
Chapter 3

Rationality

In this chapter we generalize some of the phenomena hinted at in Section 1.2.
We will define the notion of algebraic groups defined over Q, and show how
these often give rise to closed (and sometimes even compact) orbits on the
space Xd = SLd(R)/ SLd(Z). We motivate this discussion by studying orthogonal
groups, unipotent groups, and orbits arising from number fields. Finally, we
will turn this discussion around by proving the Borel density theorem, which
implies that finite volume orbits in Xd typically arise from algebraic groups
defined over Q. For this we also introduce some more basic concepts and results
concerning algebraic groups without developing this important theory very far
(which cannot be done in a couple of pages).

3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits

3.1.1 Orthogonal Groups

Let Q(u) = utAQu be a rational quadratic form defined by a symmetric ma-
trix AQ ∈Matd(Q), where u is a d-dimensional column vector whose entries are
often variables u1, . . . , ud. We show now how any such quadratic form gives rise
to a closed orbit of its associated special orthogonal subgroup

SOQ = {g ∈ SLd | Q(gu) = Q(u)}. (3.1)

Proposition 3.1 (Closed orbits). If Q is a rational quadratic form, then the
orbit

SOQ(R)
(
I SLd(Z)

)
⊆ Xd

of the identity coset under the real points of SOQ is closed.

Notice that the notation SOQ and SLd used in (3.1) deliberately does not
specify any field or ring, and therefore leaves somewhat undetermined the group
being discussed; in particular does not specify whether the group is countable
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88 3 Rationality

or uncountable, for example. For now we should think of this as a convenient
shorthand, or a macro, which defines many different groups at once. For example,
if we specify the real points, then the notation denotes the closed linear subgroup
of SLd(R) defined by

SOQ(R) = {g ∈ SLd(R) | Q(gu) = Q(u)}.

Similarly, we may specify the integer points to obtain a discrete subgroup

SOQ(Z) = {g ∈ SLd(Z) | Q(gu) = Q(u)}.

of SOQ(R). More generally, for any ring R we obtain the group SOQ(R) of R-
points of SOQ (or any similar expression) by taking the R-points of the ambient
group, here SLd, in its definition.

Proof of Proposition 3.1. Notice that Q(gu) is the quadratic form defined
by gtAQg and that the symmetric matrix AQ is in one-to-one correspondence
with the form Q. Therefore, we may also write

SOQ = {g ∈ SLd | gtAQg = AQ}.

Multiplying AQ by the common denominator of its entries if necessary, we may
assume that AQ ∈ Matd(Z) (without changing SOQ). Now suppose that

hn SLd(Z) −→ g SLd(Z) = x (3.2)

as n → ∞ with hn ∈ SOQ(R) and g ∈ SLd(R). In order to show that the orbit
is closed, we need to show that

x ∈ SOQ(R)
(
I SLd(Z)

)
. (3.3)

Notice that (3.2) simply means that there exist sequences (γn) in SLd(Z)
and (εn) in SLd(R) with εn → I as n→∞, such that hnγn = εng for all n > 1.
Applying these matrices to AQ gives

γtnAQγn = γtnh
t
nAQhnγn = (εng)

tAQεng −→ gtAQg

as n→∞.
However, γtnAQγn ∈ Matd(Z), so the convergent sequence

(
γtnAQγn

)
has to

stabilize: There exists some n0 such that

γtn0
AQγn0

= γtnAQγn = gtAQg

for all n > n0. This implies that gγ−1
n0
∈ SOQ(R) which, together with (3.2),

gives (3.3). �

In some cases it is also relatively straightforward to combine the previous
statement with Mahler’s compactness criterion (Theorem 1.51) and so deduce
compactness of orbits.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 89

Proposition 3.2 (Compact orbits). If Q is a rational quadratic form such
that†

0 /∈ Q(Qdr{0}),
then the orbit SOQ(R)

(
I SLd(Z)

)
is compact. Equivalently,

SOQ(Z) = {g ∈ SLd(Z) | gtAQg = AQ}

is a uniform lattice in SOQ(R).

Proof. Just as in the proof of Proposition 3.1, we may assume that AQ lies
in Matd(Z). We need to show that there exists some δ > 0 such that

SOQ(R)
(
I SLd(Z)

)
⊆ Xd(δ). (3.4)

Then Theorem 1.51 and Proposition 3.1 together show that the orbit is compact.
As Q : Rd → R is continuous, there exists some δ > 0 such that ‖x‖ < δ

implies that |Q(x)| < 1. Now suppose that (3.4) does not hold for δ. Then there
exists some h ∈ SOQ(R) such that hZd contains a non-zero δ-short vector hm
with m ∈ Zd. However, this shows that

|Q(m)| = |Q(hm)| < 1 (3.5)

which implies thatQ(m) = 0 since AQ ∈ Matd(Z), contradicting our assumption
and completing the proof. �

Example 3.3. These examples describe some of the possibilities that may arise
in low dimensions.

(1) If Q1(u1, u2) = u1u2, then Proposition 3.1 shows that ASL2(Z) is closed
since SOQ1

(R) = A is simply the full diagonal subgroup of SL2(R) isomor-
phic to R× (see also Section 1.2.2). However, the orbit is not compact, as it
corresponds to the divergent orbit mentioned on page 12.

(2) If Q2(u1, u2) = u21 − u1u2 − u22, then Proposition 3.2 applies (see Exer-
cise 3.6), and gives a compact orbit SOQ2

(R) SL2(Z). As we will see later
(in Theorem 3.5), there exists some g ∈ SL2(R) and λ > 0 for which

Q2(u) = λQ1(gu),

which in turn implies that

SOQ2
(R) = g−1 SOQ1

(R)g.

To see this notice that h ∈ SOQ1
(R) gives

Q2(g
−1hgu) = λQ1(hgu) = λQ1(gu) = Q2(u).

† Q is then called anisotropic over Q.
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90 3 Rationality

Hence
g SOQ2

(R) SL2(Z) = Ag SL2(Z)

is also compact. In fact g = ggolden from Section 1.2.2 can be used, recovering
the claim made on page 12.

(3) If Q3(u1, u2, u3) = 2u1u3 − u22 then Proposition 3.1 applies, and shows that

SOQ3
(R) SL3(Z) ⊆ X3

is closed. However, it is not compact (see Exercise 3.7).
(4) If Q4(u1, u2, u3) = u21 + u22 − 3u23 then Proposition 3.2 applies. To see this,

assume for the purposes of a contradiction (and without loss of generality
by clearing denominators as usual) that Q4(m1,m2,m3) = 0 for some prim-
itive† integer vector (m1,m2,m3) ∈ Z3. Then using congruences modulo 4
shows that

m2
1 +m2

2 − 3m2
3 ≡ m2

1 +m2
2 +m2

3 (mod 4),

is a sum of three squares modulo 4. However, the only squares modulo 4 are 0
and 1, which forces m1,m2,m3 to all be even, contradicting the assumption.
Hence the orbit

SOQ4
(R) SL3(Z)

is compact.

We now recall some of the basic theory of quadratic forms over the reals.(14)

Any symmetric matrix AQ ∈ Matd(R) can be diagonalized in the sense that
there is an orthogonal matrix k for which ktAk is diagonal. If needed we can
change the sign of the last column to ensure that k ∈ SOd(R). In the associated
coordinate system (v1, . . . , vd)

t we then have

Q′






v1
...
vd




 = Q




k






v1
...
vd









 =

d∑

i=1

civ
2
i

for scalars c1, . . . , cd ∈ R. The form Q is non-degenerate if ci 6= 0 for i = 1, . . . , d
(equivalently, if detAQ 6= 0), is indefinite if there exist a pair i, j ∈ {1, . . . , d}
with ci > 0 and cj < 0, and is positive-definite if ci > 0 for all i = 1, . . . , d.

By taking the square roots of the absolute values of the entries in the diagonal
matrix ktAQk, we may define a diagonal matrix a for which

a−1ktAQka
−1

is diagonal with entries in {0,±1}. Assuming that Q is non-degenerate (so that
the entries lie in {±1}), write p for the number of +1s and q for the number
of −1s; the signature(15) of Q is (p, q). We usually assume that p > q (this can

† An integer vector is primitive if the entries are co-prime.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 91

always be achieved by replacing the form Q with the form −Q). Note that for
non-degenerate Q we have det a = | detAQ|1/2.

The discussion above shows that if Q and Q′ are non-degenerate and of the
same signature, then there exists some g ∈ GLd(R) such that Q′(u) = Q(gu).
Moreover, we also have Q′(u) = λQ(g′u) for g′ ∈ SLd(R) and λ > 0, which
implies as in Example 3.3(2) that SOQ and SOQ′ are conjugate in SLd(R).

Example 3.4. The quadratic forms (from Example 3.3) Q1 and Q2 have signa-
ture (1, 1); the quadratic forms Q3 and Q4 have signature (2, 1). It follows that
the orthogonal groups SOQ1

(R) and SOQ2
(R) are conjugate (as claimed earlier),

and the orthogonal groups SOQ3
(R) and SOQ4

(R) are conjugate.

We summarize and strengthen our discussion as follows.

Theorem 3.5 (Signature of quadratic forms). Any non-degenerate quad-
ratic form Q on Rd can be assigned a signature (p, q) with p + q = d. Given a
form Q of signature (p, q), the set of quadratic forms of the form Q′ with

Q′(u) = Q(gu)

obtained from Q by some g ∈ GLd(R), is precisely the set of quadratic forms
of signature (p, q). The group of R-points of two orthogonal groups for non-
degenerate quadratic forms of the same signature are conjugate in SLd(R).

In the following we will always (and sometimes implicitly) assume that the
quadratic forms are non-degenerate. Fixing, for a given signature (p, q), some
real quadratic form Q of this signature, we define SOp,q = SOQ. If p = d,
then SOp,0(R) = SOd(R) is compact, and if 0 < p < d it is not†. Our discus-
sion above (and Example 3.3(3),(4)), shows that there are various matrices g
in SLd(R) for which SOp,q(R)g SLd(Z) is closed or even compact—these orbits
correspond‡ to rational quadratic forms with signature (p, q).

Exercise 3.6. Prove that u2
1 − u1u2 − u2

2 6= 0 for (u1, u2)
t ∈ Q2r{0} (a fact used in Exam-

ple 3.3(2)).

Exercise 3.7. Prove the claim made in Example 3.3(3), by showing that the closed or-
bit SOQ3

(R) SL3(Z) ⊆ X3 has unbounded height.

Exercise 3.8. Let A = SO1,1(R) ⊆ SL2(R). Show that every closed A-orbit corresponds (as
indicated after Theorem 3.5) to a binary quadratic form with rational coefficients. Notice that
this cannot hold for K = SO2(R).

3.1.2 Rational Stabilizer Subgroups

It is straightforward to generalize Proposition 3.1. However, setting up the lan-
guage of linear groups, in which the generalization is naturally phrased, requires

† Since, for example, it contains at least one copy of SO1,1
∼= A as a closed subgroup.

‡ At this stage we only know one direction of this correspondence. The second direction will
be obtained from the Borel density theorem, see Exercise 3.48 and Exercise 4.17.
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92 3 Rationality

more work than does the generalization itself. We start this introduction to linear
algebraic groups here, discuss other classes of examples in Sections 3.3 and 3.4,
and return to the theory of linear algebraic groups in Section 3.5 and Chap-
ter 7. For a detailed account of algebraic geometry, we refer to the monographs
of Hartshorne [66] or Shafarevich [140], and for linear algebraic groups we refer
to those of Borel [7], Humphreys [69], and Springer [148].

An affine variety is a subset Z of Cn or, more generally, of K
n
for another

field K with K an algebraic closure, defined by the vanishing of polynomial
equations†. We will write both Z and Z(K) for this variety, so that

Z = Z(K)

will always consist of all solutions to the polynomial equations over the algebraic
closure. An important example for us is

SLd = {g ∈ Matd | det g − 1 = 0},

where Matd is the d2-dimensional vector space of d× d matrices.
A regular function is simply the restriction of a polynomial to the variety‡.

In order to be able to work with this definition, and in particular to have a way
to uniquely describe a regular function, we need to know when a polynomial
vanishes on the variety. The description of the set of polynomials that vanish
on an affine variety is given by the Hilbert Nullstellensatz,(16) which we now
recall. We refer to Eisenbud [48, Th. 1.6] or Hungerford [70, Prop. VIII 7.4] for
the proof.

Theorem 3.9 (Hilbert Nullstellensatz). Let K be an algebraically closed
field, and let J ⊆ K[x1, . . . , xn] be an ideal defining the affine variety

Z(J ) = {x ∈ Kn | f(x) = 0 for all f ∈ J }.

Then f ∈ K[x1, . . . , xn] vanishes on Z(J ) if and only if there exists a power fm

for some m > 1 of f that belongs to J .

The ideal

rad(J ) = {f ∈ k[x1, . . . , xn] | fm ∈ J for some m > 1}

is called the radical of the ideal J . If we now write K[Z] for the ring of reg-
ular functions on the variety Z = Z(J ) defined by the ideal J , then we can
reformulate the Nullstellensatz by the formula

† We apologize to the expert for this barbaric and old-fashioned definition, but as our focus
will usually be on rather concrete groups comprising R-points, this approach is appropriate
here. We will on occasion (indeed, are just about to) avoid mentioning the field we are working
over, but we still wish to avoid talking about schemes, spectrum, and using the language of
modern algebraic geometry.
‡ Once again we must apologize for avoiding a more general definition, our excuse being that
this is adequate for affine varieties.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 93

K[Z(J )] = K[x1, . . . , xn]/ rad(J ).

Returning to our example

SLd = Z(det(·)− 1) ⊆Matd,

we need to establish what the radical of the ideal generated by the polyno-
mial det(·) − 1 in d2 variables is in order to talk about regular functions. This
is explained by the following result.

Lemma 3.10 (SLd is Zariski connected). For any d > 1 the polyno-
mial det(g)− 1 is irreducible as a polynomial in the variables gi,j, 1 6 i, j 6 d,
with coefficients in C (or in any other field).

Proof. Suppose that det(g) − 1 = p(g)q(g), where p, q are polynomials in the
independent variables gi,j , 1 6 i, j 6 d. Now notice that the determinant is
linear in each of its rows, so for every pair i, j the polynomial det(g) − 1 is of
degree one in the variable gi,j . It follows that for any i, j one of p or q is of
degree one in gi,j and the other is independent of gi,j (that is, of degree zero in
the variable gi,j). As this holds for every pair i, j, we obtain a partition

P ⊔Q = {(i, j) | 1 6 i, j 6 d}

of the indices so that
p(g) ∈ C[gi,j | (i, j) ∈ P ]

and
q(g) ∈ C[gi,j | (i, j) ∈ Q].

If P (or Q) is empty, then p ∈ C (respectively q ∈ C) is a scalar—which is the
desired conclusion.

With deg denoting the total degree,

d = deg(det(g)− 1) = deg(p(g)q(g)) = deg(p(g)) + deg(q(g)). (3.6)

Assuming that P and Q are both non-empty, we derive a contradiction by
defining

degP (gi,j) =

{

1 if (i, j) ∈ P ;
−1 if (i, j) ∈ Q,

which extends to monomials m by summation over the factorization of m, and
to polynomials by defining

degP

(∑

ckmk

)

= max{degP (mk) | ck 6= 0}.

Just as in (3.6), we find that

degP (pq) = degP (p) + degP (q).
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94 3 Rationality

Now q must have a constant term (since det(g) − 1 has a constant term),
so degP (q) = 0. It follows that p(g)q(g) contains monomials in the variables gi,j
with (i, j) ∈ P of total degree degP (p) = deg(p) only. By (3.6) and our assump-
tions on P and Q we have 0 < deg(p) < d. However, this is a contradiction
as det(g) − 1 contains a constant term, and all other monomials have total
degree d. �

Let K be any field. We will often be interested not in the whole variety
consisting of all points in K

n
defined by an ideal over the algebraic closure of a

field, but in fact only in the K-points of the variety, meaning those vectors in Kn

on which the polynomials all vanish. In general this set may be empty because K
is not assumed to be algebraically closed, and even if it is non-empty it may not
resemble the whole variety. In particular, there is no reason for the set of K-
points to remember the ideal at all (in other words, Theorem 3.9 does not hold
without the requirement that the field be algebraically closed). Nonetheless, we
may define for any affine variety Z its K-points as the set

Z(K) = Z ∩Kn,

where as before Z = Z(K) by definition.
Moreover, we are often interested in regular functions with ‘coefficients’ in K.

Formally we define

K[Z] = K[x1, . . . , xn]/J ∩K[x1, . . . , xn],

as the ring of K-regular functions under the assumption that Z is defined
over K, meaning that J = rad(J ) defines Z and J ∩ K[x1, . . . , xn] generates
the ideal J ⊆ K[x1, . . . , xn]. We will return to these notions in Section 3.5.

Let us return to our main example SLd which is defined over any field K,
since the coefficients of the irreducible polynomial det(·)− 1 are integers. Hence
it makes sense to consider the ring of K-regular functions

K[SLd] = K[g1,1, . . . , g1,d, g2,1, . . . , g2,d, . . . , gd,1, . . . , gd,d]/〈det(g)− 1〉,

where K is the field of coefficients allowed in the polynomials. For us the field K

will often be R, Qp, or Q.
A D-dimensional algebraic representation of SLd over K is a D2-tuple of

polynomials
φi,j(g) ∈ K[SLd]

for 1 6 i, j 6 D, which we think of as a matrix

φ ∈ MatD (K[SLd])

with the properties that φ(Id) = ID and

φ(g)φ(h) = φ(gh) (3.7)
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 95

for all g, h ∈ SLd. Equivalently, (3.7) could be required to hold as an abstract
identity in the variables gkℓ, hkℓ for k, ℓ = 1, . . . , d satisfying the polynomial
condition

det(g) = det(h) = 1.

This equivalence follows from Hilbert’s Nullstellensatz (Theorem 3.9) and
Lemma 3.10.

Let us give an example of a representation of SLd, which will be important
in Section 3.4. The conjugation representation is defined by

Matd ∋ A 7−→ gAg−1

for g ∈ SLd. Since det(g) = 1, the matrix g−1 has entries which are regu-
lar functions (since the inverse is calculated by taking the matrix consisting
of the determinants of the minor matrices multiplied by the inverse of the de-
terminant). Therefore, we can choose a basis and get a D = d2-dimensional
representation† φconj (defined over any field K). Indeed, φconj(g)φconj(h) is the
matrix corresponding to the composition

A 7−→ hAh−1 7−→ g
(
hAh−1

)
g−1 = (gh)A(gh)−1,

which is also represented by φconj(gh). Therefore, (3.7) holds by uniqueness of
matrix representations.

Another example of a representation has already been used: For g ∈ SLd the
map

Matd ∋ A 7−→ (gt)−1Ag−1 (3.8)

is linear in A and a regular function in g. Moreover, we may restrict to symmetric
matrices and choose a basis of the space of symmetric matrices. In this way we

obtain a matrix representation φsym ∈ MatD with D = d(d+1)
2 .

Proposition 3.11 (Rational stabilizer groups of points have closed
orbits). Let φ : SLd → GLD be an algebraic representation over Q, and
let v ∈ QD. Then the (rational) stabilizer subgroup

StabSLd
(v) = {g ∈ SLd | φ(g)v = v}

gives rise to a closed orbit

StabSLd
(v)(R)

(
I SLd(Z)

)
⊆ Xd

through the identity coset.

Notice that StabSLd
(v) is itself a subgroup defined by polynomial equations

(and hence will be seen to be an algebraic subgroup defined over Q, once we

† As will become more and more clear, part of the art in discussing algebraic groups and their
representations will be to not really write down any concrete polynomials or regular functions
(as these quickly become quite complicated).
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96 3 Rationality

define this notion in Section 3.5). The proof of Proposition 3.11 is much quicker
than the discussion above, which was included to familiarize the notion of alge-
braic representations of SLd.

Proof of Proposition 3.11. Notice that there are finitely many coefficients
in (a representation of) the polynomials in φ(g). Let N be their common denom-
inator, so that φ(γ) ∈ 1

N MatD(Z) for all γ ∈ SLd(Z). Let M be the common
denominator of the entries in v. Suppose that

hn SLd(Z) −→ g SLd(Z) = x, (3.9)

as n→∞ with hn ∈ StabSLd
(v)(R) and g ∈ SLd(R). We wish to show that

x ∈ StabSLd
(v)(R) SLd(Z). (3.10)

Just as in the proof of Proposition 3.1, we may rewrite (3.9) as hnγn = εng
with γn ∈ SLd(Z), εn ∈ SLd(R), and εn → I as n→∞. Applying the inverse of
these matrices to v via the representation φ shows that the sequence

(
φ(γn)

−1v
)

lies in 1
MNZD and converges, with

φ(γn)
−1v = φ(hnγn)

−1v = φ(εng)
−1v −→ φ(g)−1v

as n → ∞. Therefore this sequence must stabilize, and so φ(γn)
−1v = φ(g)−1v

for some n, which shows that gγ−1
n ∈ StabSLd

(v)(R), giving (3.10). �

Although the following is not needed for the proof above, let us try to un-
derstand a little more about SLd(K) and algebraic representations of SLd over
any field K.

As shown in Lemma 1.60, SLd(K) is generated by the elementary unipotent
subgroups

Ui,j(K) = {ui,j(t) = I + tEi,j | t ∈ K}
with i 6= j and Ei,j being the elementary matrix with (i, j)th entry 1 and all
other entries 0.

The group SLd(K) coincides with its commutator subgroup

[SLd(K), SLd(K)] = 〈[g, h] | g, h ∈ SLd(K)〉 ,

where [g, h] = g−1h−1gh. To see this, notice that if we choose an appropriate
diagonal matrix a then

[ui,j(t), a] = ui,j(αt)

for some α 6= 0. Hence [SLd(K), SLd(K)] ⊇ Ui,j(K) for all i 6= j, and the result
follows by the remark above.

It follows that SLd(K) (resp. SLd(K)) cannot have any abelian factors, and
so detφ(g) = 1 for every algebraic representation over K. By Theorem 3.9 and
Lemma 3.10 this must therefore also hold as an identity in

K[SLd] = K[gi,j : i, j = 1, . . . , d]/〈det g − 1〉.
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3.2 Intrinsic Diophantine Approximation on Spheres 97

Exercise 3.12. For any subspace V ⊆ Rd we define

LV = {g ∈ SLd | gV = V and g|V preserves the volume}.

(1) Show that LV (R) SLd(Z) ⊆ Xd is closed if V is a rational subspace.
(2) More generally, let x0 = g0 SLd(Z) and let V be a g0Z

d-rational subspace. Show
that LV (R)x0 is closed.

(3) Let x0 and V be as in (2). Let G < SLd(R) be a closed subgroup such that Gx0 is closed.
Show that (G ∩ LV (R))x0 is closed.

3.2 Intrinsic Diophantine Approximation on Spheres

We fix d > 2 and wish to discuss Diophantine approximation for points in the
sphere Sd−1 ⊆ Rd. However, we wish to find approximations to points v ∈ Sd−1

by rational vectors 1
q p ∈ Sd−1 within the sphere. We will refer to this sort of

problem as intrinsic Diophantine approximation. In contrast to the abundance
of rational points in Rd used for extrinsic approximation it is not a priori clear
how many rational points in Sd−1 exist (but Pythagorean triples certainly give
rise to many). As a result it is not clear what error rate or quality of approxi-
mation should be expected in this setting.

After earlier work(17) Kleinbock andMerrill [83] found and proved the optimal
result in 2015. We only discuss a few of their results and the version of Dani’s
correspondence they found, and refer to their paper for more details and further
results.

Theorem 3.13 (Intrinsic approximation for Sd−1). For a point v ∈ Sd−1

and an integer N > 1 there exists an integer q with 1 6 q 6 N and an integer
vector p ∈ Zd with 1

q p ∈ Sd−1 and with

∥
∥
∥
∥
v − 1

q
p

∥
∥
∥
∥
∞

6
C

q
1
2N

1
2

,

where C > 0 is a constant depending only on d.

This implies the following corollary quite directly.

Corollary 3.14 (Intrinsic approximation for Sd−1). For any v ∈ Sd−1 there
exist infinitely many p ∈ Zd and integers q > 1 with 1

q p ∈ Sd−1 and with

∥
∥
∥
∥
v − 1

q
p

∥
∥
∥
∥
∞

6
C

q
,

where C is a constant as in Theorem 3.13.

This in turn motivates the following definition.
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98 3 Rationality

Definition 3.15. A vector v ∈ Sd−1 is said to be intrinsically well approximable
if for any ε > 0 there exist infinitely many p ∈ Zd and integers q > 1 with 1

q p ∈
Sd−1 and with ∥

∥
∥
∥
v − 1

q
p

∥
∥
∥
∥
6
ε

q
.

If this does not hold, v is called intrinsically badly approximable.

3.2.1 The Dynamical Interpretation

The amazing insight of Kleinbock and Merrill was that intrinsic Diophantine
approximation in Sd−1 also has a dynamical interpretation similar to that used
in Section 2.4. This allowed them to translate known dynamical results and
bring them to bear on the problem of intrinsic Diophantine approximation.

For this we let Q0(x0, x1, . . . , xd) = −x20 + x21 + · · ·+ x2d and G = SOQ0
(R)o.

Then Y = G.Zd+1 ∼= G/G ∩ SLd+1(Z) is a closed orbit by Proposition 3.1. We
also define the diagonal subgroup A = {at | t ∈ R} by setting

at =





cosh t − sinh t
− sinh t cosh t

Id−1



 ∈ G

for t ∈ R. Finally for v ∈ Sd−1 we may apply the Gram–Schmidt procedure and
let kv ∈ SOd(R) have v

t as its first row vector and then define

Λv =

(
1
kv

)

Zd+1 ∈ Y.

Notice that the elements of Λv have the form

(
1
kv

)(
q
p

)

=






q
(v, p)
...






with q ∈ Z and p ∈ Zd and the remaining entries corresponding to the orthogonal
projection of p onto (Rv)⊥.

Proposition 3.16 (Intrinsic Dani correspondence for Sd−1). A vector v
in Sd−1 is intrinsically well approximable if and only if the forward orbit

{atΛv | t > 0}

is unbounded in Y .
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3.2 Intrinsic Diophantine Approximation on Spheres 99

Before we start the proofs of the results above we rephrase Mahler’s com-
pactness criterion for subsets of Y . For this and the following discussion it will
be convenient to say that a vector v ∈ Rd+1 is a light vector if Q0(v) = 0.

Lemma 3.17 (Mahler compactness in Y using light vectors). For a point

y = g SLd+1(Z) ∈ Y

with g ∈ SOQ0
(R)o we have

λ1(y) ≍ ω(y) = min{‖v‖ | v ∈ gZd+1r{0} and Q0(v) = 0}.

In particular, a closed subset B ⊆ Y is compact if and only if ω|B > ε for
some ε > 0.

Proof. Suppose first that λ1(y) < 1 and let λ1(y) = ‖v‖ for v ∈ gZd+1. Then

|Q0(v)| = | − v20 + v21 + · · ·+ v2d| 6 ‖v‖ < 1

and Q0(v) = Q0(g
−1v) ∈ Q0(Z

d+1) ⊆ Z imply that Q0(v) = 0. There-
fore λ1(y) < 1 implies that λ1(y) = ω(y).

By Mahler’s compactness criterion (Theorem 1.51) and Proposition 3.1 the
set {y ∈ Y | λ1(y) > 1} is compact. This implies that ω is bounded on this set.
Together with λ1 6 ω and the above this gives λ1 ≍ ω. The lemma follows from
Theorem 1.51 and Proposition 3.1. �

Proof of Theorem 3.13. Let v ∈ Sd−1, t > 0 and

(
q
p

)

∈ Zd+1 be a light

vector such that q = ‖p‖ > 0 and

δ =

∥
∥
∥
∥
at

(
1
kv

)(
q
p

)∥
∥
∥
∥
= ω(atΛv)≪ 1. (3.11)

In particular the first two entries of

at

(
1
kv

)(
q
p

)

= at






q
(v, p)
...




 =






q cosh t −(v, p) sinh t
−q sinh t (v, p) cosh t

...
...






are bounded by δ. Taking their sum and difference gives

∣
∣qe−t + (v, p)e−t

∣
∣ = e−t

∣
∣q + (v, p)

∣
∣ < 2δ,

∣
∣qet − (v, p)et

∣
∣ = et

∣
∣q − (v, p)

∣
∣ < 2δ. (3.12)

In particular by dividing by the exponentials, dropping the absolute values, and
taking the sum we obtain

2q 6 2δet + 2δe−t 6 4δet.
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100 3 Rationality

Moreover, dividing (3.12) by qet gives

∣
∣
∣
∣
1−

(

v,
1

q
p
)
∣
∣
∣
∣
<

2δ

qet
.

As

(
q
p

)

is a light vector we have 1
q p ∈ Sd−1 and

∥
∥
∥
∥
v − 1

q
p

∥
∥
∥
∥

2

= 2− 2
(

v,
1

q
v
)

6
4δ

qet
. (3.13)

Hence together with δ ≪ 1 we conclude that |q| 6 c0e
t for some constant c0 and

∥
∥
∥
∥
v − 1

q
p

∥
∥
∥
∥
≪ 1

q
1
2 e

t
2

.

We now fix N > c0 and define t = log N
c0

to obtain the desired estimate. For

the case N < c0 we simply use q = 1 and p = (1, 0, . . . , 0)t and increase the
constant C accordingly. �

Proof of Proposition 3.16. Suppose first that the orbit is unbounded.
Let ε0 > 0 and find t > 0 so that ω(atΛv) < ε0. This gives the bound (3.11)
with δ = ω(atΛv) < ε0, which implies (3.13) for q 6 2δet. Together this gives

∥
∥
∥
∥
v − 1

q
p

∥
∥
∥
∥

2

6
4δ2

q2
6

4ε20
q2
.

It follows that v is intrinsically well approximable.
Suppose now that v is intrinsically well approximable and let ε > 0. Then

there exists an integer q > 1 and p ∈ Zd with 1
q p ∈ Sd and with

∥
∥
∥
∥
v − 1

q
p

∥
∥
∥
∥
6
ε

q
. (3.14)

Taking the square and expanding gives

2− 2

(

v,
1

q
p

)

=

∥
∥
∥
∥
v − 1

q
p

∥
∥
∥
∥
6
ε2

q2
.

We set q = εet and note that for sufficiently large q we will have t > 0. Multi-

plying the above with qet

2 gives

et |q + (v, p)| 6 2ε.

Using the usual definitions of cosh t and sinh t we may also rephrase the above
as
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3.2 Intrinsic Diophantine Approximation on Spheres 101

|q cosh t− (v, p) sinh t| ≪ ε,

|−q sinh t+ (v, p) cosh t| ≪ ε.

In other words we have obtained good estimates for the first two components
of the vector

at

(
1
kv

)(
q
p

)

.

By definition of at and kv the remaining entries correspond to the orthogonal
projection π(p) of p to the orthogonal complement of Rv. Therefore these entries
are bounded by

‖π(p)‖ =
∥
∥
∥
∥
qπ

(
1

q
p− v

)∥
∥
∥
∥
6 ε

due to (3.14). Together we have shown that

λ1
(
atkvZ

d+1
)
≪ ε.

As ε > 0 was arbitrary we deduce that the forward orbit is unbounded. �

In the next chapter we will show in particular that Y has finite volume.
Moreover, G = SOQ0

(R)o ∼= SOd,1(R)
o is a simple Lie group. Together with the

Mautner phenomenon in Proposition 2.25 this gives ergodicity for the action
of A on Y . From here it is possible to show that almost every v ∈ Sd−1 is
intrinsically well approximable (along the lines of Exercise 2.24).

On the other hand it is also possible to find many vectors v ∈ Sd that are
intrinsically badly approximable using Schmidt games. Together this shows that
the results presented are in a sense optimal. However, the precise value of C in
Theorem 3.13 is mysterious and depends on the geometry of the orbit Y . We
refer the reader to the paper of Kleinbock and Merrill [83] for more details.

Exercise 3.18 (Intrinsic Dirichlet improvability). Prove that there exists some con-
stant λ ∈ (0, C) with the following property. If v ∈ Sd−1 has the property that for any large
enough integer N there is an integer q with 1 6 q 6 N and p ∈ Zd with 1

q
p ∈ Sd−1 and with

∥

∥

∥

∥

v − 1

q
p

∥

∥

∥

∥

6
λ

q
1
2 N

1
2

then v is rational, meaning that v ∈ Qd ∩ Sd−1.
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102 3 Rationality

3.3 Rational Unipotent Subgroups*

†In this section we will construct lattices in certain‡ connected, simply connected
nilpotent Lie groups. By Ado’s theorem (see Ado [1] or Knapp [87, Th. B.8])
and Engel’s theorem (see Knapp [87, Th. 1.35],) such a group can be embedded
into the upper triangular subgroup§

N =














1 ∗ ∗ . . . ∗
1 ∗ . . . ∗

. . .
...
1














6 SLd(R) (3.15)

for some d > 1. A subgroup G < SLd(R) is called unipotent if it is conjugated
to a subgroup of N .

Theorem 3.19 (Lattices and Mal′cev basis for unipotent Q-groups).
Let G 6 SLd(R) be a connected unipotent subgroup whose Lie algebra g is a
rational subspace of sld(R) ⊆ Matd(R). Then

G(Z) = G ∩ SLd(Z)

is a uniform lattice in G. Moreover, writing ℓ = dimG, there exist elements

v1, . . . , vℓ ∈ g ∩ sld(Q)

for which

G(Z) = {exp(k1v1) exp(k2v2) · · · exp(kℓvℓ) | k1, . . . , kℓ ∈ Z} ,

G = G(R) = {exp(s1v1) exp(s2v2) · · · exp(sℓvℓ) | s1, . . . , sℓ ∈ R} ,
and

F = {exp(t1v1) exp(t2v2) · · · exp(tℓvℓ) | t1, . . . , tℓ ∈ [0, 1)}
is a fundamental domain for G(Z) in G. Moreover, the map

(s1, . . . , sℓ) 7−→ exp(s1v1) exp(s2v2) · · · exp(sℓvℓ)

is a (polynomial) diffeomorphism between Rℓ and G. The vectors v1, . . . , vℓ in g

are called a Mal′cev basis.

† This section gives more examples of compact quotients of nilpotent groups, but otherwise
is not essential for most of what follows. It will, however, become part of our proof of the
Borel–Harish-Chandra theorem in Section 7.4.
‡ Once we have discussed these notions it will be easy to see that the groups we will discuss
here are of the form G = G(R) for a connected unipotent algebraic group G defined over Q.
As the theorem and its proof does not require this language we leave this fact to the reader.
§ Ado’s and Engel’s theorems are usually stated for a nilpotent Lie algebra instead of for the
corresponding simply connected group, but the former implies the latter, see Exercise 3.20.
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3.3 Rational Unipotent Subgroups 103

Proof. As g ⊆ sld(R) is, by assumption, both a nilpotent Lie algebra and
a rational subspace, the same holds for all the elements of the lower central
series. In particular, g′ = [g, g] is a rational subspace. By assumption, g can be
conjugated into the Lie algebra of N . Therefore, the exponential map

exp(v) = I + v + 1
2v

2 + · · ·+ 1
(d−1)!v

d−1

is actually a polynomial map on g with the logarithm map

log(g) = g − I − 1
2 (g − I)2 + · · ·+ (−1)d 1

d−1(g − I)d−1

as a polynomial inverse (which is defined on all of G). From this it follows that
the linear group G is isomorphic to its Lie algebra g, if we equip the latter with
the polynomial group operation v ∗ w = log(exp(v) exp(w)).

Recall that there is a—possibly immersed—Lie subgroup G′ ⊳ G with Lie
algebra g′. This shows that for sufficiently small v, w ∈ g′ the product v ∗ w
lies in g′. However, using the fact that the group product v ∗ w for v, w ∈ g

is a polynomial in v and w, we can now conclude† that g′ ∗ g′ ⊆ g′. Indeed,
if ψ is a linear function vanishing on g′ and v ∈ g′ is sufficiently small, then
the map w 7→ ψ(v ∗ w) is a polynomial on g′ which vanishes on all sufficiently
small w. It follows that ψ(v ∗ w) = 0 for all w ∈ g′. Reversing the roles of v
and w, and using the fact that a linear subspace is defined by the collection
of all linear functions that vanish on it, we see that g′ ∗ g′ ⊆ g′. However, this
shows that G′ = exp(g′) is simply the isomorphic image of the Lie ideal g′ and
so is a normal closed connected subgroup of G. Note furthermore that the Lie
algebra of G/G′ is g/g′. Hence G/G′ is abelian and can be identified with its
Lie algebra under the exponential map.

As m = dim(G′) < ℓ = dim(G) and the Lie algebra g′ of G′ is rational, we
may assume that the theorem already holds for the unipotent subgroup G′. So
let v′1, . . . , v

′
m be the Mal′cev basis for G′ and the uniform lattice

G′(Z) = G′ ∩ SLd(Z).

Let F ′ ⊆ G′ be the fundamental domain as in the theorem for G′(Z) in G′.
Let V ⊆ g be a rational linear complement to g′ < g.

We claim that the image of G(Z) in the abelian group G/G′ ∼= g/g′ ∼= V is

discrete. For this let K = exp
(
BV

1

)
⊆ G/G′, which is a compact neighbourhood

of the identity. Suppose that

γG′ ∈ K ∩ (G(Z)/G′) ⊆ G/G′.

Then we may modify the representative γ by elements of G′(Z) on the right to

ensure that γ ∈ exp
(
BV

1

)
F ′, so that γ belongs to a fixed compact set. As G(Z)

† Once we have introduced the notion of Zariski density we will see that this argument uses
the fact that the Hausdorff (that is, standard) neighbourhood of (0, 0) ∈ g′ × g′ is Zariski
dense in g′ × g′
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104 3 Rationality

is discrete it follows that there are only finitely many possibilities for γG′, and
so the image of G(Z) in G/G′ is discrete.

Next we claim that the image of G(Z) modulo G′ is a lattice in V . To see
this, we have to find ℓ−m = dimV linearly independent elements in the image
of G(Z) in G/G′ ∼= V . This follows in turn since for every rational element v ∈ V
we have

exp(Nv) = 1 +Nv + 1
2N

2v2 + · · ·+ 1
(d−1)!N

d−1vd−1 ∈ G(Z)

for a sufficiently divisible N .
We now choose v1, . . . , vℓ ∈ g so that

exp(vj) ∈ G(Z)

for j = 1, . . . , ℓ and the elements

exp(v1)G
′, . . . , exp(vℓ)G

′

are a basis of the lattice obtained from G(Z) in G/G′ (see Exercise 1.43). The
elements

v1, . . . , vℓ, v
′
1, . . . , v

′
m

are now a Mal′cev basis.
To see this, let γ ∈ G(Z). Considering γG′ we find k1, . . . , kℓ ∈ Z such

that γG′ = exp(k1v1) · · · exp(kℓvℓ)G′, or equivalently

γ′ = (exp(k1v1) · · · exp(kℓvℓ))−1γ ∈ G′.

Applying the inductive assumption it follows that

γ = exp(k1v1) · · · exp(kℓvℓ) exp(k′1v′1) · · · exp(k′mv′m)

for some k1, . . . , kℓ, k
′
1, . . . , k

′
m ∈ Z. If g ∈ G is arbitrary we may argue similarly

to obtain unique s1, . . . , sℓ ∈ R with

g = exp(s1v1) · · · exp(sℓvℓ) exp(s′1v′1) · · · exp(s′mv′m).

Furthermore, if we consider g as a representative of a coset gG(Z) we may
define kj = ⌊sj⌋ for j = 1, . . . , ℓ and multiply g on the right with the lattice

element
(
exp(k1v1) · · · exp(kℓvℓ)

)−1
to obtain

g(exp(k1v1) · · · exp(kℓvℓ))−1 = exp(t1v1) · · · exp(tℓvℓ)g′

with g′ ∈ G′ and uniquely determined t1, . . . , tℓ ∈ [0, 1). Moreover, by the
inductive assumption for g′ there exist uniquely determined t′1, . . . , t

′
ℓ ∈ [0, 1)

with
g′G′(Z) = exp(exp(t′1v

′
1) · · · exp(t′ℓv′ℓ)G′(Z).
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3.4 Algebraic Number Theory and Compact Torus Orbits 105

We deduce that the set F is indeed a fundamental domain. �

Exercise 3.20. In Knapp [87, Th. B.8, Th. 1.35] it is shown that any nilpotent Lie algebra
can be embedded into the Lie algebra n of N for some d > 1 (where N is defined by (3.15)).
Use this (and the discussions regarding the exponential map of this chapter applied to G = N)
to show that every connected, simply connected nilpotent Lie group can be embedded into N .

Exercise 3.21. Let G be a unipotent connected subgroup of SLd(R) (with a rational Lie
algebra). Show that G can be defined using polynomial equations (with rational coefficients).

3.4 Algebraic Number Theory and Compact Torus
Orbits*

†In this section we study another class of examples of orbits of rational stabilizer
groups, which are intimately related to algebraic number theory. Let

K = Q(ζ) ∼= Q[T ]/〈m(T )〉

be an algebraic number field generated by an algebraic number ζ, with minimal
polynomial m of degree d = [K : Q] = degm(T ). We may assume that m
is monic. Let O ⊆ K be an order (a subring of K that is isomorphic to Zd

as a group). Replacing ζ by nζ has the effect of multiplying the non-leading
coefficients of m(T ) by powers of n. Thus we may assume that m ∈ Z[T ], so
that ζ is an algebraic integer‡, and Z[ζ] is an order. Even though K can be
embedded into R or C, we prefer not to think of K as a subfield of C but rather
as the abstract field K = Q[T ]/〈m(T )〉 with ζ = T + 〈m(T )〉.

The following represents the first fundamental result(18) within algebraic
number theory that we wish to prove.

Theorem 3.22 (Dirichlet unit theorem). Let O be an order in an algebraic
number field K. The group O× of units is isomorphic to F ×Zr+s−1, where F is
a finite group of roots of unity in K, r is the number of real embeddings K →֒ R,
and s is the number of pairs of complex embeddings K →֒ C.

The numbers r and s may also be described as follows. Splitting m(T ) over C
gives

m(T ) = (T − ζ1) · · · (T − ζr)(T − ζr+1)(T − ζr+1) · · · (T − ζr+s)(T − ζr+s),

with ζ1, . . . , ζr ∈ R and ζr+1, . . . , ζr+s ∈ CrR. Using K = Q[T ]/〈m(T )〉, the
real embeddings φi : K → R are then all of the form

† This section provides interesting examples of algebraic groups (more precisely, of torus
subgroups) and compact orbits, and connects these to algebraic number theory. It is not
essential for most of the later chapters. It will, however, become part of our proof of the
Borel–Harish-Chandra theorem in Section 7.4.
‡ An algebraic integer is an algebraic number for which the monic minimal polynomial has
integer coefficients.
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φi(f(T )) = f(ζi)

for some i = 1, . . . , r, and the complex embeddings are all of the form

φr+i(f(T )) = f(ζr+i),

respectively
φr+i(f(T )) = f(ζr+i),

for i = 1, . . . , s and f ∈ Q[T ].
For the second fundamental theorem in algebraic number theory we need two

more definitions. For an order O in a number field we say that an ideal J ⊆ O
is proper if O = {b ∈ K | bJ ⊆ J}. Note that O itself is always a proper ideal
in O. Moreover, two ideals J ,J ′ ⊆ O are equivalent if there exists some b ∈ K
so that J ′ = bJ .

Theorem 3.23 (Finite class number). For a number field K and an order O
there are only finitely many equivalence classes of proper ideas in O.

3.4.1 Compact Orbits Arising From Number Fields

Another point of view in discussing K and its embeddings is given by studying
the map defined by multiplication by ζ = T + 〈m(T )〉

·ζ : Q[T ]/〈m(T )〉 −→ Q[T ]/〈m(T )〉
f(T ) + 〈m(T )〉 7−→ Tf(T ) + 〈m(T )〉.

We consider ·ζ as a linear map over Q. In this way the characteristic polynomial
of ·ζ is a rational polynomial which annihilates the map. As m is irreducible of
degree d it follows that m is the characteristic and also the minimal polynomial
of the map. Therefore, the linear map ·ζ has eigenvalues

ζ1, . . . , ζr, ζr+1, ζr+1, . . . , ζr+s, ζr+s.

More generally, if ·b is the linear map defined by multiplication by b ∈ K, then
its eigenvalues (considered as a Q-linear map on the vector space K over Q) are
again†

φ1(b), . . . , φr(b), φr+1(b), φr+1(b), . . . , φr+s(b), φr+s(b).

We now discuss how to obtain a concrete matrix representation of K, which
will allow us to use the results of Section 3.1. This is quite similar to how one
can consider C as a field of 2× 2 matrices using the correspondence

† This follows since b = f(ζ) for some polynomial f . If b ∈ KrQ then none of the eigenvectors
are in Q. In that case the eigenvectors only appear after ‘extending the scalars’, for example
replacing K ∼= Qd by K ⊗C ∼= Cd.
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a+ ib←→
(
a −b
b a

)

,

and it is helpful to view the construction below simply as an analogue of this.
We let c1, . . . , cd be a Z-basis of a proper O-ideal J . With this basis in mind,

we may now identify the linear map ·b on K with a matrix

ψJ (b) ∈Matd(Q).

We are again using column vectors so that ·b : K → K corresponds to apply-
ing ψ(b) to column vectors v ∈ Qn. By assumption, for b ∈ K we have

b ∈ O ⇐⇒ (·b) (ci) ∈ J for all i⇐⇒ ψJ (b) ∈ Matd(Z),

and so also

b ∈ O× ⇐⇒ ψJ (b) ∈ GLd(Z) = {g ∈ Matd(Z) | det(g) = ±1}. (3.16)

Below we will be studying the subgroup

O1 = {b ∈ O× | ψJ (b) ∈ SLd(Z)};

this is either O× or an index two subgroup of O×, and so it suffices to show the
desired description for O1.

Proposition 3.24 (Compact torus orbit). Let vJ = ψJ (ζ) ∈ Matd(Z) and
consider the stabilizer subgroup

TJ = {g ∈ SLd | gvJ g−1 = vJ }

for the conjugation action (that is, the centralizer of vJ ). Then the orbit

TJ (R)
(
I SLd(Z)

)

is compact, and the corresponding uniform lattice TJ (Z) < TJ (R) satisfies

TJ (Z) = SLd(Z) ∩ TJ (R) = ψJ (O1).

In more technical language, the subgroup TJ is a special case of an algebraic
torus (it is in fact a Q-anisotropic Q-torus). Moreover, the algebraic group TJ

is closely related to the group ResK|Q Gm obtained by applying restriction of
scalars to the multiplicative group Gm—it is the kernel of the Q-split char-
acter NK|Q on ResK|Q Gm. Minding our language we will not use these words
often, but we will give a short introduction to these terms in Chapter 7.

Proof of Proposition 3.24. By Proposition 3.11 and our definition of TJ ,
we know that the orbit is closed. We prove compactness along the lines of the
proof of Proposition 3.2. For this we need a replacement for the quadratic form,
and this is provided by the norm form
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N(b) = NK|Q(b) = detψJ (b)

which is originally defined on K (but independent of J or its chosen basis).
Since K is a field, NK|Q(b) = 0 for b ∈ K if and only if b = 0, which is similar
to the hypothesis in Proposition 3.2. Let us write

ι(v) = v1c1 + · · ·+ vdcd

for v ∈ Qd, so that by assumption ι gives an isomorphism between Zd and J as
well as between Qd and K. We also note that ψJ ◦ ι : Qd → Matd(Q) is linear,
and so we can extend it to a linear map

ΨJ : Rd −→ Matd(R).

Similarly we may think of detJ (Ψ(x)) as a polynomial in d variables x1, . . . , xd
of total degree d.

Now suppose that TJ (R) (I SLd(Z)) is unbounded. Then for somem in Zdr{0}
and h ∈ TJ (R) the vector hm is very small. This implies that | detΨJ (hm)| < 1.
We claim that

ΨJ (hm) = hΨJ (m). (3.17)

Assuming this for now, and recalling that h ∈ SLd(R), we obtain that (in analogy
to (3.5) on page 89) | detΨ(hm)| = | detΨ(m)| < 1, which forces detΨ(m) = 0
(since detΨ(m) ∈ Z). However, m ∈ Zdr{0} corresponding to some

b = ι(m) ∈ Jr{0}

cannot have NK|Q(b) = detΨJ (m) = 0, proving that TJ (R)(I SLd(Z)) is
bounded, and hence compact.

To prove the claim (3.17), and the statement TJ (Z) = ψ(O1) in the propo-
sition, we would like to understand TJ better. Notice that

{g ∈ Matd | gvJ = vJ g} (3.18)

is a linear subspace defined by the requirement to commute with vJ . To analyze
the dimension† of this subspace we may conjugate vJ over C to the diagonal
matrix vdiag with eigenvalues

ζ1, . . . , ζr, ζr+1, ζr+1, . . . , ζr+s, ζr+s.

As these are all different, the only matrices that commute with vdiag are diagonal
matrices. This shows that the dimension of the subspace in (3.18) is d. Hence

{g ∈ Matd(Q) | gvJ = vJ g} = ψJ (K)

† As the subspace in question is defined by rational equations, the dimension of it as a subspace
of Matd(Q) over Q equals the dimension of it as a subspace of Matd(R) over R (and similarly
for C).
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and taking the R-linear hull we get

{g ∈Matd(R) | gvJ = vJ g} = 〈ψJ (K)〉R = ΨJ (Rd). (3.19)

The first of these equations implies that

TJ (Z) = ψJ ({b ∈ K | ψ(b) ∈ SLd(Z)}) = ψJ (O1)

by (3.16).
Also notice that

ψJ (bc) = ψJ (b)ψJ (c) (3.20)

for b, c ∈ K, since ψJ is giving the matrix representation of multiplication by
elements of K in the given basis. This may also be phrased as

ψJ (ι(hm)) = hψJ (ι(m)) (3.21)

for h ∈ ψJ (K) and m ∈ Zd. Indeed, h = ψJ (b) is the matrix which sends m
corresponding to c = ı(m) to hm corresponding to bc = ı(hm), so that the left-
hand sides of (3.20) and (3.21) agree. The right-hand sides agree tautologically,
and so (3.21) follows. Equivalently, we have shown that the identity (3.17) holds
for h ∈ ψJ (K) and m ∈ Zd. However, this is a linear equation in h which there-
fore also holds for h ∈ ΨJ (Rd) in (3.19). In summary, we obtain the claim (3.17)
and the proposition follows. �

3.4.2 Proving the Dirichlet Unit Theorem

To finish the proof of Theorem 3.22, we need to analyze the structure of TJ (R).

Proposition 3.25 (R-points of the torus subgroup). With the notation as
above,

TJ (R) ∼=M × Rr+s−1,

where M is a compact linear group with connected component of the identity
isomorphic to (S1)s.

The pair of numbers (r, s) play a similar role for TJ as the signature of the
associated quadratic form does for an orthogonal group. In this sense, the result
above is an analogue of Theorem 3.5.

Proof of Proposition 3.25. We already did most of the work for this in the
proof of Proposition 3.24. In fact, as in that proof, the group

TJ (R) = {g ∈ SLd(R) | gvJ = vJ g}
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is conjugate to†

{g ∈ SLd(R) | gvζ,R = vζ,Rg}
where vζ,R is the block-diagonal matrix

vζ,R =













ζ1
. . .

ζr
ı(ζr+1)

. . .

ı(ζr+s)













∈Matd(R)

and ı is the map defined by

ı : x+ iy −→
(
x −y
y x

)

.

We use vζ,R (instead of vdiag) to ensure that the conjugation takes place over R,
which is needed to analyze TJ (R). It is easy to check (for example, by a dimen-
sion argument as in the proof of Proposition 3.24) that

{g ∈ Matd(R) | gvζ,R = vζ,Rg}

=



















a1
. . .

ar
ı(b1)

. . .

ı(bs)













∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1, . . . , ar ∈ R, b1, . . . , bs ∈ C







.

Therefore TJ (R) is isomorphic to the multiplicative group

{
(a1, . . . , ar, b1, . . . , bs) ∈ Rr × Cs | a1 · · · ar|b1|2 · · · |bs|2 = 1

}

which contains the non-compact part

{
(et1 , . . . , etr , etr+1 , . . . , etr+s) | t1 + · · ·+ tr + 2tr+1 + · · ·+ 2tr+s = 0

}
,

† Just as in the theory of Jordan normal forms, this follows quickly from consideration of Rd

as an R[T ]-module, where T acts via vJ , which gives

Rd ∼= R[T ]/〈T−ζ1〉 × · · · × R[T ]/〈T−ζr〉 ×R[T ]/〈pζr+1
(T )〉 × · · · × R[T ]/〈pζr+s

(T )〉,

where pζr+1
(T ), . . . , pζr+s

(T ) are the quadratic real minimal polynomials of ζr+1, . . . , ζr+s

in C. We refer to Hungerford [70, Ch. VII] for the details.
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and this is isomorphic (as a Lie group) to Rr+s−1. The subgroup M ⊆ TJ (R)
is then the subgroup isomorphic to the ‘group of signs’

{
(ε1, . . . , εr, z1, . . . , zs) | εi ∈ {±1}, |zi| = 1, ε1 · · · εr = 1

}
.

�

Proof of Theorem 3.22. By Proposition 3.24, O1 is isomorphic to a (uni-
form) lattice in TJ (R), which by Proposition 3.25 is isomorphic to the abelian
group M × Rr+s−1. Taking the quotient by M we obtain a uniform lat-
tice in Rr+s−1, which must be generated by r + s − 1 elements. Suppose
that b1, . . . , br+s−1 ∈ O1 are elements that give rise to a Z-basis of the lat-
tices in Rr+s−1. Then b1, . . . , br+s−1 generate O1 up to the kernel of the map
from O1 to Rr+s−1. However, this kernel F maps under ψ and the isomorphism
to M ×Rr+s−1 to the compact group M (with discrete image) and so must be
finite. �

3.4.3 Compact Orbits for the Diagonal Subgroup and Finite Class
Number*

†The set-up used above can be used further to discuss interesting distribution
properties of compact orbits arising from number fields. We define for a given
number field K the complete Galois embedding

φ = (φ1, . . . , φr, φr+1, . . . , φr+s) : K → Rr × Cs ∼= Rr+2s (3.22)

where as before r is the number of different real embeddings and s is the num-
ber of inequivalent pairs of complex embeddings of K. We note that φ is an
embedding, since each φi is injective).

We call (r, s) the type of the number field (as mentioned this plays the role of
the signature of a quadratic form), and define Tr,s 6 SLd to be the centralizer
of a regular matrix

vr,s =













α1

. . .

αr

ı(β1)
. . .

ı(βs)













with pairwise different and non-conjugate αj ∈ R and βj ∈ CrR (that is,

with αi 6= αj , βi 6= βj , and βi 6= βj for i 6= j).

† The remainder of Section 3.4 will not be needed again.
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For the following result where the number field of type (r, s) is allowed to vary
we adopt the following convention. Given K, a complete Galois embedding φ as
in (3.22), and a non-trivial Galois automorphism σ : K → K, we note that

φ ◦ σ : K → Rr × Cs

is another complete Galois embedding. Moreover, givenK and φ we obtain other
complete Galois embeddings by post-composing φ with a permutation of the r
real and a permutation and partial conjugation of the s complex embeddings.
Given a field K as a representative of its isomorphism class we allow several
different complete Galois embeddings (obtained by post-composition) but pick
one and only one complete Galois embedding φ from any Galois orbit

{φ ◦ σ | σ : K → K a Galois automorphism}.

Proposition 3.26 (Ideal classes and torus orbits). For a number field K
of type (r, s), an order O in K, and any proper O-ideal J ⊆ O the normalized
lattice

xJ =
1

covol(φ(J ))1/d φ(J ) ∈ Xd

has compact orbit under Tr,s(R). Two ideals J1,J2 give rise to the same orbit
if and only if they are ideals in the same number field (and order), and are
equivalent (that is, there exists some a ∈ Kr{0} with J1 = aJ2).

Proof. Let K = Q(ζ), φ, O, and J ⊆ O be given. We will use the same
notation as used in Proposition 3.24. Recall that {a1, . . . , ad} is a basis of J .
Taking the image of this basis under the complete Galois embedding φ, we
obtain a basis of Rd. Indeed, if this were not the case then we could find non-
zero elements b ∈ O for which φ(b) is arbitrarily small (see Exercise 1.43).
However, this also implies that |N(b)| = | detψJ (b)| < 1 and so with b ∈ O a
contradiction. Replacing ad with −ad if necessary, we may assume that

gJ =
1

covol(φ(J ))1/d
(
φ(a1), . . . , φ(ad)

)

has determinant one. By construction, xJ = gJZd; also notice that gJ is up
to the scalar the matrix representation of the map φ from K (with the ba-
sis {a1, . . . , ad}) to Rr × Cs (with the standard basis). Furthermore, recall
that vJ = ψJ (ζ) is the matrix representation of multiplication by ζ on K
(with basis a1, . . . , ad). In Rr × Cs multiplication by ζ corresponds to multi-
plying the various coordinates by φ1(ζ), . . . , φr(ζ) and to applying the matrices
corresponding to the complex numbers φr+1(ζ), . . . , φr+s(ζ) respectively; that
is, to an application of a block-diagonal matrix vζ,R. This shows that

gJ vJ = vζ,RgJ . (3.23)
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Now vζ,R is of the same type as vr,s and defines the same centralizer Tr,s.
Therefore,

Tr,s = gJTJ g
−1
J

since (3.23) gives for instance that

gJ gg
−1
J vζ,R = gJ gvJ g

−1
J = gJ vJ gg

−1
J = vζ,RgJ gg

−1
J

for g ∈ TJ . Moreover,

Tr,s(R)gJ SLd(Z) = gJTJ (R) SLd(Z)

is compact by Proposition 3.24.
Notice that if we choose a different basis of J , then this does not change the

point xJ ∈ Xd. Also notice that if J ′ = bJ for some b ∈ K× then ba1, . . . , bad is
a basis of J ′, and using this basis we see by (3.23) (which by the same argument
also holds for ·b instead of ·ζ) that

gJ ′ = gJψ(b) = vb,RgJ .

Since vb,R ∈ Tr,s(R) this shows that

xJ ′ ∈ Tr,s(R)xJ ,

which is the first direction of the second claim in the proposition.
Let now J (and J ′) be a proper O (respectivelyO′)-ideal in a number fieldK

(respectively K ′), let xJ , xJ ′ be the corresponding elements of Xd defined by
complete Galois embeddings φ (respectively φ′), and assume that

xJ ′ = txJ

for some t ∈ Tr,s(R). By the definition of properness for an O-ideal J we have

O = {a ∈ K | aJ ⊆ J }
∼= {v ∈ 〈ψ(K)〉R | vZd ⊆ Zd} (via v = ψ(a))

= {v ∈Matd(R) | vvJ = vJ v and vZd ⊆ Zd}
∼= {v ∈Matd(R) | vvr,s = vr,sv and vxJ ⊆ xJ },

via conjugation by gJ . The latter set comprises all block diagonal matrices with
entries φ(a) for all a ∈ O. For the lattices xJ ′ and xJ , this implies that O′ ∼= O
and hence K ′ ∼= K. In fact the isomorphism is given by φ−1 ◦ φ′ = σ : K ′ → K.
By our conventions from just before the proposition this means that K = K ′,
and that the same complete Galois embedding φ is used. By the argument
above, this also implies that we have O = O′. Suppose that a1, . . . , ad is a
basis of J , so that xJ = gJZd as before. Choosing the basis a′1, . . . , a

′
d of J ′

correctly gives xJ ′ = gJ ′Zd and gJ ′ = tgJ . This shows that φi(a
′
j) = tiφi(aj)

for i, j = 1, . . . , d where ti (in R or C) is the ith entry of the block-diagonal
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matrix t ∈ Tr,s(R). This implies that

ti = φi

(
a′j
aj

)

is independent of j. Hence there exists some b ∈ K with

ti = φi(b)

for i = 1, . . . , r + s, and it follows that J ′ = bJ . �

We now use the above to prove that there are only finitely many equivalence
classes of proper ideals.

Proof of Theorem 3.23. Let J be an ideal with ΛJ = gJZd ∈ Xd

the associated lattice with compact orbit. Let aζ ∈ GLd(R) be the block-
diagonal matrix with entries φ1(ζ), . . . , φr(ζ) in R and blocks corresponding
to φr+1(ζ), . . . , φr+s(ζ) in C. Notice that ζJ ⊆ J implies that aζΛJ 6 ΛJ .

We claim that
B =

{
Λ ∈ Xd | aζΛ 6 Λ

}

is compact and that there exists some η > 0 so that if Λ,Λ′ ∈ B sat-
isfy dXd

(Λ,Λ′) < η then Tr,s(R)Λ = Tr,s(R)Λ
′. Together with Proposition 3.26

this implies the desired finiteness.

Compactness. That B is closed follows quite directly from its definition and
the topology of Xd. Let δ > 0 be so small that for v ∈ Rd with ‖v‖ < δ we have

‖ajζv‖ < 1 (3.24)

for j = 0, 1, . . . , d − 1. This implies that B ⊆ Xd(δ). Indeed, if Λ ∈ B

and v ∈ Λ∩BRd

δ
r{0} then the bound (3.24) together with covol(Λ) = 1 implies

that the vectors v, aζv, . . . , a
d−1
ζ v are linearly dependent. However, this gives

an invariant Λ-rational subspace which contradicts irreducibility of the minimal
polynomial m(T ) of ζ.

Transverse directions. We show that for any Λ0 ∈ B there exists η0 > 0 so
that

B ∩BXd
η0

(Λ0) ⊆ Tr,s(R)Λ0.

Compactness of K then implies that there also exists a uniform η as in the
previous claim. Let Λ0 = g0Z

d and Λ′ = hΛ be elements of B. By definition
this shows that g−1

0 aζg0 ∈ Matd(Z) and g−1
0 h−1aζhg0 ∈ Matd(Z). If now η0

is sufficiently small and h ∈ BSLd(R)
η these two integer matrices have to agree,

which implies h−1aζh = aζ and hence h ∈ Tr,s(R) as required. �

The results obtained make the following folklore problem (generalizing results
and conjectures of Linnik [100]) well-formulated.

Problem 3.27. For a given orderO in an algebraic number fieldK of type (r, s),
let µO be the probability measure on Xd obtained from normalizing the sum of
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the Tr,s(R)-invariant probability measures on Tr,s(R)xJ for the various equiva-
lence classes of proper O-ideals. Find all of the weak*-limit of the measures µO

as the discriminant D = (covol(φ(O)))2 goes to infinity.

This has been solved for d = 2 by Duke [36] (using subconvexity of L-
functions, building on a breakthrough of Iwaniec [73]), and for d = 3 and
type r = 3, s = 0 by Einsiedler, Lindenstrauss, Michel and Venkatesh [43] (by
combining subconvexity bounds for L-functions with ergodic methods). More
accessible but weaker results are contained in [42] and [44].

Exercise 3.28. (a) Let d > 2. Show that the compact orbits of T(d,0)(R) (of type (d, 0))
in Xd are all of the form T(d,0)(R)xJ for some proper O-ideal J and some order O ⊆ K in a
totally real number field.
(b) Show that this is not necessarily the case for the type (0, d/2) (with d even).
(c) Decide the same question for the remaining cases.

3.5 Linear Algebraic Groups

In this section (and in Chapter 7) we will introduce linear algebraic groups, and
will link this concept to the theory of linear Lie groups, pointing out the obvious
similarities as well as some of the more subtle differences between the theories.
We start with the basic definitions, but in order to avoid being too diverted by
this important (and large) theory, we will be brief at times.

3.5.1 Basic Notions of Algebraic Varieties

Let K be a field† and let K denote an algebraic closure of K. A subset S ⊆ K
d

is called Zariski closed if S = Z(J ) is the variety Z(J ) defined by a subset or,

without loss of generality, an ideal J ⊆ K[x1, . . . , xd]. A subset S ⊆ K
d
is also

called Zariski K-closed if J can be chosen in K[x1, . . . , xd]. The Zariski closed
subsets are the closed sets of a topology, which is called the Zariski topology.
This is easily checked:

• If S1 = Z(J1) and S2 = Z(J2) then S1 ∪ S2 = Z(J1J2).
• If Sα = Z(Jα) for α ∈ A, then

⋂

α∈A

Sα = Z

(
⋃

α∈A

Jα

)

.

If K = R, K = C, or K = Qp, then clearly every Zariski closed (or Zariski
open) subset is also closed (or open) in the usual sense. For most of the derived

† We will generally be interested in the cases R, Qp and Q, but will only assume that the field
has characteristic zero a little later.
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properties (density, connectedness) this is not clear and indeed is often false.
We will always say Zariski open, Zariski closed, Zariski dense, and so on, if we
refer to properties of the Zariski topology. When we use the words open, closed,
dense, and so on, then this will refer to the metric (often also referred to as the
Hausdorff ) topology of Rd, Cd, or Qd

p derived from the norms on these spaces.
A variety (equivalently, a Zariski closed set) is called Zariski connected† or

irreducible if it is not a union of two proper Zariski closed subsets. Equivalently,
a variety Z is irreducible if its ring of regular functions

K[Z] = K[x1, . . . , xd]/J (Z)

is a principal ideal domain (that is, without zero divisors).
Assume now that Z = Z(J ) is a connected variety. Then we can form the

field of rational functions K(Z) comprising all quotients f
g with f, g ∈ K[Z]

and g 6= 0. The transcendence degree‡ (see Hungerford [70, Sec. VI.1]) of K(Z)

is called the dimension dim(Z) of the variety Z. Notice that if Z = K
d
then the

dimension of Z is d, and if Z is defined by a single irreducible polynomial

f ∈ K[x1, . . . , xd]

(in which case Z is called a hypersurface), then the dimension of Z is (d − 1).
The following lemma further reinforces our intuition concerning this notion of
dimension.

Lemma 3.29 (Strict monotonicity of dimension). Suppose that Z2 ⊆ Z1

is a proper connected subvariety of a connected variety Z1 ⊆ K
d
. Then

dimZ2 < dimZ1.

Proof. By definition

K[Z1] = K[x1, . . . , xd]/J1,
with J1 = J (Z1), has transcendence degree k = dimZ1. By reordering the
variables if necessary, we may assume that

x1 + J1, . . . , xk + J1 ∈ K[Z1] (3.25)

are algebraically independent, and

xk+1 + J1, . . . , xd + J1
† This definition does not match the topological definition of connectedness, but it will come
closer to doing so in the context of algebraic subgroups.
‡ A field extension F|K has transcendence degree n if F contains n mutually transcendental
elements f1, . . . , fn ∈ F (that is, elements with the property that the evaluation map

K[T1, . . . , Tn] ∋ g 7→ g(f1, . . . , fn)

is injective) but does not contain n+ 1 mutually transcendental elements.
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are algebraically dependent on the elements in (3.25). All other regular or ra-
tional functions in K(Z1) are then algebraically dependent on the elements in
(3.25). It follows that

K(Z1) ∼= K(x1, . . . , xk) [xk+1 + J1, . . . , xd + J1]

is a finite field extension of the field of rational functions in the first k variables.
Since Z2 ⊆ Z1 is a proper subvariety, there exists some f ∈ J (Z2)rJ (Z1).

As f + J1 is non-zero in K(Z1), there exists some

g + J1 ∈ K(x1, . . . , xk) [xk+1 + J1, . . . , xd + J1]

such that fg + J1 = 1 + J1. Clearing the denominators (which belong to the
subring K[x1, . . . , xk]) in this relation, we find that there exists some g1 ∈ K[Z1]
such that

fg1 + J1 = h+ J1
for some non-zero h ∈ K[x1, . . . , xk]∩J (Z2). This shows that the transcendence
degree of K(Z2) is less than or equal to k − 1. �

Assume again that Z ⊆ K
d
is a connected k-dimensional variety. A point x(0)

in Z is called smooth if the ‘tangent space’ in the variables u1, . . . , ud defined
by

d∑

j=1

uj∂xj
f(x(0)) = (u1, . . . , ud) · ∇f(x(0)) = 0

for all f ∈ J (Z), is k-dimensional. The partial derivatives are defined as abstract
linear maps on the space of polynomials (so that the definition matches the usual
maps if K is R or C). It satisfies the usual properties (the product and chain
rules, for example) over any field K. The reader may quickly decide which points
of the variety defined by the equation y2 = x3 are smooth in this sense (and
thus see why the definition makes sense, and that it accords in this case with
geometrical intuition; see also Lemma 3.32). A variety is called smooth if every
point of the variety is a smooth point.

Lemma 3.30 (Most points are smooth). Let Z ⊆ K
d
be a connected variety

and suppose the characteristic charK of the field K is zero. Then the set of
smooth points of Z is a non-empty Zariski open subset of Z. Moreover, the
tangent space has at no point of Z a dimension smaller than dimZ.

The lemma should indeed be interpreted as saying that most points of a
connected variety are smooth. This is because a non-empty Zariski open subset
of a connected variety is automatically Zariski dense. Moreover, Zariski dense
and Zariski open subsets of any variety have a strong intersection property:†

† For a connected variety this is easy to see. For a general variety this follows for example
from the decomposition discussed in Lemma 3.31.
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Every finite intersection of Zariski dense and open subsets is again Zariski dense
and open.

Proof of Lemma 3.30. Let k = dimZ, and assume again that

x1 + J (Z), . . . , xk + J (Z) ∈ K(Z) (3.26)

are algebraically independent while

xk+1 + J (Z), . . . , xd + J (Z)

are algebraically dependent on the elements in (3.26). Thus there exists, for
every ℓ ∈ {k + 1, . . . , d} a non-zero polynomial

fℓ ∈ K[x1, . . . , xℓ] ∩ J (Z)

of minimal degree in xℓ for which (viewed as a polynomial in xℓ) the non-zero
coefficients do not belong to K[x1, . . . , xℓ−1] ∩ J (Z). Since charK = 0, we get†

gℓ = ∂xℓ
fℓ /∈ J (Z).

Using the derivative ∇(fℓ) (for ℓ = k + 1, . . . , d) of these polynomials (as equa-
tions that define the tangent space) we see that every point outside the proper
subvariety defined by the ideal

〈gk+1 · · · gd,J (Z)〉

(that is, every point in a non-empty Zariski open subset O) has a tangent space
of dimension less than or equal to k. To see that these points are smooth points
of the variety we have to show that the tangent space is indeed k-dimensional.
We show this first‡ on an even smaller Zariski open subset O′.

We claim that there exists some non-zero h ∈ K[x1, . . . , xd]rJ (Z) with

hJ (Z) ⊆ (fk+1, . . . , fd).

Assuming the claim for any f ∈ J (Z), we see that hf = g′1fk+1 + · · ·+ g′d−kfd,
so that

∇(hf) = ∇(h)f + h∇(f) =
∇(g′1)fk+1 + g′1∇(fk+1) + · · ·+∇(g′d−k)fd + g′d−k∇(fd).

After evaluation at any point x ∈ Z we then get

h(x)∇(f)(x) = g′1(x)∇(fk+1)(x) + · · ·+ g′d−k(x)∇(fd)(x)
† If charK = p and it so happens that fℓ is a polynomial in x1, . . . , xℓ−1, x

p
ℓ
then ∂xℓ

fℓ = 0.
With more care this problem can be dealt with—we refer to Hartshorne [66] for the details.
‡ We use this step below to show that we can never have a tangent space of dimension strictly
less than k, hence we cannot rely on this fact here.
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which expresses ∇(f)(x) as a linear combination of ∇(fj)(x) for

j = k + 1, . . . , d

if only h(x) 6= 0. This shows that on the Zariski open set

O′ = ZrZ(hgk+1 · · · gd)

every tangent space is exactly k-dimensional.
We now prove the claim. As J is finitely generated and prime, we only have

to show that for every f ∈ J there is some h /∈ J with hf ∈ (fk+1, . . . , fd). If

f ∈ K[x1, . . . , xk+1] ∩ J ,

then we can take h to be a power of the leading coefficient of fk+1 (considered
as a polynomial in xk+1 with coefficients in K[x1, . . . , xk]). In fact, with this
choice of h we ensure that we can apply division with remainder† to obtain

hf = afk+1 + b

where b = 0 as it has smaller degree in xk+1 than fk+1 does and belongs to J .
By induction on ℓ the same argument applies for any f ∈ K[x1, . . . , xℓ+1] ∩ J
(where we will have b ∈ K[x1, . . . , xℓ] ∩ J by the same argument).

It remains to show that the set of smooth points is Zariski open, and that at
no point of Z does the tangent space have dimension strictly smaller than k. If
now

x(0) =
(

x
(0)
1 , . . . , x

(0)
d

)

∈ Z

is an arbitrary smooth point, or more generally a point whose tangent space has
dimension K 6 k, then we may reorder the variables so that the tangent space
projects onto the subspace spanned by the first K basis vectors, and so that for
each ℓ ∈ {K + 1, . . . , d} there exists some fℓ ∈ J (Z) such that

(∇fℓ)ℓ 6= 0

but
(∇fℓ)j = 0

for j ∈ {K + 1, . . . , d}r{ℓ}. It follows that the determinant

g = det (∇fℓ)j ,

where ℓ, j ∈ {K + 1, . . . , d}, does not vanish at the point x(0). Unfolding the
definition shows that any other point

x ∈ Og = ZrZ(g)

† Formally we apply division with remainder in the Euclidean domain K(x1, . . . , xk)[xk+1],

and later in the argument in the Euclidean domain K(x1 + J, . . . , xℓ + J)[xℓ+1].
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is also a point at which the tangent space has dimension less than or equal to K,
which is less than or equal to k.

If K < k at some point x(0), then we have found a non-empty Zariski open
subset Og on which all points have tangent spaces of dimension less than or
equal to K. However, as Z is irreducible this set would have to intersect the
non-empty Zariski open subset O′ (on which the tangent spaces are known to
be k-dimensional) nontrivially, which would give a contradiction.

Therefore, there is no point where the tangent space has dimension strictly
less than k, and so applying the argument for K = k we see that the set of
smooth points is Zariski open (and Zariski dense). �

To generalize the notion of smoothness to general varieties we need another
lemma.

Lemma 3.31 (Decomposition into Zariski connected components). Let Z
be a variety. Then Z is a finite union

Z =

n⋃

i=1

Zi

of connected varieties Z1, . . . , Zn, where we may and will assume that Zi 6⊆ Zj

for i 6= j. We will refer to Z1, . . . , Zn as the Zariski connected components. We
claim furthermore that the decomposition into Zariski connected components is
(up to their order) unique.

We note that if Z is a hypersurface, then the claimed existence and uniqueness
follow quickly from the statement that K[x1, . . . , xd] is a unique factorization
domain.

Sketch of Proof of Lemma 3.31. The existence of the decomposition follows
from the fact that K[x1, . . . , xd] is Noetherian. We sketch the argument for this.
If J = J (Z) ⊆ K[x1, . . . , xd] is not a prime ideal, then there exist

f1, f2 ∈ K[x1, . . . , xd]rJ

with f1f2 ∈ J . We may define J1 = 〈J , f1〉 and J2 = 〈J , f2〉. Notice
that J1J2 ⊆ J ⊆ J1 ∩ J2. If both of these are prime ideals, then we are
done (see below). If not, then we may assume that J1 is not a prime ideal, and
repeating the argument gives ideals J1,1,J1,2. We do the same for J2 if J2 is
not a prime ideal, and repeat as necessary. By the Noetherian property this
construction has to terminate after finitely many steps. In other words, we can
always find a finite tree with J at the top and prime ideals at the bottom, as
illustrated in Figure 3.1.

If the prime ideals found are denoted P1, . . . , Pn, then we have (by construc-
tion of the prime ideals) that

P1 · · ·Pn ⊆ J ⊆
n⋂

i=1

Pi. (3.27)
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J

J1 = 〈J , f1〉 J2 = 〈J2, f2〉

J1,1 = 〈J1, f1,1〉 J1,2 = 〈J1, f1,2〉

Fig. 3.1: Ideals inside J .

This translates to the statement

Z =
n⋃

i=1

Z(Pi).

If the list of prime ideals has repetitions, we simply remove the repetitions.
Also, if Pi ⊆ Pj for i 6= j then Z(Pi) ⊇ Z(Pj) and we remove Pj from the
list. Using J = rad(J ), we can now show that (3.27) still holds for the short-
ened list. Finally, uniqueness follows directly from the definitions: If P1, . . . , Pn

and P ′
1, . . . , P

′
m both satisfy (3.27) (and are minimal lists), then for every

j ∈ {1, . . . ,m}

we have
P1 · · ·Pn ⊆ P ′

j

and since P ′
j is a prime ideal there exists some i(j) with Pi(j) ⊆ Pj . Simi-

larly, there exists for every i ∈ {1, . . . , n} some j(i) with P ′
j(i) ⊆ Pi. Since

now Pi(j(i)) ⊆ Pi for every i and P ′
j(i(j)) ⊆ P ′

j for every j, it follows that i(·)
and j(·) are inverses of each other, m = n, and P ′

j(i) = Pi. �

A point x(0) ∈ Z of a (not necessarily connected) variety is smooth if x(0)

belongs to precisely one of the connected varieties Zi ⊆ Z as above, and x(0)

is a smooth point of Zi. Lemma 3.32 now says that inside every variety Z the
subset of points that are smooth points of Z is a Zariski open and dense subset
of Z.

3.5.2 Properties Concerning the Field

One smooth K-point of a variety already gives rise to many other K-points, if K
is a local field.

Lemma 3.32 (Neighbourhoods of smooth points). Let Z ⊆ Cd be a k-
dimensional connected variety defined over R. Let x(0) ∈ Z(R) be a smooth
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point. Then there exists an analytic function defined on an open subset in Rk

which is a homeomorphism to a neighbourhood of x(0) ∈ Z(R). The same holds
over C or over Qp for a prime p <∞.

Proof. Choose some f1, . . . , fd−k ∈ J (Z) such that ∇(fj)(x(0)) are lin-
early independent for j = 1, . . . , d− k. By choosing a new coordinate sys-
tem x1, . . . , xk, y1, . . . , yd−k (which we will abbreviate to x, y) we can assume
without loss of generality that

∂yi
(fj)(x

(0), y(0)) = δi,j

for i, j = 1, . . . , d− k, and furthermore

∂xi
(fj)(x

(0), y(0)) = 0

for i = 1, . . . , k and j = 1, . . . , d− k.
Applying the implicit function theorem (over R, C, or(19) Qp) on a neigh-

bourhood of (x(0), y(0)) to the equations f1(x, y) = · · · = fd−k(x, y) = 0, we
obtain (d− k) analytic functions φ1(x), . . . , φd−k(x) which are all defined on a
neighbourhood U of x(0) such that

fj (x, φ1(x), . . . , φd−k(x)) = 0

for j = 1, . . . , d− k. It remains to see why the points

(x, φ1(x), . . . , φd−k(x))

belong to Z (this is in question because we do not know whether f1, . . . , fd−k

generate J (Z)) in some possibly smaller neighbourhood U ′ ⊆ U .
Let

J ′ = 〈f1, . . . , fd−k〉 ⊆ J = J (Z)
and Z(J ′) = Z∪Z ′, where Z ′ is the union of all connected components of Z(J ′)
other than Z. Here Z cannot be contained properly in a connected component
of Z ′ ⊆ Z(J ′) since the tangent space of Z(J ′) at

(
x(0), y(0)

)
has dimension k,

which would contradict Lemma 3.29 and Lemma 3.30.
We claim that (x(0), y(0)) /∈ Z ′. Assuming this claim, there exists some poly-

nomial g ∈ J (Z ′) with g(x(0), y(0)) 6= 0. Suppose now that f ∈ J . Then the
product f · g vanishes on

Z ∪ Z ′ = Z(J ′),

and so there exists some ℓ with (fg)ℓ ∈ J ′ by Hilbert’s Nullstellensatz (Theo-
rem 3.9). Let

U ′ = {x ∈ U | g(x, φ1(x), . . . , φd−k(x)) 6= 0},

and suppose that x ∈ U ′. Then

(fg)ℓ (x, φ1(x), . . . , φd−k(x)) = 0
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since all elements in J ′ vanish on such vectors (by definition of φ1, . . . , φd−k).
However, since x ∈ U ′, this shows that

f (x, φ1(x), . . . , φd−k(x)) = 0

for all f ∈ J and x ∈ U ′, as required.
To prove the claim† we will show that after removing all connected compo-

nents of Z ′ that do not contain (x(0), y(0)) from Z(J ′) = Z ∪ Z ′ we obtain a
connected variety Z ′′ (see below for a more formal definition). Since Z is not
removed, this then implies that Z ′′ = Z and that Z ′ does not contain (x(0), y(0))
as claimed.

Let R = R[x, y] be the ring of polynomials, let

M = {f ∈ R | f(x(0), y(0)) = 0}

be the maximal ideal in R corresponding to (x(0), y(0)), and let

RM =

{
f

g

∣
∣
∣
∣
f, g ∈ R[x, y] with g /∈ M

}

be the local ring‡ corresponding toM (consisting of rational functions that are
well-defined at (x(0), y(0))).

Let Z1, . . . , Za be the connected components of Z ∪ Z ′ = Z(J ′) that con-
tain (x(0), y(0)), and let Z ′

1, . . . , Z
′
b be those that do not contain (x(0), y(0)).

Making our definition above more precise, we set Z ′′ = Z1 ∪ · · · ∪ Za. We now
show that

J ′′ = (J ′RM) ∩R =

{

f =
p

q
∈ R

∣
∣
∣
∣
p ∈ J ′, q /∈M

}

defines the variety Z ′′. Pick a polynomial qj ∈ J(Z ′
j) with qj(x

(0), y(0)) 6= 0
for j = 1, . . . , b. Choose any polynomials Fi ∈ J (Zi) for i = 1, . . . , a. Then by
Hilbert’s Nullstellensatz (Theorem 3.9) there exists some ℓ > 1 with

(F1 · · ·Faq1 · · · qb)ℓ ∈ J ′.

Using only the definition of J ′′, this implies that (F1 · · ·Fa)
ℓ ∈ J ′′. Using the

Noetherian property of R we find some ℓ > 1 with J (Z1)
ℓ · · · J (Za)

ℓ ⊆ J ′′ and
so Z(J ′′) ⊆ Z ′′ = Z1 ∪ · · · ∪ Za.

For the opposite inclusion, fix some i ∈ {1, . . . , a} and notice that by defini-
tion any f ∈ J ′′ is of the form f = p

q with

† A slight warning is in order. The remainder of this argument is surprisingly long, and quite
algebraic. The reader who wishes to only get a glimpse of the algebraic background may decide
to skip it, we will not need this type of argument again.
‡ A local ring is a ring with a unique maximal ideal. The ring RM is the localization of R
at M, it is a local ring with maximal ideal MRM.
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p ∈ J ′ ⊆ J (Zi)

and
q /∈ M ⊇ J (Zi),

which gives f ∈ J (Zi). This shows that J ′′ ⊆ J (Zi) and so Zi ⊆ Z(J ′′)
for i = 1, . . . , a.

We will show the claim by showing that J ′′ is a prime ideal (which then gives
the claim that a = 1 and Z ′′ = Z). For this we prove that f ∈ J ′′ if and only
if there exists a neighbourhood O of (x(0), y(0)) in

M = {(x, φ1(x), . . . , φd−k(x)) | x ∈ U}

such that the restriction of f to O is zero. By the properties of φ1, . . . , φd−k any
such restriction can be identified with an analytic function on a neighbourhood
of x(0) inside U , and so the restriction is uniquely determined by its Taylor ex-
pansion at x(0). Since the Cauchy product of Taylor series has no zero-divisors†,
this equivalence then shows that J ′′ is a prime ideal.

Suppose first that f ∈ J ′′. Then f = p
q , where p ∈ J ′ vanishes on M (by

definition of M), and q does not vanish at (x(0), y(0)). This shows that there is
a neighbourhood O on which f is well-defined and identical to zero.

Now suppose that f is a polynomial for which there exists a neighbourhood O
of (x(0), y(0)) inM on which f vanishes. By our assumptions from the beginning

of the proof we have fj(x, y) ∈ yj − y(0)j +M2 (whereM2 consists of all poly-

nomials that vanish with order 2 or more at (x(0), y(0))). Let n > 1 be arbitrary.
We can now use the polynomials fj to express the polynomial f as above in the
form

f ∈
n∑

ℓ=0

Fℓ(x− x(0)) +Rn+1(x, y) + J ′,

where Fℓ is a homogeneous polynomial of degree ℓ for ℓ = 0, . . . , n and the
polynomial Rn+1(x, y) ∈ Mn+1 only has terms that vanish of order n + 1
or higher. This shows that

∑n
ℓ=0 Fℓ(x − x(0)) is the Taylor approximation

of f(x, φ1(x), . . . , φd−k(x)) at x
(0) of degree n. Since f vanishes in a neighbour-

hood of (x(0), y(0)) in M we have
∑n

ℓ=0 Fℓ = 0. This shows that f ∈ J ′ +Mn

for all n > 1.
A corollary of Nakayama’s lemma states that

∞⋂

n=1

(I +Mn) = I

in any local Noetherian ring with an ideal I and a maximal idealM. We refer
to Hungerford [70, Cor. VIII.4.7] and Matsumura [107] for convenient sources

† The Cauchy product of
∑∞

n=0 anx
n and

∑∞
n=0 bnx

n is the series
∑∞

n=0 cnx
n with coeffi-

cients cn =
∑n

j=0 ajbn−j for n > 0; viewed either as formal power series or as functions where
they converge, the product will only vanish if one of the series vanishes.
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for this result. Switching from the ring R to the local ring RM we see that

f ∈
∞⋂

n=1

(J ′RM +MnRM) ,

which gives f ∈ J ′RM and so f ∈ J ′′. This establishes the above equivalence,
and hence shows that J ′′ is a prime ideal, the claim, and so also the lemma. �

In Section 3.1 we considered two notions of ‘K varieties’: A variety Z is
defined over F, for some subfield† F ⊆ K, if its complete ideal of relations (as
in the Hilbert Nullstellensatz Theorem 3.9) is generated by polynomials with
coefficients in F. On the other, a variety is F-closed if it can be defined by
polynomials with coefficients in F.

As in any topological space, we can define a notion of closure: the Zariski

closure of a subset S ⊆ K
d
is the smallest Zariski closed subset Z ⊆ K

d
contain-

ing S. This notion has many convenient properties, including good behaviour
with regards to subfields. Note however, that the Zariski closure of a subset
in Rd is frequently much bigger than the closure in the Hausdorff topology.

Lemma 3.33 (Closures of subsets of Fd). Let F ⊆ K be any subfield and S
be a subset of Fd. Then the Zariski closure of S is defined over F.

Proof. Suppose that f is a polynomial in x1, . . . , xd that vanishes on S. Let V
be the vector space generated by the coefficients of f over F. Let

a1, . . . , an

be a basis of V over F, and write

f =

n∑

i=1

fiai

with fi ∈ F[x1, . . . , xd]. For any x ∈ S we now have

f(x) =

n∑

i=1

fi(x)
︸ ︷︷ ︸

∈K

ai = 0,

and so fi(x) = 0 for i = 1, . . . , n. This shows that the ideal of polynomials that
vanish on S is generated by those that have coefficients in F. �

Clearly a variety that is defined over K is also K-closed. In general the con-
verse is not true, but fortunately this problem only manifests itself over fields
of positive characteristic.

Lemma 3.34 (K-closed vs. defined over K). Suppose that K has character-
istic zero. Then a K-closed variety (or a variety that is stable under all Galois
automorphisms of K|K) is also defined over K.

† We introduce this extra field for example in order to set K = R, K = C, and F = Q.
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Proof. Let Z = Z(f1, . . . , fn) be the variety defined by the polynomials

f1, . . . , fn ∈ K[x1, . . . , xd],

and suppose that f ∈ K[x1, . . . , xd] vanishes on Z (that is, suppose that f lies
in J (Z)). Then there exists a finite Galois field extension L|K such that f has
coefficients in L.

Let σ be any Galois automorphism of the extension L|K. We now claim
that the polynomial σ(f) obtained by applying σ to all coefficients of f also
belongs to J (Z). This is straightforward to check as follows. Since Z is K-
closed, any Galois automorphism of K|K maps Z = Z(K) onto Z. Extending
the automorphism σ of L|K in some way to an automorphism of K|K we get

(σ(f)) (x) = (σ(f))
(
σ(σ−1(x))

)
= σ

(

f(σ−1(x)
︸ ︷︷ ︸

∈Z

)

︸ ︷︷ ︸
=0

)

= 0

for all x ∈ Z.
The claim now implies that tr(f) =

∑

σ σ(f), where the sum is taken over
the finite list of Galois automorphisms of L|K, belongs to J (Z). Clearly tr(f)
has coefficients in L and is fixed by all Galois automorphisms of L|K. There-
fore, tr(f) ∈ K[x1, . . . , xd] (this requires the assumption that char(K) = 0).

We next claim that there exist elements

a1, . . . , a[L|K] ∈ L

and
a∗1, . . . , a

∗
[L|K] ∈ L

that are dual bases in the sense that

tr(a∗i aj) = δi,j =

{

1 if i = j,

0 if i 6= j,

for all i, j. We then have

a =
∑

i

tr(a∗i a)ai,

which also holds for the polynomial f instead of a ∈ L. Since

tr(a∗i f) ∈ J (Z) ∩K[x1, . . . , xd]

by the argument above, the lemma follows from the claim.
It remains to construct the dual basis. Let a1, . . . , a[L:K] ∈ L be any basis of L

over K. By linear algebra, there exists a dual basis for the dual vector space L∗

over K. We claim that the map sending a ∈ L to φ(a) ∈ L∗ defined by

φ(a)(b) = tr(ab)
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is an isomorphism of vector spaces. This may be seen as follows:

• φ(1)(1) = tr(1) = [L : K], so φ is non-trivial (again since char(K) = 0);
• if φ(a) = 0 then also φ(aa′)(b) = tr (a(a′b)) = 0 for all a′, b ∈ L, so the
kernel of φ is an ideal, and the field L has no non-trivial ideals.

Thus the pre-image under φ of the dual basis in L∗ gives a dual basis in the
above sense in L.

If the variety Z is only assumed to be invariant under all Galois automor-
phisms, then once more J (Z) is invariant under all Galois automorphisms and
so the above argument shows again that Z is defined over K. �

In the arguments above there is always an implied coordinate system in K
d

(corresponding to the variables x1, . . . , xd). We note that it is customary to
write Ad for the d-dimensional affine space without a preferred origin, coordinate
system, or base field. For us the ambient affine space will be Matd ∼= Ad2

,
and on this space very few coordinate changes make sense with regards to the
existing (and to us important) multiplicative structure. For that reason and
also because we are often interested in subgroups of SLd (and the orbits of the
group of their R-points), we are happy with choosing one coordinate system
and discussing subvarieties and algebraic subgroups of SLd instead of general
varieties and general algebraic groups. We will however, switch frequently from
one field to another, and as before will write Z(K) = Z(K)∩Matd(K) for the K-
points of a subvariety Z < Matd defined over K.

3.5.3 Linear Algebraic Groups

A variety G ⊆ SLd is a (linear) algebraic subgroup (of SLd) if G(K) ⊆ SLd(K)
is a subgroup. Notice that for any subvariety Z ⊆ SLd and g ∈ SLd(K) we can
define the translated variety gZ by the ideal

λ(g)J (Z) = {f(g−1x) | f ∈ J (Z)}.

Here λ denotes the left representation

λ(g)f(x) = f(g−1x)

on the space of all polynomials.

Lemma 3.35 (Smoothness). Every point of a linear algebraic subgroup is
smooth.

The tangent space at the identity is called the Lie algebra of the algebraic
subgroup.

Proof of Lemma 3.35. Suppose that g ∈ G(K) is a smooth point of the
variety G. Then one can quickly check that I = g−1g is a smooth point of the
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left-translate variety g−1G. However, since g−1G = G we see that I is a smooth
point of G. By the same argument, any other point is also smooth. �

Lemma 3.36 (Connected components). Let G ⊆ SLd be an algebraic sub-
group. The connected component Go < G is by definition the unique Zariski
connected component of G that contains the identity, it is an algebraic normal
subgroup. There are points g1, . . . , gn ∈ G where n = [G(K) : Go(K)] with

G =
n⊔

i=1

giG
o.

If G is defined over K, and K has zero characteristic, then Go is also defined
over K.

As a corollary of the lemma we mention that it makes sense to talk about the
dimension of a (not necessarily Zariski connected) algebraic subgroup. Since all
Zariski connected components are translates of the connected component Go,
they all have the same dimension.

Proof of Lemma 3.36. The first statement is essentially an extension of the
argument in the previous lemma. If

G =
n⋃

i=1

Zi

is the decomposition into connected components, then there exists a point which
is contained in only one component. Translating G by g ∈ G(K) we may permute
the connected components

G = g−1G =
n⋃

i=1

g−1Zi.

but would leave the subvariety
⋃

i6=j Zi ∩ Zj consisting of all points that are
contained in more than one of the connected components invariant. Therefore,
we have

G =

n⊔

i=1

Zi.

Suppose that Z1 = Go. If now g ∈ Go then I ∈ g−1Go, which by uniqueness of
the decomposition gives Go = g−1Go for all g ∈ Go.

We have shown that Go is a linear algebraic subgroup. If now g ∈ Zi for i > 1,
then the same argument gives g−1Zi = Go = Zig

−1. In other words,

Zi = gGo = Gog

is a coset of Go in G.
Now suppose that G is defined over K, and let σ be a Galois automorphism

of K|K. Then σ induces a permutation of the cosets giG
o(K) with
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σ
(
Go(K)

)
= Go(K)

since σ(I) = I. As this holds for all Galois automorphisms we see that Go is
defined over K if K has characteristic zero by Lemma 3.34. �

For completeness we mention another (more general but, up to isomorphisms,
equivalent) definition: A linear algebraic group is an affine variety equipped with
multiplication and inverse maps such that

• the multiplication and inverse maps are regular functions (from the group
to the group);

• the variety is isomorphic to a linear algebraic subgroup of SLd for some d
such that the multiplication and inverse maps correspond to multiplication
and inversion for matrices.

We note that the standard definition does not make the second requirement
above, and instead derives this property from the first via a construction similar
to the proof of Chevalley’s theorem in Section 3.5.5.

Example 3.37. We list some standard examples of linear algebraic groups.

(a) Ga denotes the additive group structure of the field. This is a linear algebraic
group because (for example) it is isomorphic to the algebraic subgroup U <
SL2 with

U(K) =

{(
1 ∗
1

) ∣
∣
∣
∣
x ∈ K

}

,

which we saw earlier is associated to the horocycle flow if K = R.
(b) Gm stands for the multiplicative group structure of the field. This is a lin-

ear algebraic group because (for example) it is isomorphic to the algebraic
subgroup A < SL2 with

A(K) =

{(
a
a−1

) ∣
∣
∣
∣
a ∈ K

}

,

which we saw earlier is associated to the geodesic flow if K = R.

3.5.4 K-points of Linear Algebraic Groups

As noted before, a variety Z defined over a field K does not have to contain
any K-points (that is, Z(K) may be empty†), and even if it is non-empty it

† A trivial example to have in mind here is the variety defined by the equation

x2 + y2 = −1,

defined over R, and a less trivial example is the variety defined by the equation

x3 + y3 = 1,
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may not be Zariski dense in the variety. Since a subgroup always contains the
identity the former problem cannot arise for linear algebraic subgroups. Even
more is true, as a result of the following lemma, which relies on the fact that G
is smooth at the identity.

Lemma 3.38 (Density of R-points and Qp-points). If G ⊆ SLd is a Zariski
connected linear algebraic subgroup defined over R, then G(R) is Zariski dense
in G. The same holds for K = Qp for a prime number p <∞.

We note that the above holds much more generally, see [7, Th. 18.3]. We will
come back to this problem for the special case K = Q later.

Proof of Lemma 3.38. By Lemma 3.35, x(0) = I ∈ G is a smooth point. By
Lemma 3.32 G(R) contains the image of an analytic function of the form

Φ : U ∋ (x1, . . . , xk) 7−→ (x1, . . . , xk, φk+1(x1, . . . , xk), . . . , φd2(x1, . . . , xk)) .
(3.28)

Let Z be the Zariski closure of these real points. By Lemma 3.31 we may write

Z =

n⋃

i=1

Zi

as a union of irreducible varieties. By Lemma 3.29, either Z = G or

dimZi < k = dimG

for i = 1, . . . n. However, the latter case cannot happen since a finite union of
varieties of dimension strictly less than k cannot contain all points

Φ(x1, . . . , xk)

in (3.28). Specifically, in this case each J (Zi) must contain some non-zero poly-
nomial

fi ∈ C[x1, . . . , xk],

so that every point Φ(x1, . . . , xk) in (3.28) would have to satisfy the equa-
tion f1 · · · fn = 0. This is a contradiction, since every non-empty open subset
of Rk in the Hausdorff topology is Zariski dense (since all the partial deriva-
tives, including the 0th, of a polynomial at a point determine the polynomial).
The p-adic case is similar. �

Clearly, the group G(R) of R-points of an algebraic subgroup G ⊆ SLd is
a linear Lie group with a real Lie algebra gG(R). For the algebraic subgroup G

in SLd we have already defined a Lie algebra g which, by definition, is a complex
vector space. Assuming that G is defined over R, this complex vector space

g ⊆ sld(C)

defined over Q.
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can be defined by linear equations with real coefficients, so is invariant under
complex conjugation and, in particular,

g(R) = g ∩ sld(R)

has the same dimension over R as g = g(C) has over C.

Lemma 3.39 (Lie algebras of Lie groups and algebraic groups). Let G
in SLd be an algebraic subgroup defined over R. Then the R-points

g(R) = g ∩ sld(R)

of the Lie algebra g of the algebraic subgroup comprise precisely the Lie algebra
of the Lie subgroup G(R) ⊆ SLd(R). The same holds over C or Qp for any
prime p <∞.

Proof. Using the same notation and setup as in the proofs of Lemmas 3.32
(with d replaced by d2) and Lemma 3.38, we see that the tangent space of G(R)
(in the sense of manifolds or of Lie groups) is the image of the total derivative
of Φ at (x1, . . . , xk). However, by the implicit function theorem, this image is
precisely the real subspace defined by the equations

(u1, . . . , ud2) · ∇fj(I) = 0

for j = 1, . . . , d2 − k. This proves the lemma in the real case, and the complex
and p-adic cases are similar. �

The following discussion is not essential for later developments, but it may
be useful to bear it in mind. By [142, Ch. VII, Sect. 2.2, Th. 1] the set of C-
points Z(C) of a Zariski connected variety Z is connected in the Hausdorff
topology. For the R-points Z(R) of a Zariski connected variety Z over R this
is not true. However, for algebraic groups G defined over R, the connected
component G(R)o (in the Hausdorff topology) only has finite index. We will
discuss this again for particular algebraic subgroups later (where it will usually
be easy to see). For now, notice that A(R)o < A(R) for A as in Example 3.37(b)
has index two. Over Qp the analogous question does not make sense, so Zariski
connected is a priori the only sensible notion of connectedness.

3.5.5 Chevalley’s Theorem, Subgroups, and Representations

Clearly, every algebraic representation gives rise to many algebraic subgroups
by defining stabilizer subgroups (as in Section 3.1.2). Chevalley’s theorem(20)

almost turns this construction around: Given an algebraic subgroup there ex-
ists an algebraic representation so that the subgroup can be defined via the
representation as a stabilizer of a line (instead of a point as in Section 3.1.2).
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Theorem 3.40 (Chevalley). Let H < SLd be an algebraic subgroup. Then
there exists an algebraic representation ρ : SLd → SLD and a D-dimensional
vector v such that

H = {g ∈ SLd | ρ(g)v ∼ v},
where ∼ denotes proportionality†. If H is defined over K, then the algebraic
representation ρ is also defined over K, and we may choose v ∈ KD.

As we will see, the theorem is proved by transforming the defining ideal of H
(which is finitely-generated) into a single vector in a high-dimensional vector
space.

Proof of Theorem 3.40. For any g ∈ H we have gH = H and equivalently

λ(g)J (H) = J (H).

Moreover, we also have that λ(g)J (H) = J (H) for some g ∈ SLd implies
that g ∈ H. As the ideal is infinite dimensional we cannot use it directly. How-
ever, by the Noetherian property we know that J (H) ⊆ K[Matd] is finitely
generated (as an ideal). Thus we can assume it is generated by polynomials
of degree less than or equal to m for some m. Write P6m for the space of all

polynomials in K[Matd] of degree 6 m, and define

J6m = J (H) ∩ P6m.

Now notice that λ(g)P6m = P6m for all g ∈ SLd and that

λ(g)J6m = J6m

is equivalent to g ∈ H (since J6m generates J (H)). In other words, we have
found a finite-dimensional representation of SLd and a subspace so that H is
precisely the subgroup of SLd that sends the subspace into itself. The represen-
tation is also an algebraic representation (which the reader can quickly check).

What is not quite as in the theorem is that the subspace might not be a
single line. However, even that can quickly be rectified. Let ℓ = dimJ6m and

define V =
∧ℓ P6m and let v ∈ ∧ℓ J6mr{0}. The algebraic representation

of SLd on P6m induces an algebraic representation ρ on V (check this) and for
any g ∈ SLd the condition ρ(g)v ∼ v is equivalent to λ(g)J6m = J6m and
hence to g ∈ H.

If H is now additionally defined over K, then J6m∩K[Matd] generates J (H)
and we can choose v as the wedge of ℓ elements in J6m ∩ K[Matd]. Since the
regular representation (and its ℓth wedge power) are defined over any field, this
proves the last claim of the theorem. �

Lemma 3.41 (Zariski closures of groups). If S ⊆ SLd(K) is a subgroup,

then the Zariski closure G = S
Z

is a linear algebraic subgroup defined over K.

† Notice that proportionality is itself a polynomial condition, defined by requiring the vanishing
of all 2× 2 determinants corresponding to pairs of components of ρ(g)v and of v.
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Proof. By Lemma 3.33 we know that G is defined over K, so it is enough to
show that G(K) is a subgroup.

For any g ∈ S we have gS = S by the assumption on S, so gG = G for
all g ∈ S. However, as in the proof of Theorem 3.40 this property of preserving
the variety is equivalent to the property of preserving the ideal J (G) of relations
defining G or equivalently a particular line inside an algebraic representation
of SLd.

As this is a polynomial condition (see one of the footnotes to Theorem 3.40)
which holds for all g ∈ S, it must also hold for all g ∈ G. In other words, we
have shown that gG = G also holds for g in the Zariski closure of S, that is for
all g ∈ G = G(K). �

3.5.6 Jordan Decomposition, Algebraic Subgroups and
Representations

Algebraic groups and algebraic representations have some striking differences to
the theory of Lie groups, which we will now start to discuss.

Let ρ be an algebraic representation of SLd (or more generally of an algebraic
subgroup H). Then we have the following facts:

• if u ∈ SLd (u ∈ H) is nilpotent, then so is ρ(u);
• if a ∈ SLd(R) (a ∈ H) is diagonalizable (when considered as an element a ∈
SLd) and has only real and positive eigenvalues, then the same holds for ρ(a).

The first property is readily proved for the case SLd and K = Q or K a local
field. Indeed, if u ∈ SLd(K) is unipotent, then there exists some a ∈ SLd(K)
with anua−n → I as n→∞, which implies that

ρ(a)nρ(u)ρ(a)−n = ρ(anua−n) −→ I

as n → ∞, so the eigenvalues of ρ(u) (which are not changed by conjugation)
must all be 1, and hence ρ(u) must be unipotent.

The second property requires a bit more work. We also note that if the alge-
braic representation is only defined on the subgroup H then neither claim would
be correct in the context of Lie theory. For this notice that the Lie groups U(R)
and A(R) are not that much different. On the one hand, the former is connected
and the latter is not, so they are not isomorphic. However, there is a surjective
group homomorphism from A(R) onto U(R), and an injective homomorphism
from U(R) into A(R)o < A(R). This does not contradict the above claims, since
the two maps are basically the logarithm and the exponential map, which are
not algebraic homomorphisms.

Recall from linear algebra that every matrix g ∈ SLd(K) has a Jordan de-
composition

g = gssgu
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into a K-diagonalizable or semi-simple matrix gss ∈ SLd(K) and a unipo-
tent gu ∈ SLd(K). The two components gss and gu commute with each other,
and under this requirement the decomposition is unique. If K is R or C,
then gss = gposgcomp can be further decomposed into a product of two commut-
ing semi-simple elements gpos, gcomp ∈ SLd(C), where the positive semi-simple
part gpos has only real and positive eigenvalues, and all the eigenvalues of the
compact semi-simple part gcomp have absolute value one. This decomposition
is also unique, and if g ∈ SLd(R) then gu, gpos, gcomp lie in SLd(R) (see Ex-
ercise 3.44). If K = Qp, then a similar decomposition can be shown, and the
following results hold in that case also (see Exercise 3.45).

The following two results contain the claims made in the beginning of this
section in greater generality.

Proposition 3.42 (Jordan decomposition and subgroups). Let H be an
algebraic subgroup of SLd, and let g be an element of H. If g = gssgu is the
Jordan decomposition of g in SLd(K), then gss, gu ∈ H also. If H is defined
over K = R (or K = C) and gss = gposgcomp is the decomposition into positive
semi-simple and compact semi-simple parts, then once again gpos, gcomp ∈ H.

Proposition 3.43 (Jordan decomposition and representations). Let H

be an algebraic subgroup of SLd, and let ρ : H→ GLD be an algebraic represen-
tation. Then ρ(g)u = ρ(gu) and ρ(g)ss = ρ(gss) for all g ∈ H. If K is R or C,
then we also have ρ(g)pos = ρ(gpos) and ρ(g)comp = ρ(gcomp).

The proof of these results is intertwined. We will first prove Proposition 3.43
in a special case, then prove Proposition 3.42, and finally obtain Proposition 3.43
as a corollary.

Proof of Proposition 3.43 for a Chevalley representation. Suppose
that ρ is the representation of SLd obtained in the proof of Theorem 3.40 for
a subgroup H 6 SLd. Let g = gss be semi-simple, and assume (without loss of
generality, by applying any necessary conjugation to H and g) that g is diagonal.
Then it is easy to see† that λ(g) restricted to P6m is diagonal, with eigenvectors
given by monomials in the standard variables. Therefore all eigenvalues of λ(g)
are simply products of powers of eigenvalues of g. Taking the ℓth wedge repre-
sentation, the same holds for ρ(g) = ∧ℓλ(g). Let g = gu be unipotent. If K is Q
or a local field (which is where our main interest lies), we have already shown
that ρ(g) is unipotent. In general we may argue again step by step as above.
First, show that λ(g) restricted to P6m is unipotent by considering monomials
corresponding to the eigendirections (resp. generalized eigendirections). Then
we can show that ρ(g) = ∧ℓλ(g) is also unipotent.

If now g = gssgu is any element of SLd, then ρ(gss) is semi-simple, ρ(gu) is
unipotent, ρ(g) = ρ(gss)ρ(gu), and ρ(gss), ρ(gu) commute with each other. This
proves the claim.

If K is R or C, then the argument above also shows that the eigenvalues
of ρ(gpos) are positive and the eigenvalues of ρ(gcomp) have absolute value one,
giving the theorem. �

† We use the notation from the proof of Theorem 3.40.
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Proof of Proposition 3.42. Let H 6 SLd be an algebraic subgroup and

let ρ, v ∈ K
D

be as in Theorem 3.40. Let g ∈ H so that v ∈ K
D

is an eigen-
vector of ρ(g) for the Chevalley representation. By the properties of the Jor-
dan decomposition, v is therefore also an eigenvector of ρ(g)ss = ρ(gss) and
of ρ(g)u = ρ(gu). It follows that gss, gu ∈ H. If K is R or C, and gss = gposgcomp

then ρ(g)pos = ρ(gpos) has v as an eigenvalue. Thus gpos, gcomp ∈ H as well.
�

Proof of Proposition 3.43. Let H 6 SLd and let ρ : H → GLD be an
arbitrary algebraic representation. Then

L = Graph(ρ) ⊆ H×GLD ⊆ SLd+D+1

is an algebraic subgroup in the following way. We require the elements of L to
be of block form 



h
g
det(g)−1





with h ∈ SLd and g ∈ GLD (by using linear equations, the condition det h = 1,
and the polynomial equation that the last entry should be the inverse of the
determinant of the middle block), require h ∈ H (by the known relations of H),
and finally g = ρ(h) (which is a polynomial condition by assumption on ρ).

Now let h = hss ∈ H be semi-simple, so that

g =





h
ρ(h)

det(ρ(h))−1



 ∈ L

and hence by Proposition 3.42 we also have

gu =





hu
ρ(h)u

1



 ∈ L.

However, since hu = Id and L is a graph of a homomorphism, we also
have ρ(h)u = ID. This shows that ρ(h) is semi-simple if h is semi-simple. The
same argument also applies to unipotent elements (respectively, to positive or
compact semi-simple elements if K is R or C). The proposition follows from the
uniqueness of the Jordan decomposition. �

Exercise 3.44. Let g ∈ SLd(C) be diagonalizable. Define two commuting matrices

gpos, gcomp ∈ SLd(C)

with g = gposgcomp such that gpos only has positive eigenvalues and gcomp only has eigenvalues
of absolute value one. Show that these are also uniquely determined by these properties, and
that g ∈ SLd(R) implies that gpos, gcomp ∈ SLd(R).
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Exercise 3.45. Let K = Qp and let P < Q
×

p be a subgroup isomorphic to Q and contain-

ing p. Show that every matrix g ∈ SLd(K) is the product of commuting elements gpos, gcomp

of SLd(K) where the eigenvalues of gpos are elements of P , and the eigenvalues of gcomp have
absolute value one. Generalize the results of Section 3.5.6 to include this p-adic case.

3.6 Borel Density Theorem

We will show in this section a version of the Borel density theorem,(21) which will
show another relationship between finite volume orbits and rationally defined
subgroups. It is the generalization of the basic observation that a lattice Λ < Rd

cannot be contained in a proper subspace to the setting of lattices in linear
algebraic groups.

For the proof we will need two basic theorems, each of them fundamental to
its own subject. However, the two subjects concerned are often—in the context
of this book, wrongly—considered far from each other. Concretely, we will need
Poincaré recurrence from ergodic theory (in some sense the pigeonhole principle
for ergodic theory, see Theorem 1.30 and Exercise 1.34), and Chevalley’s theorem
from the theory of algebraic groups (see Theorem 3.40), and will combine these
with the facts derived in Section 3.5.6. This approach goes back to work of
Furstenberg [57] and Dani [17].

Theorem 3.46 (Borel density theorem). Suppose that H < SLd is an alge-
braic subgroup defined over R and suppose that Γ < H(R) is a lattice. Then

(1) If H is semi-simple† such that H(R)o has no compact factors then Γ is
Zariski dense in H. If H is only assumed to be semi-simple then the Zariski
closure of Γ contains all non-compact factors of H(R)o (and possibly some
or all of the compact factors).

(2) In the general case, the Zariski closure L < H of Γ contains all unipotent
elements of H(R) and more generally all elements of H(R) that only have
positive real eigenvalues.

For the proof we will also need the following simple observation from linear
algebra.

Lemma 3.47 (Convergence to some eigenvector). Let g ∈ SLd(R) have
the property that all its eigenvalues are real and positive, and let

ρ : SLd(R)→ SLD(R)

be a finite-dimensional algebraic representation (obtained, for example, from
Chevalley’s theorem). Then for any w ∈ RDr{0} there is some v ∈ RD with

† A linear algebraic group H is semi-simple if it is Zariski connected and its Lie algebra is
semi-simple. Notice that this does not imply that H(R) is connected as a manifold.
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1

‖ρ(gn)w‖ρ(g
n)w −→ v ∈ RD

as n→∞, and v is an eigenvector of ρ(g).

Proof. By Proposition 3.42 if g is unipotent then ρ(g) is also, and if g has only
positive eigenvalues then the same holds for ρ(g). Given w ∈ RDr{0}, we may
write

w =
∑

λ>0

wλ 6= 0,

where each wλ is a generalized eigenvector for the eigenvalue λ and the map ρ(g).
Then there is some largest eigenvalue λL with wλL

6= 0 (and hence wλ = 0

for any λ > λL). Also notice that ‖ρ(gn)wλ‖ is asymptotic to λnnk(λ) for
some k(λ) > 0 (this may be seen by looking at the Jordan normal form of ρ(g),
see also the argument below). Thus

1

‖ρ(gn)w‖ρ(g
nw) − 1

‖ρ(gn)wλL
‖ρ(g

nwλL
) −→ 0

as n → ∞. This reduces the problem to the case of a single eigenvalue, and
hence (by canceling the eigenvalue) to the case of a unipotent matrix

A =
1

λL
ρ(g)|VλL

acting on the generalized eigenspace VλL
of ρ(g) for the eigenvalue λL. Choosing

a Jordan basis of A, we may assume that A is a block matrix

A =






A1

. . .

Aℓ






where each

Ai =








1 1
. . .

. . .

1 1
1







.

We split w = wλL
into components

∑

i w
(i) corresponding to this block decom-

position, and apply Ai to the vector

w(i) =







w
(i)
1
...

w
(i)
k







to obtain
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An
i







w
(i)
1
...

w
(i)
k







=









w
(i)
1 + w

(i)
2 n+ w

(i)
3

(
n
2

)
+ · · ·+ w

(i)
k

(
n
k

)

...

w
(i)
k−1 + w

(i)
k n

w
(i)
k









.

If now w(i) 6= 0, then the above is a vector-valued polynomial whose entry of
highest degree is in any case the first row corresponding to the eigenspace of Ai.
Since this holds for each i, the lemma follows. �

Proof of Theorem 3.46, Part (2). Let g ∈ H(R) have positive real eigen-
values, let L be the Zariski closure of Γ 6 H(R) 6 SLd(R) and let

ρ : SLd → SLD

and w ∈ RD be the Chevalley representation for L = StabSLd
(Rw) as in The-

orem 3.40. By Poincaré recurrence we have for almost every x ∈ H(R)/Γ a
sequence nk → ∞ with gnkx → x as k → ∞. We now switch this conver-
gence to the group level as follows: For almost every h ∈ H(R) there exist
sequences nk → ∞ and εk → e as k → ∞, with γk ∈ Γ with gnkh = εkhγk for
all k > 1, or equivalently with

γk = h−1εkh
︸ ︷︷ ︸

→I

h−1gnkh.

Applying this group element to w gives

1

‖w‖w =
1

‖ρ(γn)w‖
ρ(γn)w = lim

k→∞

1

‖ρ(h−1gnkh)w‖ρ(h
−1gnkh)w = vh,

where we have used the fact that Γ 6 L(R) fixes Rw by definition, and
Lemma 3.47. It follows by the same lemma that w is an eigenvector of ρ(h−1gh)
for almost every h. Taking h → e shows that w is an eigenvector of ρ(g) also
and so g ∈ L(R). �

Proof of Theorem 3.46, Part (1). LetHo = H(R)o be the connected compo-
nent of the set of real points of H. Let F be a non-compact almost direct simple
factor of Ho. Then F contains a one-parameter unipotent subgroup U , and we
can apply Part (2) of the theorem to U and to all its conjugates, which together
generate a normal connected subgroup of F (and hence all of F ). Thus L(R)
contains F . We may apply this for all non-compact almost direct factors of H,
which then proves the second claim in Part (1).

This also proves the first claim in Part (1) since by the above L and H have
the same Lie algebra and hence have the same dimension. However, H is by
assumption connected and so L = H follows. �

Exercise 3.48. Let Q be a real non-degenerate quadratic form of signature (p, q) in d vari-
ables with p > q > 1. Suppose the orbit SOQ(R) SLd(Z) has finite volume. Show that a
multiple of Q has integer coefficients.
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3.7 Irreducible Quotients

In this section we classify lattices in semi-simple groups into reducible and irre-
ducible lattices, and derive interesting density results (in the standard topology)
from the Borel density theorem (which gives only Zariski density).

Definition 3.49. Let G be a connected semi-simple Lie group. A lattice Γ < G
is called reducible if G = H1 ·H2 can be written as an almost direct product of
nontrivial connected semi-simple Lie subgroups H1, H2 6 G with the property
that Γ1 = Γ ∩ H1 is a lattice in H1 and Γ2 = Γ ∩ H2 is a lattice in H2. The
lattice is called irreducible if it is not reducible.

Examples of reducible lattices are of course very easy to find, for exam-
ple SL2(Z) × SL2(Z) is a reducible lattice in SL2(R) × SL2(R). Irreducible lat-
tices are a bit more difficult to find†, but for now we only note that, for exam-
ple, SL2(Z[

√
2]) can be made into an irreducible lattice in SL2(R)×SL2(R), see

Exercise 3.53.
We note that every reducible lattice can be ‘reduced’, or ‘almost decomposed’

into irreducible lattices as follows. If Γ < G = H1 ·H2 is a reducible lattice such
that Γ ∩Hi < Hi is a lattice for i = 1, 2, then

(Γ ∩H1)(Γ ∩H2) ⊆ Γ

is also a lattice in G = H1 ·H2 and so has finite index in Γ . Studying now

Γ ∩Hi < Hi

we may obtain an irreducible lattice, and if not we may repeat the decomposition
step as before. Ultimately we find finitely many irreducible lattices (that are
potentially lattices in simple groups). In this context the following notion is
useful.

Definition 3.50. Let Γ,Λ < G be two subgroups of a group. Then we say
that Γ and Λ are commensurable if Γ ∩ Λ has finite index in both Γ and Λ.

Corollary 3.51 (Dense projections of irreducible lattices). Let G be a
semi-simple algebraic group defined over R and suppose that

G = G(R)o = H1 ·H2 ⊆ SLd(R)

is an almost direct product of semi-simple subgroups H1, H2 ⊆ SLd(R). We
assume furthermore that G has no compact factors. Let Γ < G be an irreducible
lattice in G, and suppose that H2 is non-trivial. Then the projection of Γ to‡

† By definition any lattice in a simple group is irreducible, but let us discuss a more interesting
example.
‡ The statement and proof simplify if G ∼= H1 × H2 is a direct product of two simple sub-
groups H1,H2 ⊳ G. The reader is invited to first consider this simpler case.
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G/H2
∼= H1/H1 ∩H2

is dense in H1/H1 ∩H2.

Proof. We note that if F ⊳G is a connected normal subgroup, then F = F(R)o

for a normal algebraic subgroup F⊳G. In fact, if g = f⊕ f′ is a decomposition of
the Lie algebra g ofG into the Lie algebra f of F and a transversal Lie ideal f′ of g,
then F = CG(f

′)o. In particular Hj = Hj(R)
o for an algebraic subgroup Hj ⊳ G

for j = 1, 2. Therefore we may apply the Borel density theorem (Theorem 3.46)
for G or any of its normal subgroups.

Write
π1 : G −→ G/H2

∼= H1/H1 ∩H2

for the projection map. There are two cases to consider: Either π1(Γ ) is discrete
or it is not.

Discrete image implies reducibility. If π1(Γ ) is discrete then its pre-image
under the map H1 → H1/H1 ∩H2 is also discrete. Now let B1 ⊆ H1 be a
fundamental domain for the discrete pre-image of π1(Γ ) in H1 and B2 ⊆ H2

a fundamental domain for Γ ∩ H2 in H2. Then we claim that B1B2 ⊆ G is
an injective domain for Γ . Indeed, if γ ∈ Γ , b1, b

′
1 ∈ B1, and b2, b

′
2 ∈ B2

satisfy b1b2γ = b′1b
′
2, then this identity modulo H2 ⊳ G gives

(b1(H1 ∩H2)) (γ(H1 ∩H2)) = b′1(H1 ∩H2).

Taking pre-images to H1 and applying our assumption that B1 is a fundamental
domain, it follows that b1 = b′1. Multiplying

b1b2γ = b′1b
′
2

with b−1
1 we get b2γ = b′2 and γ ∈ H2. Now b2 = b′2 and γ = I by the injectivity

assumption on B2. Hence B1B2 ⊆ G is an injective domain for Γ , and has finite
Haar measure since Γ is a lattice by assumption. This also implies that† each
of B1 and B2 has finite Haar measure. In particular, Γ ∩H2 is a lattice in H2.

By the Borel density theorem (Theorem 3.46) applied to Γ ∩H2 ⊆ H2 there
is a finite collection {γ1, . . . , γn} ⊆ Γ ∩H2 such that

C(γ1, . . . , γn) = {h ∈ H2 | γih = hγi for i = 1, . . . , n}

is the centre C(H2) of H2. In fact, we may choose γ1 ∈ Γ ∩H2rC(H2) and then
successively choose γ2, . . . so that at each stage

C(γ1, . . . , γm) ( C(γ1, . . . , γm−1).

By the Noetherian property, we must find some n with

† As G is the almost direct product of H1 and H2 the Haar measure mG is, in the same sense,
also almost the product of the Haar measures mH1

×mH2
.
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C(γ1, . . . , γn) = C(Γ ∩H2).

Since Γ ∩H2 is Zariski dense in H2 we deduce that

C(γ1, . . . , γn) = C(H2)

as required.
We claim that this implies for the projection π2 : G→ G/H1

∼= H2/H1 ∩H2

that
π2(Γ ) ⊆ H2/H1 ∩H2

must be discrete as well. In fact, if π2(γ) is sufficiently small but non-trivial,
then by construction

[π2(γ), π2(γj)] 6= I

for some j ∈ {1, . . . , n}. This implies that

[γ, γj ] ∈ H2 ∩ Γ

is very close to an element ofH1∩H2 but does not belong to it. However,H1∩H2

is finite (it is zero-dimensional because its Lie algebra is trivial). This contradicts
the assumed discreteness of Γ , so π2(Γ ) must be discrete as claimed.

The claim establishes a symmetry betweenH1 andH2 in the above discussion.
Applying the argument above again we also see that Γ ∩H1 is a lattice in H1.
In other words, we have shown that Γ is a reducible lattice.

Showing density. We assume now that π1(Γ ) is not discrete. Let

F = π−1
1

(

π1(Γ )
)

∩H1

be the pre-image in H1 of the closure of π1(Γ ). Clearly Γ stabilizes the Lie
algebra f of F . By the Borel density theorem (Theorem 3.46) applied to the
lattice Γ in G, the same holds for G > H1. It follows that f ⊳ h1 is a Lie ideal in
the Lie algebra h1 of H1. If f = h1, then we get the desired density of π1(Γ ) in
the connected group H1/H1 ∩H2.

So suppose that f 6= h1. We define H ′
1 to be the almost direct prod-

uct of all factors of H1 whose Lie algebras are not contained in f. Also de-
fine H ′

2 = F o · H2 to be the almost direct product of all factors in F and H2.
Note that G = H1 ·H2 = H ′

1 ·F o ·H2 = H ′
1 ·H ′

2. Since f 6= h1, the groupH
′
1 is non-

trivial. Let π′
1 : G→ G/H ′

2 denote the analogous projection for the almost direct
product G = H ′

1 ·H ′
2. Note that π′

1 is the composition of π1 : G→ H1/H1 ∩H2

with the quotient by π1(F
o). It follows that

π′
1(Γ ) ⊆ H ′

1/H
′
1 ∩H ′

2

is discrete. By the first argument in the proof, this implies that Γ is a reducible
lattice in G = H ′

1 ·H ′
2. Therefore irreducibility of the lattice implies that f = h1

and the result follows. �
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Our interest in the notion of irreducibility is clearly explained in the fol-
lowing corollary. We note in particular that irreducibility is necessary for the
conclusions to hold.

Corollary 3.52 (Mixing of semi-simple groups). Let G be the connected
component of the group of R-points of a semisimple algebraic group defined
over R. Suppose that G has no compact factors. Let X = Γ\G be the quotient by
an irreducible lattice of G. Then every almost direct factor of G acts ergodically
and the action of G is mixing with respect to the Haar measure mX on X.

Proof. By the Howe–Moore theorem for semi-simple groups (Theorem 2.44),
it is sufficient to show that every simple factor acts ergodically.

So let H ⊳ G be a (non-trivial) simple factor of G, and suppose that the set

H.B = B ⊆ X

is H-invariant†.
Let

πX : G −→ X = G/Γ

be the natural factor map, and let BG = π−1
X (B) ⊆ G be the set in G cor-

responding to B. By the properties of B we have HBG = BG, or equiva-
lently BG = π−1(π(BG)) if π : G → G/H denotes the projection map. By
construction, BGΓ = BG and so π(BG)π(Γ ) = π(BG).

Recall from [45, Prop. 8.6] that, for any two Borel sets B1, B2 ⊆ G/H
with mG/H(B1)mG/H(B2) > 0, the set

{
gH ∈ G/H

∣
∣ mG/H

(
(B1(gH)) ∩B2

)
> 0
}

is non-empty and open.
We may apply this to the set B1 = π(BG) and its complement B2. Since π(Γ )

is dense in G/H by Corollary 3.51, we deduce that either π(BG) has zero mea-
sure or its complement does. Since G is the almost direct product ofH and G/H,
the Haar measure on G can be obtained from the Haar measures on H and
on G/H . Hence either BG or its complement has zero measure in G. It follows
that either mX(B) = 0 or mX(XrB) = 0 as required. �

Exercise 3.53. Let D > 1 be a non-square integer, and for

α = a+ b
√
D ∈ Q(

√
D)

let α = a− b
√
D denote its Galois conjugate. Now let

SL2(Z[
√
D]) =

{

g =

(

α1,1 α1,2

α2,1 α2,2

)
∣

∣

∣

∣

α1,1, α1,2, α2,1, α2,2 ∈ Z[
√
D],det(g) = 1

}

,

and consider SL2(Z[
√
D]) as a subgroup of SL2(R) × SL2(R) using the diagonal embedding

† By [45, Prop. 8.3], we may assume the strict invariance H.B = B rather than the a priori

weaker invariance in the measure algebra mX (g.B△B) = 0 for all g ∈ H.
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ı : SL2(Z[
√
D]) −→ SL2(R) × SL2(R)

g =

(

α1,1 α1,2

α2,1 α2,2

)

7−→ (g, g)

where

g =

(

α1,1 α1,2

α2,1 α2,2

)

.

(a) Show that Γ = ı
(

SL2(Z[
√
D])

)

6 SL2(R) × SL2(R) is a discrete subgroup.
(b) Show that Γ is a lattice in SL2(R)× SL2(R).

Notes to Chapter 3

(14)(Page 90) Almost any algebra text will cover this material, for example Gerstein [58] or,
for the more sophisticated aspects of the algebraic theory, see Lam [93].
(15)(Page 90) The word signature is used in various ways, all meaning that the number
of +1s, −1s (and in the degenerate case 0s) can be reconstructed from the signature (and the
dimension). The fact that the signature is a property of the form itself is Sylvester’s law of
inertia [149] (see Lang [95, XV, Sec. 4] for a modern treatment).
(16)(Page 92) Hilbert [68] proved this in his development of invariant theory.
(17)(Page 97) This kind of approximation was studied by Dickinson and Dodson [30] and
by Druţu [35] (implicitly), by Fukshansky [53] for n = 2, and by Schmutz [136] and Ghosh,
Gorodnik, and Nevo [59, 60] for all n > 2 and in more general settings.
(18)(Page 105) This was shown by Dirichlet [32] in 1846 for the ring Z[ζ] (the understanding
that this may not be the ring of integers in Q(ζ) for an algebraic integer ζ came later, and of
course the rank is not affected as Z[ζ] has finite index in the ring of integers). We refer to the
paper of Elstrodt [50] for an account of the history.
(19)(Page 122) The history, and various generalizations, of the implicit function theorem may
be found in the account by Krantz and Parks [92]. The p-adic implicit function theorem may
be found in the notes of Serre [139, p. 83].
(20)(Page 131) A modern proof from a sophisticated point of view is given by Conrad [15],

and the original proof in Chevalley [13]. Any book on algebraic groups will contain a version
of the theorem (possibly not under this name).
(21)(Page 136) Borel [6] proved this for semi-simple Lie groups without compact factors;
generalizations and simplifications have been provided by Furstenberg [57], Moskowitz [115]
and Dani [17] among others.
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