . .. As dimHπ0

<∞ by Theorem 5.26, this
implies that

mult(π0, ρ) = m(π0) =
dimH[π0]

ρ

dimHπ0

is well-defined.
Finally, note that the isomorphism Uπ between Hπρ and Hmult(π,ρ)

π can be
changed in many ways. For instance, Uπ can be composed with a permutation
of the subspaces if mult(π, ρ) > 1 or multiplied by a scalar of absolute value
one whenever Hπρ 6= {0}. �

Exercise 5.31. (a) Let π be a finite-dimensional irreducible unitary representation of G.

Show that the unitary representation on HdimHπ
π is cyclic.

(b) Let I ⊆ N and [πj] ∈ Ĝ for j ∈ I such that j 6= k in I implies that πj 6∼ πk

(equivalently, [πj ] 6= [πk]). Show that
⊕
j∈I H

dimHπ
π is cyclic.

Exercise 5.32. Let G = Z/2Z ⋉ T, with group operation defined by

(a1, x1) · (a2, x2) = (a1 + a2, x1 + (−1)
a1x2).

Describe the unitary dual Ĝ.

5.3.3 Containment

The description of unitary representations in Theorem 5.27 allows us to de-
scribe containment quite clearly.

Corollary 5.33 (Characterization of containment). Let ρ1 and ρ2 be
unitary representations of the compact group G. Then ρ1 < ρ2 if and only if
for every [π] ∈ Ĝ we have mult(π, ρ1) 6 mult(π, ρ2).
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Proof. Suppose that ρ1 < ρ2. Then we may assume that Hρ1 ⊆ Hρ2
and ρ1 = ρ2|Hρ1

. Applying the decomposition theorem (Theorem 5.27) toHρ1
and H⊥

ρ1
⊆ Hρ2 , it follows that

mult(π, ρ1) 6 mult(π, ρ1) + mult(π, ρ2|H⊥
ρ1

) = mult(π, ρ2)

for every [π] ∈ Ĝ.
For the converse, we suppose that mult(π, ρ1) 6 mult(π, ρ2) for every π

in Ĝ, and obtain from the decomposition theorem for ρ1 and ρ2 that

Hρ1 ∼=
⊕

[π]∈Ĝ

Hmult(π,ρ1)
π ⊆

⊕

[π]∈Ĝ

Hmult(π,ρ2)
π

∼= Hρ2

as required. �

5.3.4 Irreducible Representations of Products

In this section we let G denote a compact metric group and H a locally
compact, σ-compact metric group. We wish to relate the irreducible repre-
sentations in Ĝ and Ĥ to the irreducible representations of G×H giving the
converse to Proposition 5.14.

Proposition 5.34 (The unitary dual of compact products). Let G be
a compact metric group and H a locally compact, σ-compact metric group.
Then the irreducible representations of the direct product G×H are precisely
of the form π ⊗ ρ for [π] ∈ Ĝ and [ρ] ∈ Ĥ.

Proof. The irreducibility of π ⊗ ρ for [π] ∈ Ĝ and [ρ] ∈ Ĥ holds more
generally, and was established in Proposition 5.19.

For the converse, we suppose that τ is an irreducible unitary representation
of G×H . We restrict τ to the compact group G and apply Theorem 5.27. It
follows that

Hτ =
⊕

[π]∈Ĝ

H[π]
τ ,

where H[π]
τ is the linear hull of all irreducible subspaces V < Hτ isomorphic

to Hπ . Since the direct factors of G×H commute, it follows for h ∈ H and
a closed subspace V < Hτ that τhV < Hτ is isomorphic to V with respect to

the restriction of τ to G. Therefore τhH[π]
τ < H[π]

τ for [π] ∈ Ĝ and h ∈ H . By

irreducibility of Hτ we must have Hτ = H[π]
τ for some [π] ∈ Ĝ. Let

K = mult(π, τ |G) ∈ N ∪ {∞}
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so we may assume that Hτ ∼= HKπ by Theorem 5.27. Applying Propo-
sition 5.21 it follows that there exists an irreducible unitary representa-
tion ρ ∈ Ĥ on a K-dimensional Hilbert space so that τ = π ⊗ ρ. �

5.3.5 The Unitary Assumption

In all of our discussions up to this point (and in many of the following ones)
we always start by assuming that the representation in question is unitary. In
the context of compact groups this assumption can be weakened significantly.

Proposition 5.35 (Averaging the inner product). Let H be a Hilbert
space and suppose that π is a continuous representation of the compact
group G on H (so properties (1) and (3) of Definition 1.1 hold, but we do
not assume (2)). Then

〈v, w〉π =

∫ 〈
πgv, πgw

〉
H dm(g)

for v, w ∈ H defines an inner product on H with the property that the induced
norm is equivalent to the norm induced by 〈·, ·〉H and π is a unitary repre-
sentation with respect to 〈·, ·〉π. In particular, this applies to every continuous
finite-dimensional representation.

Proof. Using the continuity of G ∋ g 7→ πgv for v ∈ H, it is easy to
see that 〈·, ·〉π is well-defined and satisfies the axioms of an inner product.
Moreover, also by compactness of G and the continuity requirement of the
representation we have that {πgv | g ∈ G} ⊆ H is bounded for every v ∈ H.
As H is a Hilbert space, the Banach–Steinhaus theorem on uniform bound-
edness (see [21, Th. 4.1]) applies and shows that M = sup{‖πg‖ | g ∈ G} is
finite. Notice that ‖πgv‖H 6 M‖v‖H, which may be applied to g−1 and its
action on the vector w = πgv to see that

1
M ‖v‖H 6 ‖πgv‖H 6M‖v‖H

for all v ∈ H and g ∈ G.
Let ‖·‖π denote the norm induced by 〈·, ·〉π . By integration, we now obtain

1

M
2 ‖v‖2H 6 ‖v‖2π =

∫
‖πgv‖2H dm(g) 6M2‖v‖2H

for all v, which shows that ‖ · ‖H and ‖ · ‖π are equivalent norms.
Finally, note that

‖πgv‖2π =

∫
‖πhgv‖2H dm(h) =

∫
‖πkv‖2H dm(k) = ‖v‖2π
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for all v ∈ H, showing that πg is unitary for all g ∈ G with respect to the
inner product 〈·, ·〉π on Hπ. As ‖ · ‖H and ‖ · ‖π are equivalent norms, we
see that Hπ = H is still a Hilbert space when equipped with the latter norm
and that π still satisfies the continuity requirement, and so gives a unitary
representation. �

5.4 The Regular Representation*

Having obtained the complete description of any unitary representation of
the compact group G, we now move on to the regular representation λ.
Here we will, in particular, also obtain complete knowledge of the multi-
plicities mult(π, λ) of a given irreducible unitary representation π of G. As
a first step towards that goal, we study the matrix coefficients of unitary
representations (which are continuous functions on G, and in particular are
elements of L2(G) by compactness).

5.4.1 Schur Orthogonality

Definition 5.36. For a unitary representation π of the compact group G we
defineMπ =

〈
ϕu,v | u, v ∈ Hπ

〉
to be the linear hull of all matrix coefficient

for vectors in Hπ.

It is clear that Mπ only depends on π up to unitary equivalence and so
we may also defineM[π] =Mπ for any [π] ∈ Ĝ.

Proposition 5.37 (Dimension bound). Let π be a unitary representation
of the compact group G. Then Mπ is invariant under the left- and right-
regular representations, is a two-sided ideal in L1(G) with respect to convo-
lution, and satisfies

dimMπ 6 (dimHπ)2.

Proof. To see the invariance under the regular representation let u, v ∈ Hπ
and g, h ∈ G. Then

λg(ϕu,v)(h) = ϕu,v(g
−1h) =

〈
π
g
−1
h
u, v
〉
=
〈
πhu, πgv

〉
= ϕu,πgv(h)

and

ρg(ϕu,v)(h) = ϕu,v(hg) =
〈
πhgu, v

〉
=
〈
πhπgu, v

〉
= ϕπgu,v(h)

show that λgMπ ⊆Mπ and ρgMπ ⊆Mπ. For the claim regarding convolu-

tion let f ∈ L1(G) to see that
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f ∗ ϕu,v(g) =
∫
f(h)ϕu,v(h

−1g) dm(h)

=

∫
f(h)

〈
π
h
−1
g
u, v
〉
dm(h)

=

∫
f(h)

〈
πgu, πhv

〉
dm(h)

=
〈
πgu, π∗(f)v

〉
= ϕu,π∗(f)v

(g)

by definition of the convolution operator π∗(f).

Similarly, we define f̃(k) = f(k−1) for k ∈ G and obtain

ϕu,v ∗ f(g) =
∫
ϕu,v(h)f(h

−1g) dm(h)

=

∫
ϕu,v(gk)f(k

−1) dm(k)

=

∫ 〈
πgπku, v

〉
f̃(k) dm(k)

=
〈
πgπ∗(f̃)u, v

〉
= ϕπ∗(f̃)u,v

(g)

by using the substitution h = gk, and again the definition of the convolution
operator π∗(f̃). It follows that L

1(G) ∗Mπ ∪Mπ ∗ L1(G) ⊆Mπ.
Finally, if w1, w2, . . . , wd ∈ Hπ is an orthonormal basis, then sesqui-

linearity shows that Mπ is spanned by ϕwi,wj for i, j = 1, . . . , d. However,
if Hπ is infinite-dimensional, then there is nothing to prove. �

Theorem 5.38 (Schur orthogonality relations). Let π and ρ be irre-
ducible unitary representations of the compact group G and consider the
subspaces Mπ and Mρ inside L2(G). If π and ρ are not unitarily equiv-
alent, then Mπ ⊥ Mρ. Moreover, if w1, . . . , wdπ is an orthonormal basis
of Hπ then

√
dππi,j is an orthonormal basis of Mπ, where dπ = dimHπ

and πi,j = ϕπwi,wj for i, j = 1, . . . , dπ. In particular, dimMπ = d2π.

Proof. We will apply Lemma 5.28 for various choices of A. We fix some
vector u0 ∈ Hπ, some v0 ∈ Hρ and consider the map A defined by

Au = 〈u, u0〉 v0

for u ∈ Hπ, which gives rise to

Ãu =

∫ 〈
π
g
−1u, u0

〉
ρgv0 dm(g).

By definition we have

Page: 242 job: unitaryrepresentationtheory macro: svmono.cls date/time:21-Nov-2019/16:23



5.4 The Regular Representation 243

〈
Ãu, v

〉
=

∫ 〈
u, πgu0

〉
︸ ︷︷ ︸
ϕ
π
u0,u

〈
ρgv0, v

〉
︸ ︷︷ ︸
ϕ
ρ
v0,v

dm(g) =
〈
ϕρv0,v, ϕ

π
u0,u

〉

for all u ∈ Hπ and v ∈ Hρ, where we write ϕπu0,u
for the matrix coefficient

of u0, u ∈ Hπ defined by π and ϕρv0,v for the matrix coefficient of v0, v ∈ Hρ
defined by ρ.

Suppose now that π and ρ are not unitarily equivalent. Then Ã = 0 by
Schur’s lemma (Theorem 1.27) and so the argument above shows that

ϕπu0,u
⊥ ϕρv0,v

for all u0, u ∈ Hπ and v0, v ∈ Hρ, or equivalently thatMπ ⊥Mρ.
Suppose now that w1, . . . , wdπ is an orthonormal basis of Hπ , let ρ = π in

the above discussion, and set u0 = wk and v0 = wj so that the linear map A

has trace tr(A) = δk,j . Since dπ = dimHπ <∞ we can obtain Ã also via the
(matrix valued, Riemann-) integral

Ã =

∫
πgAπ

−1
g dm(g).

Taking the trace we see that

tr Ã =

∫
tr(πgAπ

−1
g ) dm(g) = tr(A) = δk,j .

By Schur’s lemma (Theorem 1.27), Ã = λI on Hπ for some λ ∈ C, which
gives tr Ã = λdπ = δk,j . Hence we see that

Ã = 1
dπ
δk,jI.

We now apply Ã (which we defined using the basis vectors u0 = wk, re-
spectively v0 = wj) to u = wℓ and take the inner product with v = wi to
obtain

1
dπ
δk,jδℓ,i =

〈
1
dπ
δk,jwℓ, wi

〉
=
〈
Ãu, v

〉
=
〈
ϕπv0,v, ϕ

π
u0,u

〉
=
〈
πi,j , πk,ℓ

〉
,

where πi,j = ϕπwi,wj and πk,ℓ = ϕπwk,wℓ . Multiplying by dπ gives

〈√
dππi,j ,

√
dππk,ℓ

〉
= δk,iδℓ,j.

As in the proof of Proposition 5.37 sesqui-linearity of the matrix coefficients
shows that Mπ is generated by the vectors πi,j for i, j = 1, . . . , dπ . Since

these are orthogonal, it follows that dimMπ = d2π and the theorem follows.
�
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5.4.2 A Dense Algebra

Recall that in the study of compact abelian groups a trigonometric polyno-
mial is a finite linear combination of characters of the group, and that these
form a dense sub-algebra of the space of continuous functions on the group
with respect to the supremum norm. In the context of compact groups the
following is the appropriate generalization, which as we will see will have the
same properties.

Definition 5.39 (Matrix coefficient algebra). We define the matrix co-
efficient algebra of the compact group G to be the linear hull

M(G) = 〈Mπ | [π] ∈ Ĝ〉.

The purpose of this section is to develop the main properties ofM(G) as
summarised in the following theorem.

Theorem 5.40 (Dense algebra). For the compact group G the subspace

M(G) ⊆ C(G)

is a dense sub-algebra with respect to pointwise multiplication.

Our first step is to justify the nomenclature ‘algebra’ forM(G).

Lemma 5.41 (Algebra). For the compact group G we have

M(G) = 〈Mρ | ρ is a unitary representation of G with dimHρ <∞〉,

and that M(G) is a sub-algebra of C(G), where Mρ is defined as in Defini-
tion 5.36 for any unitary representation ρ of G.

Proof. Let us write F for the linear span of all matrix coefficients of all finite-
dimensional unitary representations of G. We first prove thatM(G) = F as

claimed in the lemma. By Theorem 5.26 we haveMπ ⊆ F for all π ∈ Ĝ and
soM(G) ⊆ F . Suppose now that ρ is a finite-dimensional unitary representa-

tion of G and let Hρ =
⊕N

n=1 Vn be the decomposition of Hρ into irreducible

representations. Given u =
∑N
n=1 un and v =

∑N
n=1 vn with un, vn ∈ Vn

for n = 1, . . . , N we have

ϕρu,v =
N∑

n=1

ϕρun,vn ∈ 〈Mρ|Vn
| n = 1, . . . , N〉 ⊆ M(G).

Since u, v ∈ Hρ and ρ were arbitrary as in the definition of F we obtain the
opposite inclusion F ⊆M(G).
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Suppose now that ϕρ1u1,v1
and ϕρ2u2,v2

are matrix coefficients for finite-
dimensional unitary representations ρ1 and ρ2 respectively as in the defi-
nition of F . Recalling the construction of the inner tensor product represen-
tation ρ1⊗ ρ2 from Section 5.1 and especially Proposition 5.14 (which in the
case at hand is easier as we are currently only dealing with finite-dimensional
representations) we see that the product

ϕρ1u1,v1
(g)ϕρ2u2,v2

(g) = 〈(ρ1 ⊗ ρ2)gu1 ⊗ u2, v1 ⊗ v2〉 = ϕ
ρ1⊗ρ2
u1⊗u2,v1⊗v2(g)

is again a matrix coefficient for a finite-dimensional representation ρ1 ⊗ ρ2
onHρ1⊗Hρ2 for the vectors u1⊗u2 and v1⊗v2. This implies thatM(G) = F
is a sub-algebra of C(G). �

Proof of Theorem 5.40. We are going to apply the Stone–Weierstrass
theorem to M(G). By Lemma 5.41 we know that M(G) is a sub-algebra
of C(G). Using the trivial representation we also see that the constant func-
tion 1 belongs toM(G). Moreover, given a matrix coefficient ϕρu,v of a finite-
dimensional unitary representation ρ and vectors u, v ∈ Hρ, the formula (5.2)

shows that ϕρu,v is also a matrix coefficient of a finite-dimensional unitary rep-
resentation, namely the contragredient ρ. Therefore, M(G) is closed under
conjugation.

Finally, recall from the Gelfand–Raikov theorem (Corollary 1.75) that for

any g1 6= g2 in G there exists a unitary representation π ∈ Ĝ with πg1 6= πg2 .
Hence there exist u, v ∈ Hπ with ϕπu,v(g1) 6= ϕπu,v(g2). Hence M(G) also
separates points. By the Stone–Weierstrass theorem, it follows thatM(G) is
dense in C(G). �

5.4.3 The Peter–Weyl Theorem

The material of Section 5.3 and our preparations in Sections 5.4.1 and 5.4.2
leads naturally to the following complete description of the regular represen-

tation of the compact group.(8)

Theorem 5.42 (Peter–Weyl). The regular representation of the compact
group G is isomorphic to the direct sum of irreducible representations where
each π ∈ Ĝ appears with multiplicity dπ = dimHπ. More precisely, we have
the decomposition

L2(G) =
⊕

[π]∈Ĝ

Mπ,

and the subspaceMπ is invariant for every [π] ∈ Ĝ. In fact the right-regular
representation ρ restricted to Mπ is isomorphic to dπ copies of π, and the
left-regular representation λ restricted to Mπ is isomorphic to dπ copies of
the contragredient π of π.
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As we will see, the proof consists of reviewing what we have obtained so
far.

Proof of Theorem 5.42. By Theorem 5.38 we know that Mπ1
⊥ Mπ2

if π1, π2 ∈ Ĝ have π1 6∼ π2. Therefore the direct sum
⊕

[π]∈ĜMπ is an

orthogonal decomposition of a subspace of L2(G). Moreover, by Theorem 5.40

the linear hull M = 〈Mπ | [π] ∈ Ĝ〉 is dense in C(G) and so also in L2(G)
in the L2 norm, which implies that L2(G) =

⊕
[π]∈ĜMπ.

Let us first consider the right-regular representation ρ. Fix some π ∈ Ĝ,
some orthonormal basis w1, . . . , wdπ of Hπ, where dπ = dimHπ , and finally
some index ℓ ∈ {1, . . . , dπ}. Then the map Uℓ defined by Uℓv =

√
dπϕv,wℓ

for v ∈ Hπ satisfies

ρg(Uℓv)(h) =
√
dπϕv,wℓ(hg) =

√
dπ〈πhπgv, wℓ〉 = Uℓ(πgv)(h)

for all g, h ∈ G and has ‖Uℓwk‖ = ‖
√
dππk,ℓ‖ = 1 for any k ∈ {1, . . . , dπ} by

Schur’s orthogonality relations in Theorem 5.38. By Schur’s lemma (Theo-
rem 1.27)

Uℓ : Hπ −→ ImUℓ ⊆Mπ

is an isometric isomorphism. By Schur’s orthogonality relations we also
have ImUℓ1 ⊥ ImUℓ2 if ℓ1 6= ℓ2 in {1, . . . , dπ} and hence the right-regular
representation restricted toMπ is isomorphic to dπ copies of π.

For the left-regular representation we again fix some k ∈ {1, . . . , dπ} and
define Bk on Hπ by Bkv =

√
dπϕwk,v satisfying

λg(Bkv)(h) =
√
dπϕwk,v(g

−1h) =
√
dπ〈πhwk, πgv〉 = Bk(πgv)(h)

for all g, h ∈ G. However, the map Bk is semi-linear, which we can correct by
using the same notation as in Section 5.1 and considering instead the linear
map B′

k : H′
π ∋ v′ 7→ Bkv =

√
dπϕwk,v. Now we have

λgB
′
kv

′ = λgBkv = Bkπgv = B′
kπgv

′

for all g ∈ G and v′ ∈ H′
π, which shows that B′

k is an isomorphism between
the contragredient representation π and the restriction of the left-regular
representation to ImB′

k. As in the case of the right-regular representation
the multiplicity is dπ. �

Exercise 5.43. Consider the left-right representation γ of G × G on L
2
(G) defined

by γ(g1,g2)(f)(h) = f(g
−1
1 hg2) for all f ∈ Hγ = L

2
(G) and g1, g2, h ∈ G. Show that

L
2
(G) =

⊕

[π]∈Ĝ

Mπ

is precisely the decomposition into inequivalent irreducible representations for the unitary
representation α of G×G in Hγ = L

2
(G), each appearing with multiplicity one.
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Exercise 5.44. Let π be a cyclic unitary representation of a compact group. Show that π
is contained in the regular representation, that is π < λ.

Exercise 5.45. What additional consequences about (dπ | [π] ∈ Ĝ) can be derived from
the Peter–Weyl theorem (Theorem 5.42) if G is a finite group? (See also Exercise 5.60.)

5.4.4 Weak Containment and Discreteness of the Dual

For the compact group G the notion of weak containment ρ1 ≺ ρ2 for uni-
tary representations ρ1 and ρ2 from Section 4.1 has the following special
properties.

Corollary 5.46 (Characterization of weak containment). Let ρ1 and ρ2
be unitary representations of the compact group G. Then the following are
equivalent:

(1) ρ1 ≺ ρ2;
(2) π < ρ1 implies that π < ρ2 for any π ∈ Ĝ; and
(3) ρ1 < ρ∞2 .

Moreover, for π ∈ Ĝ and a unitary representation ρ of G, we have π ≺ ρ if
and only if π < ρ. In particular, the Fell topology on Ĝ is discrete.

Proof. We begin by proving the final claim in the corollary (which also

follows from Exercises 5.25 and 4.18). Suppose that π is in Ĝ and ρ is a
unitary representation of G. Clearly π < ρ implies π ≺ ρ, so suppose for
the converse that π is not contained in ρ. By the decomposition theorem
(Theorem 5.27) this gives

Hρ =
⊕

ℓ∈I
Vℓ

for a finite or countable index set I and closed subspaces Vℓ for ℓ ∈ I
with ρ|Vℓ ∼= πℓ ∈ Ĝr{π}. Let v ∈ Hπ be a unit vector and let ϕπv be its

principal matrix coefficient. For any w ∈ Hπ0
with π0 ∈ Ĝr{π} we obtain

from Schur orthogonality (Theorem 5.38) that ϕπ0
w ⊥ ϕπv , where it does not

matter whether w is normalized to unit length or not.
If now w =

∑
ℓ∈I wℓ ∈ Hρ with wℓ ∈ Vℓ, then

ϕρw(g) = 〈ρgw,w〉 =
∑

ℓ∈I
〈ρgwℓ, wℓ〉 =

∑

ℓ∈I
ϕρwℓ(g)

for all g ∈ G. Since ‖ϕρwℓ‖ = ‖wℓ‖
2 this series converges uniformly. Together

with the above, this implies that ϕρw ⊥ ϕπv . Clearly this extends to finite sums
as in the definition of weak containment (Definition 4.1), and shows that π

is not weakly contained in ρ. The discreteness of Ĝ in the Fell topology now
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follows from Corollary 4.42: If π ∈ Ĝ and πn ∈ Ĝr{π} for all n ∈ N, then π
is not weakly contained in

⊕∞
n=1 πn and hence (πn) cannot converge to π.

Suppose now that ρ1 and ρ2 are unitary representations of G and ρ1 ≺ ρ2
as in (1). If now π < ρ1, then by transitivity of weak containment (see
Exercise 4.4 and its hint on p. 480) we have π ≺ ρ2, which by the above also
implies that π < ρ2 as required.

If now ρ1 and ρ2 satisfy (2), then

mult(π, ρ1) 6∞ ·mult(π, ρ2) = mult(π, ρ∞2 ),

and (3) follows from the characterization of containment in Corollary 5.33.
Now suppose that ρ1 < ρ∞2 as in (3). Any v ∈ Hρ1 then corresponds

under the assumed unitary equivariant isomorphism to some w = (wn)n
lying in

⊕∞
n=1Hρ2 . This implies that ϕρ1v = ϕρ

∞
2
w =

∑∞
n=1 ϕ

ρ2
wn

, and the series
converges uniformly. As v ∈ Hρ was arbitrary, this implies that ρ1 ≺ ρ2 by
definition of weak containment. �

5.5 The Space of Conjugacy Classes*

Recall that for two elements g1, g2 of a group G we say that g1 is conjugate
to g2 if there exists some k ∈ G with g2 = kg1k

−1, equivalently if g1 and g2 are
on the same G-orbit under the action of G on itself by inner automorphisms.
The equivalence classes (or G-orbits) are called the conjugacy classes and we

write G♯ for the space of conjugacy classes. We also write

p : G −→ G♯

g 7−→ [g] = {kgk−1 | k ∈ G}

for the canonical projection onto the space of conjugacy classes.
If G is a topological group we also use the map p to define the quotient

topology on G♯. In general, this map and the resulting topological space may
not be well-behaved. For example, G♯ may not be Hausdorff.

Exercise 5.47. Show that the images under p of

(
1 0
0 1

)
and

(
1 1
0 1

)
are distinct but do

not have disjoint neighbourhoods in the space SL2(R)
♯
. Show that p is not a closed map,

specifically that the image of

{(
a

1/a

)
| a > 0

}
is not closed.

However, if G is compact the situation is much better(9) and we can use
the results of this chapter to give an introduction to harmonic analysis on G♯.
Moreover, as we will see this will also lead to a better understanding of the
unitary representations of G.
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5.5.1 The Topological Space

Lemma 5.48 (Topology on G♯). For the compact metric group G the quo-

tient topology on G♯ is compact and metrizable. In fact the metric d♯ on G♯

can be defined by
d♯

(
[g1], [g2]

)
= inf

h1∈[g1],

h2∈[g2]

d(h1, h2)

for [g1], [g2] ∈ G♯.

Proof. Since G is compact, the equivalence classes [g] for g ∈ G are (as
images under the continuous map G ∋ k 7→ kgk−1) also compact. It follows
that the distance between [g1] and [g2] is actually a minimum and so is
positive unless [g1] = [g2]. From this it is easy to see that d♯ defines a metric

on G♯, and it remains to show that the topology induced by d♯ coincides with
the quotient topology.

Given g ∈ G and ε > 0 it is also clear that

⋃

k1∈G
k2∈G

k1Bε
(
k2gk

−1
2

)
k−1
1 ⊆ G

is open and equal to

{h ∈ G | d♯([h], [g]) < ε} = p−1BG
♯

ε ([g]).

It follows that every metric open set is open in the quotient topology. For
the converse, suppose that O♯ ⊆ G♯ is an open neighbourhood of [g] ∈ G♯ so
that O = p−1(O♯) is an open set containing [g] and invariant under conjuga-
tion by elements of G. It follows that [g] and GrO are disjoint compact sets
so that their distance

ε = min
h∈[g],k∈GrO

d(h, k) = d♯([g], GrO)

is positive. We claim that Bε([g]) ⊆ O♯, which implies that O♯ is also a
neighbourhood of [g] with respect to the metric d♯. For the proof of the claim
suppose that

d♯([h], [g]) = d(k1hk
−1
1 , k2gk

−1
2 ) < ε

for some h, k1, k2 ∈ G. Since k2gk−1
2 ∈ [g] it follows from the definition of ε

that k1hk
−1
1 ∈ O or equivalently [h] ∈ O♯ as claimed.

Since G♯ = p(G) is a continuous image of the compact group G, G♯ is also
compact and the lemma follows. �
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5.5.2 The Centre of the Convolution Algebra

Many groups (and, in particular, many semi-simple groups) have very small or
trivial centre; see, for example, the discussion of SU2(R) in the next chapter.
This and Schur’s lemma (Theorem 1.27) makes the following result impor-

tant. For this and the following, we endow G♯ with the push-forward of the
Haar measure m on G, which we again denote by m. Moreover, we identify a
function on G that is invariant under conjugation by all g ∈ G with a function
on G♯ and obtain in this way the inclusions C(G♯) ⊆ C(G), L1(G♯) ⊆ L1(G),

and L2(G♯) ⊆ L2(G).

Proposition 5.49 (The centre of the convolution algebra). The centre

of L1(G) for the compact group G is given by L1(G♯). That is, fc ∈ L1(G)

satisfies fc ∗ ψ = ψ ∗ fc for all ψ ∈ L1(G) if and only if fc ∈ L1(G♯).

Proof. We suppose first that fc ∈ L1(G♯), so that fc(ghg
−1) = fc(h) for

all g, h ∈ G. For ψ ∈ L1(G♯) we then have

fc ∗ ψ(g) =
∫
fc(gℓ

−1)ψ(ℓ) dm(ℓ) =

∫
fc(ℓ

−1g)ψ(ℓ) dm(ℓ) = ψ ∗ fc(g)

for almost every g ∈ G by the definition of convolution in (1.12), as required.
For the converse, we suppose now that fc ∈ L1(G) satisfies fc ∗ψ = ψ ∗ fc

for all ψ ∈ L1(G). We wish to apply this to ψ = λgψn for some g ∈ G
and an approximate identity (ψn) as in Proposition 1.42. In fact, using the
compactness of G we see that conjugation is uniformly continuous and so we
may choose a decreasing sequence (Bn) of neighbourhoods of e ∈ G that are
invariant under conjugation and satisfy

⋂
n>1 Bn = {e}. We set

ψn =
1

m(Bn)
1Bn

∈ L1(G♯)

for all n > 1. Also recall (1.14) and Exercise 1.46, which we can express as
saying that

δg ∗ f = λgf

and

f ∗ δg = ρ
g
−1f

for all f ∈ L1(G) and g ∈ G. For f = ψn and g, h ∈ G this gives

(
δg ∗ ψn

)
(h) = ψn(g

−1h) = ψn(hg
−1) =

(
ψn ∗ δg

)
(h).

By the assumption on fc and associativity of convolution in M(G), this gives
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(fc ∗ δg) ∗ ψn = fc ∗ (δg ∗ ψn︸ ︷︷ ︸
=ψ

) = (ψn ∗ δg︸ ︷︷ ︸
=ψ

) ∗ fc = ψn ∗ (δg ∗ fc).

Letting n → ∞ and applying Proposition 1.42, we obtain fc ∗ δg = δg ∗ fc
and so

fc(hg
−1) = ρ

g
−1(fc)(h) = λg(fc)(h) = fc(g

−1h)

for every g ∈ G and almost every h ∈ G, or equivalently

fc(ghg
−1) = fc(h) (5.17)

for every g ∈ G and almost every h ∈ G.
Strictly speaking, the null set excluded in this statement may depend

on g ∈ G, but one can replace fc by an equivalent function so that (5.17)
then holds for all g, h ∈ G. We refer to [20, Prop. 8.3] or Exercise 5.50. This
proves the converse. �

Exercise 5.50. Show that (5.17) for every g ∈ G and almost every h ∈ G implies that
there exists a null set N ⊆ G such that h ∈ GrN implies (5.17) for almost every g ∈ G,
and conclude that

fc(h) =

∫

G

fc(ghg
−1

) dm(g)

for almost every h ∈ G.

Exercise 5.51. Generalize Proposition 5.49 to the measure algebra by showing that the
centre of M(G) is given by

M(G
♯
) = {µ ∈M(G) | µ is invariant under conjugation}.

For unitary representations of G we obtain the following consequence.

Proposition 5.52 (Unitary representations and the centre of L1(G)).
Let π be a unitary representation of the compact group G. Then the convolu-
tion operators π∗(fc) for fc ∈ L1(G♯) are equivariant. If π ∈ Ĝ, then π∗(fc)
is a multiple of the identity on Hπ.

Proof. Let π be a unitary representation of the compact group G, g ∈ G,
and fc ∈ L1(G♯). Then

〈
π∗(fc)πgu, v

〉
=

∫
fc(h)〈πhgu, v〉dm(h)

=

∫
fc(kg

−1)〈πku, v〉dm(k)

=

∫
fc(g

−1k)〈πku, v〉dm(k)

=

∫
fc(ℓ)〈πgℓu, v〉dm(ℓ) =

〈
πgπ∗(fc)u, v

〉
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for all u, v ∈ Hπ, which implies that

π∗(fc)πg = πgπ∗(fc)

for all g ∈ G as required. For π ∈ Ĝ the final conclusion follows from Schur’s
lemma (Theorem 1.27). �

The following ‘projection’ from L1(G) to L1(G♯) will be useful.

Lemma 5.53 (Averaging projection). Given the compact group G we

let A : L1(G)→ L1(G♯) be the averaging projection defined by

A(f)(g) =

∫

G

f(hgh−1) dm(h)

for g ∈ G and f ∈ L1(G). Then A(f) = f for all f ∈ L1(G♯), and A(f) lies

in C(G♯) for all f in C(G). Moreover, for a finite-dimensional representa-
tion π of G we also have

π∗(A(f)) =

∫

G

πhπ∗(f)π
−1
h dm(h)

for all f ∈ L1(G).

Proof. Let f ∈ L1(G). Since g 7→ f(kgk−1) is integrable for all k ∈ G
and m(G) = 1, Fubini’s theorem implies that the integral defining A(f)(g)
exists for almost every g ∈ G and that ‖A(f)‖1 6 ‖f‖1. By right-invariance

of m, we also have A(f) ∈ L1(G♯). If f ∈ L1(G♯) we have

f(kgk−1) = f(g)

for g, k ∈ G, and so A(f) = f as m(G) = 1. The continuity of A(f) for f
in C(G) follows from dominated convergence.

Suppose now that π is a finite-dimensional representation of G and u, v
are in Hπ . Then
〈
π∗
(
A(f)

)
u, v
〉
=

∫
A(f)(g)〈πgu, v〉dm(g)

=

∫∫
f(hgh−1)〈πgu, v〉dm(h) dm(g)

=

∫∫
f(k)〈π

h
−1
kh
u, v〉dm(k) dm(h)

=

∫∫
f(k)〈πℓπkπ−1

ℓ u, v〉dm(k) dm(ℓ)

=

∫
〈πℓπ∗(f)π−1

ℓ u, v〉dm(ℓ) =

〈∫
πℓπ∗(f)π

−1
ℓ dm(ℓ)u, v

〉
,
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which gives the lemma as u, v ∈ Hπ were arbitrary. �

5.5.3 Characters

In the context of non-abelian groups the following notion of characters is
important. We note however that these are not multiplicative characters (ex-
cept for some exceptional cases) as we have considered since Chapter 1, and
particularly in Chapter 2.

Definition 5.54 (Characters). Given a finite-dimensional representation ρ
of a group G the character of the representation ρ is the complex-valued
function χρ defined by χρ(g) = tr(ρg) for g ∈ G.

We note that for a finite-dimensional representation ρ of a group G
and g, k ∈ G we have

χρ(kgk
−1) = tr(ρkρgρ

−1
k ) = tr(ρg) = χρ(g),

which shows that the character of a representation can be considered as a
function on G♯. Hence, if ρ is a continuous finite-dimensional representation
of a topological group, then χρ is a continuous function on G♯. Moreover, the
characters of two isomorphic finite-dimensional representations are equal. In
particular, if G is compact, then for every [π] ∈ Ĝ we have a well-defined

continuous character χ[π] = χπ ∈ C(G♯).
The characters appear quickly when the averaging projection is applied.

Proposition 5.55 (Averaging). Let π be an irreducible representation of
the compact group G, and let w1, . . . , wdπ ∈ Hπ be an orthonormal basis
of Hπ. Then we have

A(πm,n) =
1
dπ
δm,nχ[π]

for all m,n ∈ {1, . . . , dπ}.

Proof. Let m,n ∈ {1, . . . , dπ}. By the Schur orthogonality relations (Theo-
rem 5.38) we have for all k, ℓ ∈ {1, . . . , dπ} that

〈
π∗
(
dππm,n

)
wk, wℓ

〉
Hπ

=

∫
dππm,n(g)

〈
πgwk, wℓ

〉
Hπ︸ ︷︷ ︸

πk,ℓ(g)

dm(g)

= dπ
〈
πk,ℓ, πm,n

〉
L

2
(G)

= δkmδℓn. (5.18)

In other words, π∗(dππm,n) is the elementary linear map that sends wm to wn
and all other basis vectors to zero. In particular, the map

Mπ ∋ φ 7→ π∗(dπφ) ∈ B(Hπ) (5.19)
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is a semi-linear isomorphism.
By Proposition 5.37, the subspaceMπ ⊆ L1(G) is invariant under the left

and right-regular representations, which implies that

G ∋ g 7−→
(
λ
h
−1ρ

h
−1πm,n(g) = πm,n

(
hgh−1))

belongs to Mπ for all h ∈ G. Taking the integral over h ∈ G as in the
definition of the averaging projection of Lemma 5.53 and applying the Schur
orthogonality relations (Theorem 5.38) we see that

F = A(πm,n) =
∑

k,ℓ

βk,ℓπk,ℓ ∈ C(G♯)

for some matrix (βk,ℓ) ∈Matdπ,dπ(C). Since π∗
(
dπF

)
is equivariant by Propo-

sition 5.52, it follows by Schur’s lemma (Theorem 1.27) that π∗(dπF ) = αI.
Together with the properties of the map in (5.19), this gives βk,ℓ = αδk,ℓ for
all k, ℓ ∈ {1, . . . , dπ}, and so A(πm,n) = αχ[π]. To calculate α we take the
trace in Hπ and obtain

dπα = tr(αI) = tr
(
π∗(dπF )

)
= tr

(
π∗(dππm,n)

)
= δm,n

by Lemma 5.53 and the above description of the linear map π∗(dππm,n)
in (5.18). This gives the lemma. �

The characters also have very special properties for convolution.

Corollary 5.56 (Convolution of characters). Let π, ρ be irreducible uni-
tary representations of the compact group G. Then

χ[π] ∗ χ[π] =
1
dπ
χ[π]

and if [π] 6= [ρ] are inequivalent, then

χ[π] ∗ χ[ρ] = 0.

Proof. Suppose first that [π] 6= [ρ] ∈ Ĝ are inequivalent. By Proposi-
tion 5.37, bothM[π] andM[ρ] are two-sided ideals, which implies that

χ[π] ∗ χ[ρ] ∈M[π] ∩M[ρ]

for χ[π] ∈M[π] and χ[ρ] ∈M[ρ]. However, by the Schur orthogonality relation
(Theorem 5.38) we haveM[π] ⊥M[ρ] and hence χ[π] ∗ χ[ρ] = 0.

For the former claim we let [π] ∈ Ĝ and note that

f = χ[π] ∗ χ[π] ∈M[π]

satisfies

Page: 254 job: unitaryrepresentationtheory macro: svmono.cls date/time:21-Nov-2019/16:23



5.5 The Space of Conjugacy Classes 255

π∗(dπf) = π∗
(
dπχ[π] ∗ χ[π]

)
= 1

dπ
π∗
(
dπχ[π]

)
π∗
(
dπχ[π]

)
.

However, in the proof of Proposition 5.55 we saw that

Mπ ∋ φ 7−→ π∗
(
dπφ

)

is a semi-linear isomorphism sending χ[π] to the identity. This gives

π∗(dπf) =
1
dπ
I

and so f = 1
dπ
χ[π], which concludes the proof. �

Exercise 5.57. Let [π] ∈ Ĝ be an irreducible representation of the compact group G.
Let πm,n for m,n ∈ {1, . . . , dπ} be as in the Schur orthogonality relations (Theorem 5.38).
Calculate πm,n ∗ πk,ℓ for all m,n, k, ℓ ∈ {1, . . . , dπ}, and deduce the formula in Corol-
lary 5.56 for χ[π] ∗ χ[π] from this.

5.5.4 Dense Algebra

Corollary 5.58 (Dense algebra). For the compact group G the linear span

M(G♯)=〈χπ | [π] ∈ Ĝ〉=〈χρ |ρ a finite-dimensional representation of G〉

is a dense sub-algebra of C(G♯) with respect to pointwise multiplication.

Proof. The equivalence of the two descriptions ofM(G♯) is a consequence of
the fact that every irreducible representation is finite-dimensional by Theo-
rem 5.26, and since a finite-dimensional representation ρ has Hρ =

⊕n
j=1Hπj

for some irreducible representations π1, . . . , πn so that the character decom-
poses as

χρ =

n∑

j=1

χπj . (5.20)

Suppose now that f ∈ C(G♯) and ε > 0. Then by Theorem 5.40 there exist
finitely many irreducible representations π1, . . . , πn and vectors vj , wj ∈ Hπj
for j = 1, . . . , n so that

∥∥∥f −
n∑

j=1

αjϕ
πj
vj ,wj

∥∥∥
∞
< ε (5.21)

for some α1, . . . , αn ∈ C.
Applying the averaging projection A : C(G) → C(G♯) from Lemma 5.53

we obtain the corollary. Indeed,
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A
(
ϕ
πj
vj ,wj

)
= βjχ[πj ]

for some βj ∈ C and j = 1, . . . , n. Hence

∥∥∥∥∥∥
f −

n∑

j=1

αjβjχ[πj ]

∥∥∥∥∥∥
∞

< ε,

which gives the corollary, as ε > 0 was arbitrary.
To see that M(G♯) is a sub-algebra we note that, for finite-dimensional

representations ρ1, ρ2 of G, we have

χρ1⊗ρ2(g) = tr
(
ρ1(g)⊗ ρ2(g)

)
= tr

(
ρ1(g)

)
tr
(
ρ2(g)

)
= χρ1(g)χρ2(g)

for all g ∈ G. �

5.5.5 Characters as an Orthonormal Basis

Corollary 5.59 (Characters form an orthonormal basis). The charac-

ters χ[π] for [π] ∈ Ĝ form an orthonormal basis of L2(G♯).

Proof. For inequivalent [π] 6= [π′] ∈ Ĝ we have Mπ ⊥ Mπ
′ by the Schur

orthogonality relation (Theorem 5.38). With χπ ∈ Mπ and χπ′ ∈ Mπ
′ this

implies that 〈χπ , χπ′〉 = 0 (where it does not matter whether we take the

inner product in L2(G) or in L2(G♯)). For a given [π] ∈ Ĝ we have

χπ = π1,1 + π2,2 + · · ·+ πdπ,dπ ,

where as before πm,n = ϕwm,wn for an orthonormal basis w1, . . . , wdπ of Hπ.
Since ‖πm,m‖ = 1√

dπ
it follows that ‖χπ‖ = 1. By Corollary 5.58 we know

that the collection χ[π] for [π] ∈ Ĝ forms an orthonormal basis of L2(G♯). �

Exercise 5.60. What additional consequences about (dπ | [π] ∈ Ĝ) can be derived from
Corollary 5.59 if G is finite? (See also Exercise 5.45.)

5.6 Summary and Outlook

As we have seen in this chapter, unitary representations of compact groups
have many special properties, since

• all unitary representations are (at most countable) direct sums of irre-
ducible finite-dimensional representations;
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• the unitary dual is discrete; and
• the regular representation contains all irreducible representations with
prescribed multiplicity.

In the next chapter we will discuss the group SU2(R) as a particularly
important example for the material of this chapter, and in particular will
describe its conjugacy classes and its characters.

This will lead us to the topic of unitary representations of simple Lie
groups, which will be the topic of Chapters 6 to 9.
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