Chapter 3
Rationality

In this chapter we generalize some of the phenomena hinted at in Section 1.2.
We will define the notion of algebraic groups defined over @@, and show how
these often give rise to closed (and sometimes even compact) orbits on the
space Xg = SLg(R)/ SL4(Z). We motivate this discussion by studying orthogonal
groups, unipotent groups, and orbits arising from number fields. Finally, we
will turn this discussion around by proving the Borel density theorem, which
implies that finite volume orbits in X; typically arise from algebraic groups
defined over Q. For this we also introduce some more basic concepts and results
concerning algebraic groups without developing this important theory very far
(which cannot be done in a couple of pages).

3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits
3.1.1 Orthogonal Groups

Let Q(u) = u*Agu be a rational quadratic form defined by a symmetric ma-
trix Ag € Mat,;(Q), where u is a d-dimensional column vector whose entries are

often variables uq,...,u;. We show now how any such quadratic form gives rise
to a closed orbit of its associated special orthogonal subgroup
SOq = {g € SLy | Q(gu) = Q(u)}. (3.1)

Proposition 3.1 (Closed orbits). If Q is a rational quadratic form, then the
orbit
SOq(R) (1 SLd(Z)) c X,

of the identity coset under the real points of SO is closed.

Notice that the notation SO¢ and SL; used in (B.I)) deliberately does not
specify any field or ring, and therefore leaves somewhat undetermined the group
being discussed; in particular does not specify whether the group is countable
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88 3 Rationality

or uncountable, for example. For now we should think of this as a convenient
shorthand, or a macro, which defines many different groups at once. For example,
if we specify the real points, then the notation denotes the closed linear subgroup
of SLy4(R) defined by

SOq(R) = {g € SL4(R) | Q(gu) = Q(u)}.

Similarly, we may specify the integer points to obtain a discrete subgroup

SOq(Z) = {g € SL4(Z) | Q(gu) = Q(u)}.

of SO (R). More generally, for any ring R we obtain the group SOg(R) of R-
points of SO, (or any similar expression) by taking the R-points of the ambient
group, here SL,, in its definition.

PRrROOF OF PROPOSITION Bl Notice that Q(gu) is the quadratic form defined
by g*Agg and that the symmetric matrix Ag is in one-to-one correspondence
with the form @. Therefore, we may also write

Multiplying Ag by the common denominator of its entries if necessary, we may
assume that A, € Maty(Z) (without changing SO,). Now suppose that

as n — oo with h,, € SO (R) and g € SL4(R). In order to show that the orbit
is closed, we need to show that

x € SO (R) (I SLy(Z)). (3.3)

Notice that (32) simply means that there exist sequences (v,) in SL4(Z)
and (g,,) in SLy(R) with €, — I as n — oo, such that kv, = ¢,g for alln > 1.
Applying these matrices to Ay gives

YmAQTn = ThinAghnn = (€0,9) Ageng — 9" Agy

as n — 00.
However, %tlAan € Maty(Z), so the convergent sequence (%tlAan) has to
stabilize: There exists some n, such that

Yo AV, = MAQTn = 9" Agy

for all n > ng. This implies that gv, ' € SOq(R) which, together with (3.2),
gives (B3). O

In some cases it is also relatively straightforward to combine the previous
statement with Mahler’s compactness criterion (Theorem 1.51) and so deduce
compactness of orbits.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 89

Proposition 3.2 (Compact orbits). If Q is a rational quadratic form such
thald)

0 ¢ Q@0}),
then the orbit SOq(R) (I SLy(Z)) is compact. Equivalently,

SO0g(Z) = {g € SL4(Z) | QtAQg =Aq}
is a uniform lattice in SOq(R).

PROOF. Just as in the proof of Proposition 3.1 we may assume that A lies
in Maty(Z). We need to show that there exists some § > 0 such that

SOo(R) (ISLy(Z)) C X4(6). (3.4)

Then Theorem 1.51 and Proposition B.ltogether show that the orbit is compact.

As Q: R? — R is continuous, there exists some § > 0 such that |z|| < &
implies that |@Q(x)| < 1. Now suppose that ([34]) does not hold for §. Then there
exists some h € SOq(R) such that hZ? contains a non-zero d-short vector hm
with m € Z¢. However, this shows that

[Q(m)| = |Q(hm)| <1 (3.5)
which implies that QQ(m) = 0 since Ay € Mat,(Z), contradicting our assumption

and completing the proof. ([

Ezxample 3.3. These examples describe some of the possibilities that may arise
in low dimensions.

(1) If Qq(uq,uq) = ujusg, then Proposition Bl shows that A SLy(Z) is closed
since SOg (R) = A is simply the full diagonal subgroup of SL,(R) isomor-
phic to R* (see also Section 1.2.2). However, the orbit is not compact, as it
corresponds to the divergent orbit mentioned on page 12.

(2) If Qy(uq,uy) = u? — uquy — u3, then Proposition applies (see Exer-
cise [3.6]), and gives a compact orbit SOg, (R) SLy(Z). As we will see later
(in Theorem [B.5)), there exists some g € SLy(R) and A > 0 for which

Qa(u) = AQ; (gu),
which in turn implies that
SOg, (R) = ¢g7'S0q, (R)g.
To see this notice that h € SOq (R) gives

Q2(9~ " hgu) = AQ; (hgu) = AQ:(gu) = Qo (u).

T @ is then called anisotropic over Q.
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90 3 Rationality

Hence
9850¢q, (R)SLy(Z) = AgSLy(Z)

is also compact. In fact g = ggyg1den from Section 1.2.2 can be used, recovering
the claim made on page 12.
(3) If Q4(uq,us, us) = 2uqus — u3 then Proposition Bl applies, and shows that

SOq, (R)SL3(Z) € X3

is closed. However, it is not compact (see Exercise B1).

(4) If Qq(uq,uq,ug) = u? + ud — 3u? then Proposition B2 applies. To see this,
assume for the purposes of a contradiction (and without loss of generality
by clearing denominators as usual) that Q4(mq,my, m3) = 0 for some prim-
itiveT integer vector (my,my, m3) € Z3. Then using congruences modulo 4
shows that

mi+mi —3m3 =m? +m3+mi (mod 4),

is a sum of three squares modulo 4. However, the only squares modulo 4 are 0
and 1, which forces m, my, ms to all be even, contradicting the assumption.
Hence the orbit

SOg, (R) SL3(Z)

is compact.

We now recall some of the basic theory of quadratic forms over the reals.(!4)

Any symmetric matrix Ag € Maty(R) can be diagonalized in the sense that
there is an orthogonal matrix k for which k*Ak is diagonal. If needed we can
change the sign of the last column to ensure that k € SO4(R). In the associated

coordinate system (vy,...,v4)" we then have
U1 U1 d
Q| =Qk|:||=D cnw?
Vq Vg i=1
for scalars ¢y, ...,cy € R. The form @ is non-degenerate if ¢; #0fori =1,...,d

(equivalently, if det Ag # 0), is indefinite if there exist a pair i,j € {1,...,d}
with ¢; > 0 and ¢; <0, and is positive-definite if c; > 0 for all i =1,...,d.

By taking the square roots of the absolute values of the entries in the diagonal
matrix k*Agk, we may define a diagonal matrix a for which

a_lktAQka_l

is diagonal with entries in {0,+1}. Assuming that @Q is non-degenerate (so that
the entries lie in {£1}), write p for the number of +1s and ¢ for the number
of —1s; the signature(*® of Q is (p,q). We usually assume that p > ¢ (this can

T An integer vector is primitive if the entries are co-prime.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 91

always be achieved by replacing the form @ with the form —@Q). Note that for
non-degenerate @ we have deta = | det Ag|"/2.

The discussion above shows that if @ and Q' are non-degenerate and of the
same signature, then there exists some g € GL4(R) such that Q' (u) = Q(gu).
Moreover, we also have Q'(u) = AQ(g'u) for ¢’ € SLy(R) and A > 0, which
implies as in Example B.3[(2) that SOy and SO, are conjugate in SL4(R).

Ezample 3.4. The quadratic forms (from Example [B.3) Q; and @, have signa-
ture (1, 1); the quadratic forms Q3 and @, have signature (2, 1). It follows that
the orthogonal groups SO (R) and SO, (R) are conjugate (as claimed earlier),
and the orthogonal groups SO, (R) and SOy, (R) are conjugate.

We summarize and strengthen our discussion as follows.

Theorem 3.5 (Signature of quadratic forms). Any non-degenerate quad-
ratic form Q on R? can be assigned a signature (p,q) with p+q = d. Given a
form Q of signature (p,q), the set of quadratic forms of the form Q' with

Q'(u) = Q(gu)

obtained from Q by some g € GL4(R), is precisely the set of quadratic forms
of signature (p,q). The group of R-points of two orthogonal groups for non-
degenerate quadratic forms of the same signature are conjugate in SL4(R).

In the following we will always (and sometimes implicitly) assume that the
quadratic forms are non-degenerate. Fixing, for a given signature (p,q), some
real quadratic form @ of this signature, we define SO, , = SOq. If p = d,
then SO, o(R) = SO,4(R) is compact, and if 0 < p < d it is noffl. Our discus-
sion above (and Example B.3)(3),(4)), shows that there are various matrices g
in SL4(R) for which SO, ,(R)gSL,4(Z) is closed or even compact—these orbits
correspondi to rational quadratic forms with signature (p, q).

Exercise 3.6. Prove that u? — ujuy — u2 # 0 for (ug,up)* € Q* {0} (a fact used in Exam-
ple[33(2)).

Exercise 3.7. Prove the claim made in Example [33]3), by showing that the closed or-
bit SOq, (R) SL3(Z) C X3 has unbounded height.

Exercise 3.8. Let A = S0, ;(R) C SLy(R). Show that every closed A-orbit corresponds (as
indicated after Theorem [35]) to a binary quadratic form with rational coefficients. Notice that
this cannot hold for K = SO, (R).

3.1.2 Rational Stabilizer Subgroups

It is straightforward to generalize Proposition 3.1l However, setting up the lan-
guage of linear groups, in which the generalization is naturally phrased, requires

t Since, for example, it contains at least one copy of SO; ; = A as a closed subgroup.

t At this stage we only know one direction of this correspondence. The second direction will
be obtained from the Borel density theorem, see Exercise [3.48 and Exercise 4.17.
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92 3 Rationality

more work than does the generalization itself. We start this introduction to linear
algebraic groups here, discuss other classes of examples in Sections and [3.4]
and return to the theory of linear algebraic groups in Section and Chap-
ter 7. For a detailed account of algebraic geometry, we refer to the monographs
of Hartshorne [66] or Shafarevich [140], and for linear algebraic groups we refer
to those of Borel [7], Humphreys [69], and Springer [148].

An affine variety is a subset Z of C" or, more generally, of K" for another
field K with K an algebraic closure, defined by the vanishing of polynomial

equationsm. We will write both Z and Z(K) for this variety, so that

Z = Z(K)

will always consist of all solutions to the polynomial equations over the algebraic
closure. An important example for us is

SLy; = {g € Mat, | detg — 1 = 0},

where Mat, is the d2-dimensional vector space of d x d matrices.

A regular function is simply the restriction of a polynomial to the Varietyﬁ.
In order to be able to work with this definition, and in particular to have a way
to uniquely describe a regular function, we need to know when a polynomial
vanishes on the variety. The description of the set of polynomials that vanish
on an affine variety is given by the Hilbert Nullstellensatz,('®) which we now
recall. We refer to Eisenbud [48, Th. 1.6] or Hungerford [70, Prop. VIII 7.4] for
the proof.

Theorem 3.9 (Hilbert Nullstellensatz). Let K be an algebraically closed
field, and let J C K[z, ...,x,] be an ideal defining the affine variety

Z(J)={z K" | f(x) =0 for all f € T}.

Then f € K[z, ...,x,] vanishes on Z(J) if and only if there exists a power f™
for some m > 1 of f that belongs to J .

The ideal
rad(J) ={f € k[zy,...,z,] | /™ € T for some m > 1}

is called the radical of the ideal J. If we now write K[Z] for the ring of reg-
ular functions on the variety Z = Z(J) defined by the ideal 7, then we can
reformulate the Nullstellensatz by the formula

T We apologize to the expert for this barbaric and old-fashioned definition, but as our focus
will usually be on rather concrete groups comprising R-points, this approach is appropriate
here. We will on occasion (indeed, are just about to) avoid mentioning the field we are working
over, but we still wish to avoid talking about schemes, spectrum, and using the language of
modern algebraic geometry.

¥ Once again we must apologize for avoiding a more general definition, our excuse being that
this is adequate for affine varieties.
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 93

K[Z(J)] = Klz1, ..., 2,]/rad(T).
Returning to our example
SLd = Z(det() — 1) g Matd,

we need to establish what the radical of the ideal generated by the polyno-
mial det(-) — 1 in d? variables is in order to talk about regular functions. This
is explained by the following result.

Lemma 3.10 (SL; is Zariski connected). For any d > 1 the polyno-
mial det(g) — 1 is irreducible as a polynomial in the variables g; ;, 1 <i,j < d,
with coefficients in C (or in any other field).

PROOF. Suppose that det(g) — 1 = p(g)q(g), where p, ¢ are polynomials in the
independent variables g; ;, 1 < 4,5 < d. Now notice that the determinant is
linear in each of its rows, so for every pair ¢, j the polynomial det(g) — 1 is of
degree one in the variable g; ;. It follows that for any ¢,j one of p or ¢ is of
degree one in g; ; and the other is independent of g, ; (that is, of degree zero in
the variable g, ;). As this holds for every pair i, j, we obtain a partition

PUQ={(,j)1<4,j<d}
of the indices so that
p(g) € Clg;; | (i,7) € P]
and
q(g) € Clg;; | (4,5) € Q].

If P (or Q) is empty, then p € C (respectively g € C) is a scalar—which is the
desired conclusion.
With deg denoting the total degree,

d = deg(det(g) — 1) = deg(p(g)q(g)) = deg(p(g)) + deg(q(g))- (3.6)

Assuming that P and @ are both non-empty, we derive a contradiction by
defining

if (i,7) € P;

if (i, ) € @,

which extends to monomials m by summation over the factorization of m, and
to polynomials by defining

1
degp(gi ;) = {_1

degp (D cumi) = max{degp(my) | ¢ # 0}.
Just as in (36), we find that

degp(pg) = degp(p) + degp(q).
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94 3 Rationality

Now ¢ must have a constant term (since det(g) — 1 has a constant term),
so degp(q) = 0. It follows that p(g)q(g) contains monomials in the variables g; ;
with (7,5) € P of total degree degp(p) = deg(p) only. By (.0) and our assump-
tions on P and @ we have 0 < deg(p) < d. However, this is a contradiction
as det(g) — 1 contains a constant term, and all other monomials have total
degree d. 0

Let K be any field. We will often be interested not in the whole variety
consisting of all points in K" defined by an ideal over the algebraic closure of a
field, but in fact only in the K-points of the variety, meaning those vectors in K™
on which the polynomials all vanish. In general this set may be empty because K
is not assumed to be algebraically closed, and even if it is non-empty it may not
resemble the whole variety. In particular, there is no reason for the set of K-
points to remember the ideal at all (in other words, Theorem does not hold
without the requirement that the field be algebraically closed). Nonetheless, we
may define for any affine variety Z its K-points as the set

Z(K) = ZNK",

where as before Z = Z(K) by definition.
Moreover, we are often interested in regular functions with ‘coefficients’ in K.
Formally we define

K[Z] = K[zy, .. 2]/ T 0Kz, . .., 2],

as the ring of K-regular functions under the assumption that Z is defined
over K, meaning that J = rad(J) defines Z and J NK[zy,...,z,] generates
the ideal J C K|y, ...,x,]. We will return to these notions in Section

Let us return to our main example SL; which is defined over any field K,
since the coefficients of the irreducible polynomial det(-) — 1 are integers. Hence
it makes sense to consider the ring of K-regular functions

K[SLd] = K[gl,lv -o-591,dv92,15--992,dy- - -5 9d, 15 - - - agd,d]/<det(g) - 1>,

where K is the field of coefficients allowed in the polynomials. For us the field K
will often be R, Q,, or Q.

A D-dimensional algebraic representation of SL; over K is a D2-tuple of
polynomials

#;,5(9) € K[SLg]

for 1 <i4,5 < D, which we think of as a matrix
¢ € Matp (K[SLg])

with the properties that ¢(I;) = Ip and

o(g)(h) = d(gh) (3.7)
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3.1 Quadratic Forms, Stabilizer Subgroups, and Orbits 95

for all g, h € SL,. Equivalently, (87) could be required to hold as an abstract
identity in the variables gy, hy, for k,¢ = 1,...,d satisfying the polynomial
condition

det(g) = det(h) = 1.

This equivalence follows from Hilbert’s Nullstellensatz (Theorem [B9) and
Lemma

Let us give an example of a representation of SL;, which will be important
in Section B4l The conjugation representation is defined by

Mat,; 3 A — gAg~!

for g € SL,. Since det(g) = 1, the matrix g~! has entries which are regu-
lar functions (since the inverse is calculated by taking the matrix consisting
of the determinants of the minor matrices multiplied by the inverse of the de-
terminant). Therefore, we can choose a basis and get a D = d?-dimensional
representationfl beonj (defined over any field K). Indeed, ¢eon;j(9)@coni(h) is the
matrix corresponding to the composition

Avr— hAR™" — g (RAR™Y) g71 = (gh)A(gh) ™",

which is also represented by ¢.onj(gh). Therefore, (8.17) holds by uniqueness of
matrix representations.
Another example of a representation has already been used: For g € SL; the
map
Maty 3 A — (¢°) "t Ag™* (3.8)

is linear in A and a regular function in g. Moreover, we may restrict to symmetric

matrices and choose a basis of the space of symmetric matrices. In this way we

obtain a matrix representation ¢, € Matp with D = @.

Proposition 3.11 (Rational stabilizer groups of points have closed
orbits). Let ¢: SL; — GLp be an algebraic representation over Q, and
let v € QP. Then the (rational) stabilizer subgroup

Stabgr,, (v) = {g € SLq | ¢(g)v = v}
gives rise to a closed orbit
Stabgr,, (v)(R) (I SLy(Z)) € X4
through the identity coset.

Notice that Stabgr,,(v) is itself a subgroup defined by polynomial equations
(and hence will be seen to be an algebraic subgroup defined over Q, once we

T As will become more and more clear, part of the art in discussing algebraic groups and their
representations will be to not really write down any concrete polynomials or regular functions
(as these quickly become quite complicated).
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96 3 Rationality

define this notion in Section BA]). The proof of Proposition [3.11]is much quicker
than the discussion above, which was included to familiarize the notion of alge-
braic representations of SL,.

ProoF oF ProprosITION 311l Notice that there are finitely many coefficients
in (a representation of) the polynomials in ¢(g). Let N be their common denom-
inator, so that ¢(y) € + Matp(Z) for all v € SLy(Z). Let M be the common
denominator of the entries in v. Suppose that

as n — 0o with h,, € Stabgr,,(v)(R) and g € SLy(R). We wish to show that
x € Stabgy,, (v)(R) SLy(Z). (3.10)

Just as in the proof of Proposition Bl we may rewrite B9) as h,7y, = €,9

with ~,, € SL4(Z), €,, € SL4(R), and €,, — I as n — co. Applying the inverse of

these matrices to v via the representation ¢ shows that the sequence (gb(”yn)_lv)
1

. . D .
lies in 373 Z"~ and converges, with

S(1n) "0 = D(hy1n) TN = Gleng) v — d(g)

as n — oo. Therefore this sequence must stabilize, and so ¢(7,) " 1v = ¢(g) " tv
for some n, which shows that gv, ' € Stabgy, (v)(R), giving B.I0). O

Although the following is not needed for the proof above, let us try to un-
derstand a little more about SL,;(K) and algebraic representations of SL; over
any field K.

As shown in Lemma 1.60, SL;(K) is generated by the elementary unipotent
subgroups

U; j(K) = {u,; ;(t) =T +tE; ; | t € K}

with ¢ # j and E; ; being the elementary matrix with (i, j)th entry 1 and all
other entries 0.
The group SL,4(K) coincides with its commutator subgroup

[SL4(K), SLq(K)] = ([g,h] | g, h € SL4(K)),

where [g,h] = g~'h~1gh. To see this, notice that if we choose an appropriate
diagonal matrix a then

[u; ;(t), a] = u; ;(at)

for some o # 0. Hence [SL,(K), SL;(K)] D U, ;(K) for all i # j, and the result
follows by the remark above.

It follows that SL4(KK) (resp. SL4(K)) cannot have any abelian factors, and
so det ¢(g) = 1 for every algebraic representation over K. By Theorem and
Lemma this must therefore also hold as an identity in

K[SLy] =Klg; ; : 4,5 =1,...,d]/(det g — 1).
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3.2 Intrinsic Diophantine Approximation on Spheres 97

Exercise 3.12. For any subspace V C R% we define
Ly ={g€SL,; | gV =V and g|y preserves the volume}.

(1) Show that Ly (R) SL4(Z) C Xy is closed if V is a rational subspace.

(2) More generally, let g = goSLg(Z) and let V be a goZ%-rational subspace. Show
that Ly (R)zq is closed.

(3) Let g and V be as in (2). Let G < SL4(R) be a closed subgroup such that Gz is closed.
Show that (G N Ly (R))zq is closed.

3.2 Intrinsic Diophantine Approximation on Spheres

We fix d > 2 and wish to discuss Diophantine approximation for points in the
sphere S~ C R?. However, we wish to find approximations to points v € S4~1
by rational vectors +p € S~ within the sphere. We will refer to this sort of
problem as intrinsic Diophantine approximation. In contrast to the abundance
of rational points in R? used for extrinsic approximation it is not a priori clear
how many rational points in S?~! exist (but Pythagorean triples certainly give
rise to many). As a result it is not clear what error rate or quality of approxi-
mation should be expected in this setting.

After earlier work('”) Kleinbock and Merrill [83] found and proved the optimal
result in 2015. We only discuss a few of their results and the version of Dani’s
correspondence they found, and refer to their paper for more details and further
results.

Theorem 3.13 (Intrinsic approximation for S?~'). For a point v € S%1
and an integer N > 1 there exists an integer ¢ with 1 < ¢ < N and an integer
vector p € Z4 with %p € S and with

)

1 H o C
V——p

q | h q%N%
where C' > 0 is a constant depending only on d.

This implies the following corollary quite directly.

Corollary 3.14 (Intrinsic approximation for S?~!). For any v € S~ there
exist infinitely many p € Z% and integers q > 1 with %p € S and with

v—-p|| <—
q q

)

1H C
<

where C is a constant as in Theorem B.13l

This in turn motivates the following definition.
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98 3 Rationality

Definition 3.15. A vector v € S¥~! is said to be intrinsically well approzimable
if for any € > 0 there exist infinitely many p € Z¢ and integers ¢ > 1 with %p €

S?-1 and with

v—-p| < —-.
q q

If this does not hold, v is called intrinsically badly approzimable.

1H5

3.2.1 The Dynamical Interpretation

The amazing insight of Kleinbock and Merrill was that intrinsic Diophantine
approximation in S%~! also has a dynamical interpretation similar to that used
in Section 2.4. This allowed them to translate known dynamical results and
bring them to bear on the problem of intrinsic Diophantine approximation.

For this we let Qq(zg,z1,...,24) = —25 + 25 +--- + 27 and G = SOq (R)°.
Then Y = G-Z4*! = G/G NSL444(Z) is a closed orbit by Proposition B.11 We
also define the diagonal subgroup A = {a, | t € R} by setting

cosht —sinht
a; = | —sinht cosht eqd
I

for t € R. Finally for v € S?~! we may apply the Gram-Schmidt procedure and
let k, € SO4(R) have v* as its first row vector and then define

AU—<1]€)Zd“eY,

Notice that the elements of A, have the form

q

() G) |

with ¢ € Z and p € Z¢ and the remaining entries corresponding to the orthogonal
projection of p onto (Rv)L.

Proposition 3.16 (Intrinsic Dani correspondence for S?~1). A wvector v
in S41 is intrinsically well approzimable if and only if the forward orbit

{atA'u | t= 0}

is unbounded in Y .
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3.2 Intrinsic Diophantine Approximation on Spheres 99

Before we start the proofs of the results above we rephrase Mahler’s com-
pactness criterion for subsets of Y. For this and the following discussion it will
be convenient to say that a vector v € R4 is a light vector if Q(v) = 0.

Lemma 3.17 (Mahler compactness in Y using light vectors). For a point
y=9SLa1(Z) €Y
with g € SOq, (R)° we have
M (y) = w(y) = min{[[v] | v € gZ4{0} and Qo(v) = 0}

In particular, a closed subset B C'Y is compact if and only if w|g > € for
some € > 0.

PROOF. Suppose first that \;(y) < 1 and let A (y) = ||v|| for v € gZ4*!. Then
Qo) = | —vg + i+ +v3| < o] < 1

and Qo(v) = Qu(g~'v) € Qu(Z**) C Z imply that Qy(v) = 0. There-
fore A1(y) < 1 implies that A;(y) = w(y).

By Mabhler’s compactness criterion (Theorem 1.51) and Proposition B] the
set {y € Y | A\(y) > 1} is compact. This implies that w is bounded on this set.
Together with A; < w and the above this gives A\; < w. The lemma follows from
Theorem 1.51 and Proposition 311 ([l

PROOF OF THEOREM B.I3 Let v € S 1, ¢t > 0 and (Z) € Z%! be a light

vector such that ¢ = ||p|| > 0 and

a; (1 ky) <Z> H = w(ad,) < 1. (3.11)

In particular the first two entries of

5:

q gcosht —(v,p)sinht

a, (1 . > <;> — a (v,p) | — | —gsinht (v,p)cosht

are bounded by §. Taking their sum and difference gives

lge™" + (v,p)e™"| = e7*|q + (v,p)| < 20,
‘qet — (v,p)et‘ = et|q — (v,p)‘ < 20. (3.12)

In particular by dividing by the exponentials, dropping the absolute values, and
taking the sum we obtain

2q < 20e’ + 26e" < 46e’.
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100 3 Rationality

Moreover, dividing [3.12) by ge’ gives
‘ 1 20
1-— (v, —p) <
q

qet’

As (Z) is a light vector we have %p € S ! and

2_2—2(1;,1@) < B (3.13)

Hence together with § < 1 we conclude that |q| < cye! for some constant ¢y and

1 1
v—-pll KL
q

[N Rl

1
qze

We now fix N > ¢y and define t = log % to obtain the desired estimate. For

the case N < ¢q we simply use ¢ = 1 and p = (1,0,...,0)" and increase the
constant C' accordingly. g

PRrROOF OF PROPOSITION [B.I6l Suppose first that the orbit is unbounded.
Let 5 > 0 and find ¢ > 0 so that w(a,4,) < gy. This gives the bound B.I1))
with § = w(a;4,) < g9, which implies (B.I3)) for ¢ < 2de’. Together this gives

1

7487 4el
v—-p| < < —
q

It follows that v is intrinsically well approximable.
Suppose now that v is intrinsically well approximable and let € > 0. Then
there exists an integer ¢ > 1 and p € Z? with %p € S? and with

1

v ——p g 3.14
. (3.14)

Q| M

Taking the square and expanding gives

2

1 1
2—2(1},—19): v——pH<E—2.
q q q

We set ¢ = eet and note that for sufficiently large ¢ we will have ¢t > 0. Multi-
t
plying the above with %~ gives

e'g+ (v,p)] < 2e.

Using the usual definitions of cosht and sinh ¢ we may also rephrase the above
as
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3.2 Intrinsic Diophantine Approximation on Spheres 101

|gcosht — (v, p) sinht| < e,
|—¢sinht + (v,p) cosht| < e.

In other words we have obtained good estimates for the first two components

of the vector
1 q
a/t k p .

By definition of a, and k, the remaining entries correspond to the orthogonal
projection 7(p) of p to the orthogonal complement of Rv. Therefore these entries

are bounded by
1
Il = jam | cp—v ]|l <<

due to ([BI4]). Together we have shown that

A (ak, 24 <e.

As e > 0 was arbitrary we deduce that the forward orbit is unbounded. O

In the next chapter we will show in particular that Y has finite volume.
Moreover, G = SOgq (R)° = SO, 1(R)° is a simple Lie group. Together with the
Mautner phenomenon in Proposition 2.25 this gives ergodicity for the action
of A on Y. From here it is possible to show that almost every v € S9! is
intrinsically well approximable (along the lines of Exercise 2.24).

On the other hand it is also possible to find many vectors v € S% that are
intrinsically badly approximable using Schmidt games. Together this shows that
the results presented are in a sense optimal. However, the precise value of C' in
Theorem is mysterious and depends on the geometry of the orbit Y. We
refer the reader to the paper of Kleinbock and Merrill [83] for more details.

Exercise 3.18 (Intrinsic Dirichlet improvability). Prove that there exists some con-
stant A € (0,C) with the following property. If v € S?~1 has the property that for any large
enough integer N there is an integer ¢ with 1 < ¢ < N and p € Z% with %p € S and with

A
11
q§N§

v——p|| <
q

then v is rational, meaning that v € Q4 N S4—1,
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102 3 Rationality

3.3 Rational Unipotent Subgroups*

[fIn this section we will construct lattices in certain} connected, simply connected
nilpotent Lie groups. By Ado’s theorem (see Ado [1] or Knapp [87, Th. B.8])
and Engel’s theorem (see Knapp [87, Th. 1.35],) such a group can be embedded
into the upper triangular subgrou

1x*... %
... %

N = o < SLy(R) (3.15)
1

for some d > 1. A subgroup G < SL4(R) is called unipotent if it is conjugated
to a subgroup of N.

Theorem 3.19 (Lattices and Mal'cev basis for unipotent Q-groups).
Let G < SL4(R) be a connected unipotent subgroup whose Lie algebra g is a
rational subspace of s13(R) C Maty(R). Then

G(Z) = GNnSLy(Z)
s a uniform lattice in G. Moreover, writing { = dim G, there exist elements
vy, ..., 0 € gN sl (Q)
for which
G(Z) = {exp(k1v1) exp(kavy) - - -exp(kevy) | Ky, ... ke € Z}

G = G(R) = {exp(s,v;) exp(savq) - - -exp(spvy) | 51, .., 5, € R},
and
F = {exp(t1v1) exp(tavy) - -exp(tyvg) | £y, ... t, € 0,1)}
is a fundamental domain for G(Z) in G. Moreover, the map

(8155 80) — exp(syv1) exp(szvz) - - - exp(sevy)

is a (polynomial) diffeomorphism between R® and G. The vectors vy, ... v, in g
are called a Mal'cev basis.

T This section gives more examples of compact quotients of nilpotent groups, but otherwise
is not essential for most of what follows. It will, however, become part of our proof of the
Borel-Harish-Chandra theorem in Section 7.4.

¥ Once we have discussed these notions it will be easy to see that the groups we will discuss
here are of the form G = G(R) for a connected unipotent algebraic group G defined over Q.
As the theorem and its proof does not require this language we leave this fact to the reader.
§ Ado’s and Engel’s theorems are usually stated for a nilpotent Lie algebra instead of for the
corresponding simply connected group, but the former implies the latter, see Exercise [3.20]
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3.3 Rational Unipotent Subgroups 103

PrOOF. As g C sl;(R) is, by assumption, both a nilpotent Lie algebra and
a rational subspace, the same holds for all the elements of the lower central
series. In particular, g’ = [g, g] is a rational subspace. By assumption, g can be
conjugated into the Lie algebra of N. Therefore, the exponential map

exp(v) =T +v+ 3102+ + ﬁvdfl
is actually a polynomial map on g with the logarithm map
log(9) =g —1—5(g =1+ +(-1)'z5(g-1)""

as a polynomial inverse (which is defined on all of G). From this it follows that
the linear group G is isomorphic to its Lie algebra g, if we equip the latter with
the polynomial group operation v * w = log(exp(v) exp(w)).

Recall that there is a—possibly immersed—Lie subgroup G’ <1 G with Lie
algebra g’. This shows that for sufficiently small v,w € ¢ the product v * w
lies in g’. However, using the fact that the group product v * w for v,w € g
is a polynomial in v and w, we can now concluddl that g’ « g’ C ¢’. Indeed,
if ¢ is a linear function vanishing on g’ and v € g’ is sufficiently small, then
the map w — ¢ (v * w) is a polynomial on g’ which vanishes on all sufficiently
small w. Tt follows that (v x w) = 0 for all w € g’. Reversing the roles of v
and w, and using the fact that a linear subspace is defined by the collection
of all linear functions that vanish on it, we see that g’ * g’ C g’. However, this
shows that G’ = exp(g’) is simply the isomorphic image of the Lie ideal g’ and
so is a normal closed connected subgroup of G. Note furthermore that the Lie
algebra of G/G' is g/g’. Hence G/G’ is abelian and can be identified with its
Lie algebra under the exponential map.

As m = dim(G") < ¢ = dim(G) and the Lie algebra g’ of G’ is rational, we
may assume that the theorem already holds for the unipotent subgroup G’. So
let v, ..., v}, be the Mal’cev basis for G’ and the uniform lattice

Let F/ C G’ be the fundamental domain as in the theorem for G'(Z) in G’.
Let V C g be a rational linear complement to g’ < g.

We claim that the image of G(Z) in the abelian group G/G’ = g/g’ =2 V is
discrete. For this let K = exp (BY ) C G/@G', which is a compact neighbourhood
of the identity. Suppose that

NG e KN (G(Z)/G) C G/G.

Then we may modify the representative v by elements of G'(Z) on the right to
ensure that v € exp(BY)F', so that v belongs to a fixed compact set. As G(Z)

T Once we have introduced the notion of Zariski density we will see that this argument uses
the fact that the Hausdorff (that is, standard) neighbourhood of (0,0) € g’ x g’ is Zariski
dense in g’ x ¢’
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104 3 Rationality

is discrete it follows that there are only finitely many possibilities for vG’, and
so the image of G(Z) in G/G’ is discrete.

Next we claim that the image of G(Z) modulo G’ is a lattice in V. To see
this, we have to find £ —m = dim V' linearly independent elements in the image
of G(Z) in G/G’ = V. This follows in turn since for every rational element v € V
we have

exp(Nv) =14 Nv+ $N%0? + .- + ﬁ]\ﬂl*lvd*1 € G(Z)

for a sufficiently divisible N.
We now choose vy, ...,v, € g so that

exp(v;) € G(Z)
for j =1,...,¢ and the elements
exp(v1)G, ... exp(v,)G’

are a basis of the lattice obtained from G(Z) in G/G’ (see Exercise 1.43). The

elements

!/ !
Viyeo oy UpyU1yee oy Uy

are now a Mal’cev basis.
To see this, let v € G(Z). Considering vG' we find ky,...,k, € Z such
that vG' = exp(kqv;) - - - exp(k,vy)G’, or equivalently
7' = (exp(kyvy) - exp(kpvg)) "'y € G
Applying the inductive assumption it follows that

/

v = exp(kyvy) - - exp(kevg) exp(kivy) - - - exp(ki, vy, )

for some ky, ..., ko Ky, ... Kk, € Z. If g € G is arbitrary we may argue similarly
to obtain unique sq,...,s, € R with

g = exp(siv1) - - exp(sve) exp(s107) - - - exp(8y, Uy )-

Furthermore, if we consider g as a representative of a coset gG(Z) we may
define k; = |s;] for j = 1,...,¢ and multiply g on the right with the lattice

element (exp(k;v;) - - exp(kgvg))fl to obtain

g(exp(kyvy) - - exp(kevg)) ™" = exp(tyvy) - - - exp(tevg)g’

with ¢ € G’ and uniquely determined t,...,t, € [0,1). Moreover, by the
inductive assumption for ¢’ there exist uniquely determined t¢},...,t, € [0,1)
with

9'G'(Z) = exp(exp(tiv1) - - - exp(tpv}) G (Z).
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3.4 Algebraic Number Theory and Compact Torus Orbits 105

We deduce that the set F' is indeed a fundamental domain. O

Exercise 3.20. In Knapp [87, Th. B.8, Th. 1.35] it is shown that any nilpotent Lie algebra
can be embedded into the Lie algebra n of N for some d > 1 (where N is defined by BI53).
Use this (and the discussions regarding the exponential map of this chapter applied to G = N)
to show that every connected, simply connected nilpotent Lie group can be embedded into N.

Exercise 3.21. Let G be a unipotent connected subgroup of SL;(R) (with a rational Lie
algebra). Show that G can be defined using polynomial equations (with rational coefficients).

3.4 Algebraic Number Theory and Compact Torus
Orbits*

[ this section we study another class of examples of orbits of rational stabilizer
groups, which are intimately related to algebraic number theory. Let

K =Q(¢) = Q[T]/{m(T))

be an algebraic number field generated by an algebraic number ¢, with minimal
polynomial m of degree d = [K : Q] = degm(T). We may assume that m
is monic. Let @ C K be an order (a subring of K that is isomorphic to Z¢
as a group). Replacing ¢ by n(¢ has the effect of multiplying the non-leading
coefficients of m(T) by powers of n. Thus we may assume that m € Z[T], so
that ¢ is an algebraic integer@, and Z[C] is an order. Even though K can be
embedded into R or C, we prefer not to think of K as a subfield of C but rather
as the abstract field K = Q[T]/(m/(T)) with { =T + (m(T)).

The following represents the first fundamental result('®)
number theory that we wish to prove.

within algebraic

Theorem 3.22 (Dirichlet unit theorem). Let O be an order in an algebraic
number field K. The group O* of units is isomorphic to F x Z"T5~1 where F is
a finite group of roots of unity in K, r is the number of real embeddings K — R,
and s is the number of pairs of complex embeddings K — C.

The numbers r and s may also be described as follows. Splitting m(T") over C
gives

m(T) = (T = C1) - (T = )T = Gop)(T = Grp) -+ (T = Gy )(T = Grps),

with ¢1,...,¢ € Rand ¢q1,...,(4s € CN\R. Using K = Q[T]/(m(T)), the
real embeddings ¢;: K — R are then all of the form

T This section provides interesting examples of algebraic groups (more precisely, of torus
subgroups) and compact orbits, and connects these to algebraic number theory. It is not
essential for most of the later chapters. It will, however, become part of our proof of the
Borel-Harish-Chandra theorem in Section 7.4.

t An algebraic integer is an algebraic number for which the monic minimal polynomial has
integer coefficients.
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106 3 Rationality

¢1(f(T)) = f(Cz)

for some ¢ =1,...,r, and the complex embeddings are all of the form

¢r+i(f(T)) = f(<r+i)7

respectively

Grri(f(T)) = f(Grri),

fori=1,...,s and f € Q[T].

For the second fundamental theorem in algebraic number theory we need two
more definitions. For an order O in a number field we say that an ideal 7 C O
is proper if O = {b € K | bJ C J}. Note that O itself is always a proper ideal
in O. Moreover, two ideals 7, J' C O are equivalent if there exists some b € K
so that J' =bJ.

Theorem 3.23 (Finite class number). For a number field K and an order O
there are only finitely many equivalence classes of proper ideas in O.

3.4.1 Compact Orbits Arising From Number Fields

Another point of view in discussing K and its embeddings is given by studying
the map defined by multiplication by ¢ =T + (m/(T))

¢ QIT]/(m(T)) — Q[T]/{m(T))
)+ (m(T)) — TF(T) + (m(T)).

We consider - as a linear map over Q. In this way the characteristic polynomial
of -¢ is a rational polynomial which annihilates the map. As m is irreducible of
degree d it follows that m is the characteristic and also the minimal polynomial
of the map. Therefore, the linear map - has eigenvalues

Clv ety Crv <r+17 <r+17 ety CrJrsv <T+S'

More generally, if -b is the linear map defined by multiplication by b € K, then
its ei%envalues (considered as a Q-linear map on the vector space K over Q) are
agai

(bl (b)a R ad)r(b)v (br—i-l(b)v (br—i-l(b)’ R ¢r+s(b)7 (br-i-s(b)'

We now discuss how to obtain a concrete matrix representation of K, which
will allow us to use the results of Section [3.Jl This is quite similar to how one
can consider C as a field of 2 x 2 matrices using the correspondence

T This follows since b = f(¢) for some polynomial f. If b € K~\Q then none of the eigenvectors
are in Q. In that case the eigenvectors only appear after ‘extending the scalars’, for example
replacing K = Q4 by K ® C == C4.
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3.4 Algebraic Number Theory and Compact Torus Orbits 107

a+ib +— (a_b>,
b a

and it is helpful to view the construction below simply as an analogue of this.
We let ¢y, ..., cq be a Z-basis of a proper O-ideal 7. With this basis in mind,
we may now identify the linear map -b on K with a matrix

¥7(b) € Maty(Q).

We are again using column vectors so that -b: K — K corresponds to apply-
ing ¥ (b) to column vectors v € Q™. By assumption, for b € K we have

be O« (-b)(¢;) € J for all i < 1) 7(b) € Maty(Z),
and so also
be O <= 1,(b) € GLy(Z) = {g € Maty(Z) | det(g) = £1}. (3.16)
Below we will be studying the subgroup
O = {be O [ Y7(b) € SL4(Z)};

this is either O* or an index two subgroup of O*, and so it suffices to show the
desired description for O!.

Proposition 3.24 (Compact torus orbit). Let v, = ¢ ;(¢) € Maty(Z) and
consider the stabilizer subgroup

Ty ={9€SLa|gvsg~" = vy}
for the conjugation action (that is, the centralizer of vz ). Then the orbit
T7(R)(ISL4(Z))
is compact, and the corresponding uniform lattice T 7(Z) < T 7(R) satisfies
T7(Z) = SLa(Z) N T7(R) = 37 (O%).

In more technical language, the subgroup T is a special case of an algebraic
torus (it is in fact a Q-anisotropic Q-torus). Moreover, the algebraic group T 7
is closely related to the group Resg g G,, obtained by applying restriction of
scalars to the multiplicative group G,,—it is the kernel of the Q-split char-
acter Nk g on Resg g G,,. Minding our language we will not use these words
often, but we will give a short introduction to these terms in Chapter 7.

PrOOF OF PrROPOSITION 3241 By Proposition B.11] and our definition of T 7,
we know that the orbit is closed. We prove compactness along the lines of the
proof of Proposition 3.2l For this we need a replacement for the quadratic form,
and this is provided by the norm form
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N(b) = Nkg(b) = det 7 (D)

which is originally defined on K (but independent of J or its chosen basis).
Since K is a field, N g(b) = 0 for b € K if and only if b = 0, which is similar
to the hypothesis in Proposition 3.2l Let us write

t(v) = vieg + -+ vgeg

for v € Q%, so that by assumption ¢ gives an isomorphism between Z? and J as
well as between Q7 and K. We also note that 17 o .: Q¢ — Mat,(Q) is linear,
and so we can extend it to a linear map

¥, R — Maty(R).

Similarly we may think of det7(¥(z)) as a polynomial in d variables zq, ..., 24
of total degree d.

Now suppose that T 7 (R) (I SLy4(Z)) is unbounded. Then for some m in Z4\{0}
and h € T 7(R) the vector hm is very small. This implies that | det & 7 (hm)| < 1.
We claim that

Assuming this for now, and recalling that h € SL;(R), we obtain that (in analogy
to (B.0) on pageBI) |det ¥(hm)| = |det ¥(m)| < 1, which forces det ¥(m) = 0
(since det W(m) € Z). However, m € Z*\{0} corresponding to some

b=1(m) € {0}

cannot have Ngg(b) = det¥;(m) = 0, proving that T;(R)(SL4(Z)) is
bounded, and hence compact.

To prove the claim BI7), and the statement T /(Z) = ¢(O") in the propo-
sition, we would like to understand T ; better. Notice that

{g € Maty | gvs; =vs9} (3.18)

is a linear subspace defined by the requirement to commute with v;. To analyze
the dimensio of this subspace we may conjugate v; over C to the diagonal
matrix vgi,, With eigenvalues

<17 ety <r7 <r+17 <r+17 ety <r+57 <T+S'

As these are all different, the only matrices that commute with v4;,, are diagonal
matrices. This shows that the dimension of the subspace in (BI]) is d. Hence

{9 € Maty(Q) | gvy = v79} =7 (K)

T As the subspace in question is defined by rational equations, the dimension of it as a subspace

of Maty(Q) over Q equals the dimension of it as a subspace of Maty(R) over R (and similarly
for C).
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and taking the R-linear hull we get

{g € Maty(R) | gvy = v7g} = (Y7 (K))p = ¥z (RY). (3.19)

The first of these equations implies that
Ty (Z) =45 ({b€ K | ¢(b) € SLy(Z)}) = ¥5(O)
by (B3.10).

Also notice that
Vg (be) =¥ 7(b)Ys(c) (3.20)

for b,c € K, since 9 s is giving the matrix representation of multiplication by
elements of K in the given basis. This may also be phrased as

Y7 ((hm)) = b7 (e(m)) (3.21)

for h € ¢ ;(K) and m € Z%. Indeed, h = 1;(b) is the matrix which sends m
corresponding to ¢ = 2(m) to hm corresponding to be = «(hm), so that the left-
hand sides of (320) and (3ZI)) agree. The right-hand sides agree tautologically,
and so (BZI)) follows. Equivalently, we have shown that the identity 3.I7) holds
for h € Y 7(K) and m € Z%. However, this is a linear equation in A which there-
fore also holds for h € ¥ ;(R?) in (3.19). In summary, we obtain the claim (B.17)
and the proposition follows. O

3.4.2 Proving the Dirichlet Unit Theorem

To finish the proof of Theorem [3.22] we need to analyze the structure of T 7 (R).

Proposition 3.25 (R-points of the torus subgroup). With the notation as
above,
T,(R)= M x R"571

where M is a compact linear group with connected component of the identity

isomorphic to (S*)*.

The pair of numbers (r, s) play a similar role for T as the signature of the
associated quadratic form does for an orthogonal group. In this sense, the result
above is an analogue of Theorem

PROOF OF PROPOSITION B.285 We already did most of the work for this in the
proof of Proposition [3.24l In fact, as in that proof, the group

T;(R) = {g € SLy(R) | gvs = v7g}
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is conjugate td
{9 € SLu(R) | gve g = v¢ rg}

where v, g is the block-diagonal matrix

G

UC,R = CT S Matd(R)

| Z(<T+S)

and ¢ is the map defined by

1T+ iy — (z—y)

Yy T

We use v g (instead of vg;,e) to ensure that the conjugation takes place over R,
which is needed to analyze T ;(R). It is easy to check (for example, by a dimen-
sion argument as in the proof of Proposition 3224 that

{g € Maty(R) | gve g = v g}

= ayy...,a, ER by, ... 0, €C

u(by)

Therefore T 7(R) is isomorphic to the multiplicative group
{(ala"'aarublu"'ubs) eER"xC* | a/l"'a/7“|bl|2”'|b5|2 = 1}
which contains the non-compact part

{(etla--'aetTaetT+1a"'vetT+S) | tl+"'+tr+2tr+l+"'+2tr+s :0},

T Just as in the theory of Jordan normal forms, this follows quickly from consideration of R%
as an R[T]-module, where T acts via vz, which gives

R 2 RITIT—¢) x - x RITIT=¢) x RITV/ (pe, , (T) x - x RIT1/{p , (T)),

where p¢ (T), ... "Pe s (T) are the quadratic real minimal polynomials of . 1,...,(m 4
in C. We refer to Hungerford [70, Ch. VII] for the details.
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and this is isomorphic (as a Lie group) to R"**~1. The subgroup M C T ;(R)
is then the subgroup isomorphic to the ‘group of signs’

{(51,...,ar,21,...,25) |e; € {£1}, |z = 1,816, = 1}.
O

PRrROOF OF THEOREM 322l By Proposition B.24] O! is isomorphic to a (uni-
form) lattice in T 7(R), which by Proposition [3.25]is isomorphic to the abelian
group M x R"*~! Taking the quotient by M we obtain a uniform lat-
tice in R™*~!, which must be generated by r + s — 1 elements. Suppose
that by,...,b,,,_; € O are elements that give rise to a Z-basis of the lat-
tices in R"™*~!. Then by,...,b,,_; generate O' up to the kernel of the map
from O' to R™*~1. However, this kernel F' maps under 1 and the isomorphism
to M x R"~1 to the compact group M (with discrete image) and so must be
finite. O

3.4.3 Compact Orbits for the Diagonal Subgroup and Finite Class
Number*

[The set-up used above can be used further to discuss interesting distribution
properties of compact orbits arising from number fields. We define for a given
number field K the complete Galois embedding

(b = (¢15' "7¢Ta¢r+17" '7¢’I"+S): K — RT X (CS ERT+25 (322)

where as before r is the number of different real embeddings and s is the num-
ber of inequivalent pairs of complex embeddings of K. We note that ¢ is an
embedding, since each ¢; is injective).

We call (r, s) the type of the number field (as mentioned this plays the role of
the signature of a quadratic form), and define T, ; < SL,; to be the centralizer
of a regular matrix

a

(8,)

with pairwise different and non-conjugate a; € R and §; € C\R (that is,

with o; # a;, B; # B;, and B; # B; for i # j).

T The remainder of Section B4l will not be needed again.
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For the following result where the number field of type (r, s) is allowed to vary
we adopt the following convention. Given K, a complete Galois embedding ¢ as
in (322), and a non-trivial Galois automorphism o: K — K, we note that

¢poo: K - R"xC?

is another complete Galois embedding. Moreover, given K and ¢ we obtain other
complete Galois embeddings by post-composing ¢ with a permutation of the r
real and a permutation and partial conjugation of the s complex embeddings.
Given a field K as a representative of its isomorphism class we allow several
different complete Galois embeddings (obtained by post-composition) but pick
one and only one complete Galois embedding ¢ from any Galois orbit

{¢po0o|o: K — K a Galois automorphism}.

Proposition 3.26 (Ideal classes and torus orbits). For a number field K
of type (r,s), an order O in K, and any proper O-ideal J C O the normalized
lattice

1
T = covol(¢(J))1/d
has compact orbit under T, ;(R). Two ideals Jy,J give rise to the same orbit

if and only if they are ideals in the same number field (and order), and are
equivalent (that is, there exists some a € K~N{0} with J; = aJy).

o(J) € Xq

PROOF. Let K = Q({), ¢, O, and J C O be given. We will use the same
notation as used in Proposition Recall that {aq,...,a4} is a basis of J.
Taking the image of this basis under the complete Galois embedding ¢, we
obtain a basis of R?. Indeed, if this were not the case then we could find non-
zero elements b € O for which ¢(b) is arbitrarily small (see Exercise 1.43).
However, this also implies that |N(b)| = |det ¥ 7(b)] < 1 and so with b € O a
contradiction. Replacing a4 with —a, if necessary, we may assume that

1

9g = W ((b(al), . .,¢(ad))

has determinant one. By construction, z; = g JZd; also notice that g, is up
to the scalar the matrix representation of the map ¢ from K (with the ba-
sis {aq,...,aq}) to R” x C° (with the standard basis). Furthermore, recall
that v, = 9 ;(¢) is the matrix representation of multiplication by ¢ on K
(with basis a;,...,a4). In R” x C* multiplication by ¢ corresponds to multi-
plying the various coordinates by ¢ (¢), ..., ¢,(¢) and to applying the matrices
corresponding to the complex numbers ¢, 1(C),..., ¢4 (C) respectively; that
is, to an application of a block-diagonal matrix v¢ g. This shows that

QJUJ = 'UC)jo. (323)
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Now v, g is of the same type as v, ; and defines the same centralizer T, .
Therefore,

Tr,s = gJTj931
since ([3.:23) gives for instance that

97997 Ver = 979V797 = 9797997 =V p97997

for g € T . Moreover,

T, s(R)gs SL4(Z) = g4 T 7(R) SLy4(Z)

is compact by Proposition [3.241

Notice that if we choose a different basis of 7, then this does not change the
point z 7 € X;. Also notice that if 7' = b7 for some b € K* then bay, ..., bagy is
a basis of J’, and using this basis we see by (8:23) (which by the same argument
also holds for -b instead of -¢) that

g = 9J¢(b) = Up,RI7-
Since v, g € T, s(R) this shows that
(EJ/ S TT,S(R):EJ7

which is the first direction of the second claim in the proposition.

Let now J (and J’) be a proper O (respectively O’)-ideal in a number field K
(respectively K'), let x 7, 7 be the corresponding elements of X; defined by
complete Galois embeddings ¢ (respectively ¢'), and assume that

Tgr = tl'j
for some ¢ € T, ;(R). By the definition of properness for an O-ideal J we have

O={a€eK|aJ T}
= {v e (P(K))r | vZ* C 27} (via v = ¢(a))
= {v € Maty(R) | vvs; = v v and vZ¢ C 29}
= {v € Mat,;(R) | vv, s = v, v and v s C x5},

via conjugation by g 7. The latter set comprises all block diagonal matrices with
entries ¢(a) for all a € O. For the lattices « 7+ and z 7, this implies that O’ = O
and hence K’ 2 K. In fact the isomorphism is given by ¢ ' o¢' =0: K’ — K.
By our conventions from just before the proposition this means that K = K’,
and that the same complete Galois embedding ¢ is used. By the argument
above, this also implies that we have @ = (O’. Suppose that aq,...,a; is a
basis of J, so that z; = g;Z% as before. Choosing the basis af,...,a} of J'
correctly gives x, = g Z% and g, = tg;. This shows that ¢;(a}) = t;¢;(a;)
for i,j = 1,...,d where t; (in R or C) is the ith entry of the block-diagonal
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matrix ¢ € T, ;(R). This implies that

ti=¢; (%)
j

is independent of j. Hence there exists some b € K with

ti = ¢i(b)
fori=1,...,7+ s, and it follows that J' = b7 . O

We now use the above to prove that there are only finitely many equivalence
classes of proper ideals.

PROOF OF THEOREM Let J be an ideal with A, = g¢,Z¢ € X,

the associated lattice with compact orbit. Let a, € GL4(R) be the block-

diagonal matrix with entries ¢;(¢),...,,(¢) in R and blocks corresponding

to ¢,41(C), ., P 45(¢) in C. Notice that (J C J implies that a, A7 < A .
We claim that

is compact and that there exists some 1 > 0 so that if A,A" € B sat-
isfy dx,(A,A4") <n then T, ((R)A =T, ;(R)A". Together with Proposition [3.26l
this implies the desired finiteness.

CoOMPACTNESS. That B is closed follows quite directly from its definition and
the topology of X;. Let § > 0 be so small that for v € R? with ||v|| < § we have

lalv]l < 1 (3.24)

for 5 = 0,1,...,d — 1. This implies that B C X;(9). Indeed, if A € B
and v e AN B?d\{O} then the bound ([B:24) together with covol(A) = 1 implies
that the vectors v, av,... ,ag_lv are linearly dependent. However, this gives
an invariant A-rational subspace which contradicts irreducibility of the minimal
polynomial m(T) of .

TRANSVERSE DIRECTIONS. We show that for any A, € B there exists 1y > 0 so
that
BN Byi(Ag) € T, (R)Ap.

Compactness of K then implies that there also exists a uniform 7 as in the
previous claim. Let Ay = goZ? and A’ = hA be elements of B. By definition
this shows that gy 'acgy € Maty(Z) and gy 'h~tachg, € Maty(Z). If now n,
is sufficiently small and h € BSLd(R) these two integer matrices have to agree,
which implies hilagh = a¢ and hence h € T, ((R) as required. O

The results obtained make the following folklore problem (generalizing results
and conjectures of Linnik [100]) well-formulated.

Problem 3.27. For a given order O in an algebraic number field K of type (r, s),
let p1o be the probability measure on X; obtained from normalizing the sum of
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the T, ;(R)-invariant probability measures on T, ;(R)z s for the various equiva-
lence classes of proper O-ideals. Find all of the weak*-limit of the measures pp
as the discriminant D = (covol(¢(0)))? goes to infinity.

This has been solved for d = 2 by Duke [36] (using subconvexity of L-
functions, building on a breakthrough of Iwaniec [73]), and for d = 3 and
type r = 3, s = 0 by Einsiedler, Lindenstrauss, Michel and Venkatesh [43] (by
combining subconvexity bounds for L-functions with ergodic methods). More
accessible but weaker results are contained in [42] and [44].

Exercise 3.28. (a) Let d > 2. Show that the compact orbits of T(g )(R) (of type (d,0))
in X4 are all of the form T4 gy (R)z s for some proper O-ideal J and some order O C K in a
totally real number field.

(b) Show that this is not necessarily the case for the type (0,d/2) (with d even).

(c) Decide the same question for the remaining cases.

3.5 Linear Algebraic Groups

In this section (and in Chapter 7) we will introduce linear algebraic groups, and
will link this concept to the theory of linear Lie groups, pointing out the obvious
similarities as well as some of the more subtle differences between the theories.
We start with the basic definitions, but in order to avoid being too diverted by
this important (and large) theory, we will be brief at times.

3.5.1 Basic Notions of Algebraic Varieties

Let K be a field] and let K denote an algebraic closure of K. A subset S C K’
is called Zariski closed if S = Z(J) is the variety Z(J) defined by a subset or,

without loss of generality, an ideal J C K[z, ..., x,4]. A subset S C K" is also
called Zariski K-closed if J can be chosen in K[zy,...,z4]. The Zariski closed
subsets are the closed sets of a topology, which is called the Zariski topology.
This is easily checked:

o If Sl = Z(jl) and S2 = Z(j2) then Sl U S2 = Z(j1j2)
o If S, =2Z(J,) for o € A, then

ns=2(Us)

If K=R,K=C, or K= Q,, then clearly every Zariski closed (or Zariski
open) subset is also closed (or open) in the usual sense. For most of the derived

T We will generally be interested in the cases R, Qp and Q, but will only assume that the field
has characteristic zero a little later.

Page: 115 job: AAHomogeneousDynamics macro: svmono.cls date/time: 19-0ct-2025/20:08



116 3 Rationality

properties (density, connectedness) this is not clear and indeed is often false.
We will always say Zariski open, Zariski closed, Zariski dense, and so on, if we
refer to properties of the Zariski topology. When we use the words open, closed,
dense, and so on, then this will refer to the metric (often also referred to as the
Hausdorff) topology of R?, C?, or (@d derived from the norms on these spaces.

A variety (equivalently, a Zarlskl closed set) is called Zariski connectedi or
irreducible if it is not a union of two proper Zariski closed subsets. Equivalently,
a variety Z is irreducible if its ring of regular functions

K[Z] = K[zy,...,24]/T(Z)

is a principal ideal domain (that is, without zero divisors).
Assume now that Z = Z(J) is a connected variety. Then we can form the
field of rational functions K(Z) comprising all quotlents L with f,g € K[Z]

and g # 0. The transcendence degredt (see Hungerford [70, Sec VI 1]) of K(2)

is called the dimension dim(Z) of the variety Z. Notice that if Z = K" then the
dimension of Z is d, and if Z is defined by a single irreducible polynomial

feK[zy,..., 24

(in which case Z is called a hypersurface), then the dimension of Z is (d — 1).
The following lemma further reinforces our intuition concerning this notion of
dimension.

Lemma 3.29 (Strict monotonicity of dimension). Suppose that Z, C Z,

is a proper connected subvariety of a connected variety Z, C K . Then

PROOF. By definition o
K[Z,] = K[z, ... ,:cd]/j17

with J; = J(Z,), has transcendence degree k = dim Z;. By reordering the
variables if necessary, we may assume that

$1+j1,...,117k+jl EK[Zl] (325)
are algebraically independent, and

Tpp1 +Tis g + 1

T This definition does not match the topological definition of connectedness, but it will come
closer to doing so in the context of algebraic subgroups.

¥ A field extension F|K has transcendence degree n if F contains n mutually transcendental
elements fi,..., f, € F (that is, elements with the property that the evaluation map

K[Tlv"-an] 9g'_>g(f17'--7f'n,)

is injective) but does not contain n 4+ 1 mutually transcendental elements.
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are algebraically dependent on the elements in B23). All other regular or ra-
tional functions in K(Z;) are then algebraically dependent on the elements in
B2Z9). It follows that

K(Zl) =~ K(.’I]l,.. .,Jik) [(Ek+1 +j1,.. .,Id+j1]

is a finite field extension of the field of rational functions in the first k variables.
Since Z, C Z; is a proper subvariety, there exists some f € J(Z3)NJ(Z1).
As f + J; is non-zero in K(Z;), there exists some

g+ T €K@y, ... xp) [T + Tiy - 2g + Ti]

such that fg +J; = 1+ J;. Clearing the denominators (which belong to the
subring K[y, ..., x;]) in this relation, we find that there exists some g; € K[Z;]
such that

fa+Ji=h+

for some non-zero h € K[z, ...,7,]NT(Z,). This shows that the transcendence
degree of K(Z,) is less than or equal to k — 1. O

—d
Assume again that Z C K is a connected k-dimensional variety. A point z(?)
in Z is called smooth if the ‘tangent space’ in the variables uq, ..., u,; defined
by

d
Zujam]f(x(())) = (U‘lv cee 7ud) : vf(‘r(O)) = O
j=1

forall f € J(Z), is k-dimensional. The partial derivatives are defined as abstract
linear maps on the space of polynomials (so that the definition matches the usual
maps if K is R or C). It satisfies the usual properties (the product and chain
rules, for example) over any field K. The reader may quickly decide which points
of the variety defined by the equation y? = 2 are smooth in this sense (and
thus see why the definition makes sense, and that it accords in this case with
geometrical intuition; see also Lemma [332]). A variety is called smooth if every
point of the variety is a smooth point.

Lemma 3.30 (Most points are smooth). Let Z C K’ be a connected variety
and suppose the characteristic charK of the field K is zero. Then the set of
smooth points of Z is a non-empty Zariski open subset of Z. Moreover, the
tangent space has at no point of Z a dimension smaller than dim Z.

The lemma should indeed be interpreted as saying that most points of a
connected variety are smooth. This is because a non-empty Zariski open subset
of a connected variety is automatically Zariski dense. Moreover, Zariski dense
and Zariski open subsets of any variety have a strong intersection propertyﬁ

T For a connected variety this is easy to see. For a general variety this follows for example
from the decomposition discussed in Lemma [3.31}
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Every finite intersection of Zariski dense and open subsets is again Zariski dense
and open.

Proor oF LEMMA B30 Let & = dim Z, and assume again that
v+ T(2),...,2, + T(Z) € K(2) (3.26)
are algebraically independent while
o1+ T (2),...,2q+ T (2)

are algebraically dependent on the elements in ([B3.20). Thus there exists, for
every £ € {k+1,...,d} a non-zero polynomial

freKlxy,...,z,]NT(Z)

of minimal degree in z, for which (viewed as a polynomial in z;) the non-zero
coefficients do not belong to K[z, ...,z,_1] N J(Z). Since charK = 0, we getﬁ

9o =0y, fe & T(2).

Using the derivative V(f,) (for £ = k+1,...,d) of these polynomials (as equa-
tions that define the tangent space) we see that every point outside the proper
subvariety defined by the ideal

<9k+1 94, I (Z))

(that is, every point in a non-empty Zariski open subset O) has a tangent space
of dimension less than or equal to k. To see that these points are smooth points
of the variety we have to show that the tangent space is indeed k-dimensional.
We show this firstf] on an even smaller Zariski open subset O'.

We claim that there exists some non-zero h € K[z, ..., 24N\J(Z) with

hT(Z) C (frs1r---»fa)

Assuming the claim for any f € J(Z), we see that hf =g\ f, 1+ + 941 o
so that

V(hf) = V(h)f +hV(f) =
V(91 fer1 + 91V (frgr) + -+ V(9a—i) fa + ga—iV(fa)-
After evaluation at any point € Z we then get
W)V (f) (@) = g1 (2)V (fr)(@) + -+ + ga—r(2)V(fa) ()

T If char K = p and it so happens that f, is a polynomial in x1,...,%,_1, z} then Oy, fe=0.
With more care this problem can be dealt with—we refer to Hartshorne [66] for the details.

¥ We use this step below to show that we can never have a tangent space of dimension strictly
less than k, hence we cannot rely on this fact here.
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which expresses V(f)(x) as a linear combination of V(f;)(z) for
j=k+1,....d
if only h(z) # 0. This shows that on the Zariski open set
O' = Z2~Z(hg11+ - 94)

every tangent space is exactly k-dimensional.
We now prove the claim. As J is finitely generated and prime, we only have
to show that for every f € J there is some h ¢ J with hf € (fri1,---, fa)- If

feK[xl,-..,$k+1]mj,

then we can take h to be a power of the leading coefficient of fy; (considered
as a polynomial in z;,; with coefficients in K[zy,...,z;]). In fact, with this
choice of h we ensure that we can apply division with remainden] to obtain

hf=afy +0

where b = 0 as it has smaller degree in z,,, than f;,; does and belongs to J.
By induction on £ the same argument applies for any f € K[zq,...,2044]NJT
(where we will have b € K[z, ...,2,] N J by the same argument).

It remains to show that the set of smooth points is Zariski open, and that at
no point of Z does the tangent space have dimension strictly smaller than k. If

now
20 = (Igo), . ,I&O)) €z

is an arbitrary smooth point, or more generally a point whose tangent space has
dimension K < k, then we may reorder the variables so that the tangent space
projects onto the subspace spanned by the first K basis vectors, and so that for
each ¢ € {K +1,...,d} there exists some f, € J(Z) such that

(Vi) #0
but
(Vfé)j =0
for j e {K+1,...,d{¢}. Tt follows that the determinant
9= det (vff)] )

where ¢,j € {K +1,...,d}, does not vanish at the point z(©), Unfolding the
definition shows that any other point

re 0, =2 Z(g)

t Formally we apply division with remainder in the Euclidean domain K(zy,...,z)[2k41],
and later in the argument in the Euclidean domain K(z1 + J, ..., 2, + J)[zg,1]-
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is also a point at which the tangent space has dimension less than or equal to K,
which is less than or equal to k.

If K < k at some point (9, then we have found a non-empty Zariski open
subset O, on which all points have tangent spaces of dimension less than or
equal to K. However, as Z is irreducible this set would have to intersect the
non-empty Zariski open subset O’ (on which the tangent spaces are known to
be k-dimensional) nontrivially, which would give a contradiction.

Therefore, there is no point where the tangent space has dimension strictly
less than k, and so applying the argument for K = k we see that the set of
smooth points is Zariski open (and Zariski dense). O

To generalize the notion of smoothness to general varieties we need another
lemma.

Lemma 3.31 (Decomposition into Zariski connected components). Let Z
be a variety. Then Z is a finite union

=1
of connected varieties Z,. .., Z,, where we may and will assume that Z;  Z;
for i # j. We will refer to Z,,...,Z, as the Zariski connected components. We

claim furthermore that the decomposition into Zariski connected components is
(up to their order) unique.

We note that if Z is a hypersurface, then the claimed existence and uniqueness
follow quickly from the statement that K[z,..., 24| is a unique factorization
domain.

SKETCH OF PROOF OF LEMMA [3.31] The existence of the decomposition follows
from the fact that K[zq,...,x4] is Noetherian. We sketch the argument for this.
It 7=7J(2) CK[zy,...,z4 is not a prime ideal, then there exist

fiofo €Ky, ..,z NT

with fifo € J. We may define J; = (7, f1) and J, = (J, fo). Notice
that /105 € J C J; N Jy. If both of these are prime ideals, then we are
done (see below). If not, then we may assume that 7; is not a prime ideal, and
repeating the argument gives ideals J; 1, J7 2. We do the same for J; if 75 is
not a prime ideal, and repeat as necessary. By the Noetherian property this
construction has to terminate after finitely many steps. In other words, we can
always find a finite tree with J at the top and prime ideals at the bottom, as
illustrated in Figure Bl

If the prime ideals found are denoted Py, ..., P,, then we have (by construc-
tion of the prime ideals) that

PP, CTC()P (3.27)
=1
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/N

~71=<j:f1> ~72:<~727f2>

/N

Ji1={J1, f1,1) T2 ={J1, f1,2)
Fig. 3.1: Ideals inside 7.

This translates to the statement

If the list of prime ideals has repetitions, we simply remove the repetitions.
Also, if P, C P; for i # j then Z(P;) DO Z(P;) and we remove P; from the
list. Using J = rad(J), we can now show that ([B:27)) still holds for the short-
ened list. Finally, uniqueness follows directly from the definitions: If P;,..., P,
and Pj,..., P}, both satisfy (3217) (and are minimal lists), then for every

jed{l,...,m}

we have

P,---P,CP

and since P} is a prime ideal there exists some i(j) with P;; C P;. Simi-
larly, there exists for every i € {1,...,n} some j(i) with P]f(i) C P,. Since
now P(jy) € P for every i and P;(i(j)) C Pj for every j, it follows that i(:)

and j(-) are inverses of each other, m = n, and P]f(i) =P, O

A point (9 € Z of a (not necessarily connected) variety is smooth if (%)

belongs to precisely one of the connected varieties Z; C Z as above, and z(©)
is a smooth point of Z;. Lemma [3.32 now says that inside every variety Z the
subset of points that are smooth points of Z is a Zariski open and dense subset
of Z.

3.5.2 Properties Concerning the Field

One smooth K-point of a variety already gives rise to many other K-points, if K
is a local field.

Lemma 3.32 (Neighbourhoods of smooth points). Let Z C C? be a k-
dimensional connected variety defined over R. Let (90 € Z(R) be a smooth
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point. Then there exists an analytic function defined on an open subset in R*
which is a homeomorphism to a neighbourhood of +(©) € Z(R). The same holds
over C or over Q, for a prime p < cc.

PROOF. Choose some f,...,fs r € J(Z) such that V(f;)(z(®) are lin-
early independent for 57 = 1,...,d — k. By choosing a new coordinate sys-
tem Ty, ..., T, Y1,---,Yq—t (which we will abbreviate to x,y) we can assume
without loss of generality that

6yi(fj)($(0)uy(0)) = 5i,j

fori,j =1,...,d — k, and furthermore

azi (f])(x(O) ’ y(O)) =0

fori=1,...,kand j=1,...,d — k.

Applying the implicit function theorem (over R, C, or(*9) Q,) on a neigh-
bourhood of (z(?),y() to the equations fi(z,y) = --- = fy4_p(z,y) = 0, we
obtain (d — k) analytic functions ¢, (x),. .., ¢4_;(z) which are all defined on a
neighbourhood U of z(?) such that

fj (Ia¢1 (I)5 s ad)d—k(‘r)) =0

for j =1,...,d — k. It remains to see why the points
(‘Tu ¢1(£L'), cee 7¢d7k($))
belong to Z (this is in question because we do not know whether fi,..., fy_x

generate J(Z)) in some possibly smaller neighbourhood U’ C U.

Let

j/: <f17"'afd7k> Qj:j(Z)

and Z(J') = ZUZ', where Z' is the union of all connected components of Z(J")
other than Z. Here Z cannot be contained properly in a connected component
of Z' C Z(J') since the tangent space of Z(J') at (z(9),y(®)) has dimension k,
which would contradict Lemma and Lemma

We claim that (2(?),y(?)) ¢ Z’. Assuming this claim, there exists some poly-
nomial g € J(Z') with g(z(©,y(©) # 0. Suppose now that f € 7. Then the

product f - g vanishes on
zZuz =727,

and so there exists some ¢ with (fg)¢ € J’ by Hilbert’s Nullstellensatz (Theo-

rem [39). Let
U'= {.’L‘ ceU | 9(1'7(251(&5), cee 7¢d7k($)) i 0}7

and suppose that z € U’. Then

(f9)* (2, ¢1(2),..., dan(x)) =0
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since all elements in J’ vanish on such vectors (by definition of ¢1,...,dq_s)-
However, since z € U’, this shows that

f ($,¢1($), s 7¢d—k(x)) =0

for all f € J and x € U’, as required.

To prove the claindl] we will show that after removing all connected compo-
nents of Z’ that do not contain (z(9,y(®)) from Z(J') = Z U Z' we obtain a
connected variety Z” (see below for a more formal definition). Since Z is not
removed, this then implies that Z” = Z and that Z’ does not contain (z(©), y(©))
as claimed.

Let R = R[z, y] be the ring of polynomials, let

M={feR| =",y =0}

be the maximal ideal in R corresponding to (x(o), y(o)), and let
_If -
R = g fy9 € Rlz,y] with g ¢ M

be the local rinﬁ corresponding to M (consisting of rational functions that are
well-defined at (z(9), ().

Let Z,,...,Z, be the connected components of Z U Z' = Z(J’) that con-
tain (z(©,y©), and let Z,...,Z; be those that do not contain (z(9),y®).
Making our definition above more precise, we set 2" = Z; U---U Z,. We now
show that

JW—@MQUQR—{f—SERwPGTJ¢A@

defines the variety Z”. Pick a polynomial ¢; € J(Z}) with ¢;(z(®),y®) # 0
for j = 1,...,b. Choose any polynomials F; € J(Z;) for i = 1,...,a. Then by
Hilbert’s Nullstellensatz (Theorem B.9]) there exists some ¢ > 1 with

(Fl"'Faql"'Qb)EEJ/'

Using only the definition of J”, this implies that (F} --- F,)¢ € J". Using the
Noetherian property of R we find some ¢ > 1 with J(Z;)*--- J(Z,)* C J" and
s0 Z(J") C 2" =Z,U-- U Z,.

For the opposite inclusion, fix some i € {1,...,a} and notice that by defini-
tion any f € J" is of the form f = % with

T A slight warning is in order. The remainder of this argument is surprisingly long, and quite
algebraic. The reader who wishes to only get a glimpse of the algebraic background may decide
to skip it, we will not need this type of argument again.

¥ A local ring is a ring with a unique maximal ideal. The ring R is the localization of R
at M, it is a local ring with maximal ideal MR 5.
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peJ CI(Z)

and

which gives f € J(Z;). This shows that J” C J(Z;) and so Z; C Z(J")
fori=1,...,a.

We will show the claim by showing that J"” is a prime ideal (which then gives
the claim that « = 1 and Z” = Z). For this we prove that f € J" if and only
if there exists a neighbourhood O of (z(®,4(®)) in

M = {(z,¢1(x), ..., ¢a—r(x)) |2 € U}

such that the restriction of f to O is zero. By the properties of ¢, ..., ¢4_; any
such restriction can be identified with an analytic function on a neighbourhood
of (9 inside U, and so the restriction is uniquely determined by its Taylor ex-
pansion at z(°). Since the Cauchy product of Taylor series has no zero—divisorsﬁ,
this equivalence then shows that J" is a prime ideal.

Suppose first that f € J”. Then f = %, where p € J' vanishes on M (by
definition of M), and ¢ does not vanish at (z(?),y(®)). This shows that there is
a neighbourhood O on which f is well-defined and identical to zero.

Now suppose that f is a polynomial for which there exists a neighbourhood O
of (29, y(®) in M on which f vanishes. By our assumptions from the beginning
of the proof we have f;(z,y) € y; — yJ(-O) + M? (where M? consists of all poly-
nomials that vanish with order 2 or more at (z(?), y(9)). Let n > 1 be arbitrary.
We can now use the polynomials f; to express the polynomial f as above in the

form
n

f € ZFE(:E - I(O)) + RnJrl(xvy) + j/,
=0
where F, is a homogeneous polynomial of degree ¢ for ¢ = 0,...,n and the
polynomial R, ;(z,y) € M™! only has terms that vanish of order n + 1
or higher. This shows that >, , Fy(z — 2(9) is the Taylor approximation
of f(x,¢1(x),...,d¢q_r(x)) at (O of degree n. Since f vanishes in a neighbour-
hood of (z(®,y®) in M we have }_,_, F, = 0. This shows that f € J' + M"
foralln > 1.
A corollary of Nakayama’s lemma states that

ﬁ(I+M”)=I

in any local Noetherian ring with an ideal Z and a maximal ideal M. We refer
to Hungerford [70, Cor. VII1.4.7] and Matsumura [107] for convenient sources

 The Cauchy product of >°° a,z™ and Y0 1 b,z" is the series > oo ¢, z™ with coeffi-
cients c,, = Z;'L:o a;b,_; for n > 0; viewed either as formal power series or as functions where
they converge, the product will only vanish if one of the series vanishes.
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for this result. Switching from the ring R to the local ring R », we see that

o0

fe (I Rm+MRu),

n=1

which gives f € J'Ra and so f € J”. This establishes the above equivalence,
and hence shows that 7" is a prime ideal, the claim, and so also the lemma. (I

In Section Bl we considered two notions of ‘K varieties: A variety Z is
defined over T, for some subfieldl] F C K, if its complete ideal of relations (as
in the Hilbert Nullstellensatz Theorem BJ9]) is generated by polynomials with
coefficients in F. On the other, a variety is F-closed if it can be defined by
polynomials with coefficients in F.

As in any topological space, we can define a notion of closure: the Zariski
closure of a subset S C Kd is the smallest Zariski closed subset Z C Kd contain-
ing S. This notion has many convenient properties, including good behaviour
with regards to subfields. Note however, that the Zariski closure of a subset
in R? is frequently much bigger than the closure in the Hausdorff topology.

Lemma 3.33 (Closures of subsets of F?). Let F C K be any subfield and S
be a subset of F4. Then the Zariski closure of S is defined over F.

PROOF. Suppose that f is a polynomial in =, ...,z that vanishes on S. Let V
be the vector space generated by the coefficients of f over F. Let

A1yeeoy Ay

be a basis of V' over F, and write

f= Z fia;
i=1

with f; € Flay,...,z4]. For any € S we now have

and so f;(z) =0 for ¢ = 1,...,n. This shows that the ideal of polynomials that
vanish on S is generated by those that have coefficients in F. ([l

Clearly a variety that is defined over K is also K-closed. In general the con-
verse is not true, but fortunately this problem only manifests itself over fields
of positive characteristic.

Lemma 3.34 (K-closed vs. defined over K). Suppose that K has character-
istic zero. Then a K-closed variety (or a variety that is stable under all Galois
automorphisms of K|K) is also defined over K.

T We introduce this extra field for example in order to set K=R, K = C, and F = Q.
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PRrOOF. Let Z = Z(fy,..., fn) be the variety defined by the polynomials

fla"'vfneK[xla"-v'rd]v

and suppose that f € K[zy,...,z,] vanishes on Z (that is, suppose that f lies
in J(Z)). Then there exists a finite Galois field extension L|K such that f has
coefficients in L.

Let o be any Galois automorphism of the extension L|K. We now claim
that the polynomial o(f) obtained by applying o to all coefficients of f also
belongs to J(Z). This is straightforward to check as follows. Since Z is K-

closed, any Galois automorphism of K|K maps Z = Z(K) onto Z. Extending
the automorphism o of L|K in some way to an automorphism of K|K we get

(0(f) @) = (o(5) (o™ @) = o ( flo™ (@) ) =0

for all x € Z.

The claim now implies that tr(f) = > o(f), where the sum is taken over
the finite list of Galois automorphisms of L|K, belongs to J(Z). Clearly tr(f)
has coefficients in L and is fixed by all Galois automorphisms of L|K. There-
fore, tr(f) € K[z, ..., z4] (this requires the assumption that char(K) = 0).

We next claim that there exist elements

al,...,a[L‘K] el

and
CL’{,.. "aEL\K] S L

that are dual bases in the sense that
1 ifi—i
tr(afa) =6, =4 ' 7
' 0 if4##j,

for all ¢,j. We then have

a= Z tr(aja)a,,
which also holds for the polynomial f instead of a € L. Since
tr(a; f) € T(Z) NK[zy, ..., x4

by the argument above, the lemma follows from the claim.

It remains to construct the dual basis. Let a4, ..., aq.x) € L be any basis of L
over K. By linear algebra, there exists a dual basis for the dual vector space LL*
over K. We claim that the map sending a € L to ¢(a) € L* defined by

¢(a)(b) = tr(ad)
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is an isomorphism of vector spaces. This may be seen as follows:

e »(1)(1) =tr(1) = [L: K], so ¢ is non-trivial (again since char(K) = 0);
o if ¢(a) = 0 then also ¢(aa’)(b) = tr(a(a’d)) = 0 for all a’,b € L, so the
kernel of ¢ is an ideal, and the field L has no non-trivial ideals.

Thus the pre-image under ¢ of the dual basis in LL* gives a dual basis in the
above sense in L.

If the variety Z is only assumed to be invariant under all Galois automor-
phisms, then once more J(Z) is invariant under all Galois automorphisms and
so the above argument shows again that Z is defined over K. O

In the arguments above there is always an implied coordinate system in Kd
(corresponding to the variables xy,...,24). We note that it is customary to
write A? for the d-dimensional affine space without a preferred origin, coordinate
system, or base field. For us the ambient affine space will be Mat,; = AdQ,
and on this space very few coordinate changes make sense with regards to the
existing (and to us important) multiplicative structure. For that reason and
also because we are often interested in subgroups of SL,; (and the orbits of the
group of their R-points), we are happy with choosing one coordinate system
and discussing subvarieties and algebraic subgroups of SL; instead of general
varieties and general algebraic groups. We will however, switch frequently from

one field to another, and as before will write Z(K) = Z(K)NMat4(K) for the K-
points of a subvariety Z < Mat, defined over K.

3.5.3 Linear Algebraic Groups

A variety G C SLg is a (linear) algebraic subgroup (of SLy) if G(K) C SLy(K)
is a subgroup. Notice that for any subvariety Z C SL; and g € SL;(K) we can
define the translated variety gZ by the ideal

N9)T(2) ={f(g" ) | f € T(Z)}.
Here A denotes the left representation
Ng)f(z) = f(g~ x)
on the space of all polynomials.

Lemma 3.35 (Smoothness). Every point of a linear algebraic subgroup is
smooth.

The tangent space at the identity is called the Lie algebra of the algebraic
subgroup.

ProoF oF LEMMA B35 Suppose that g € G(K) is a smooth point of the
variety G. Then one can quickly check that I = ¢~ !g is a smooth point of the
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left-translate variety ¢~ 'G. However, since ¢g~'G = G we see that I is a smooth
point of G. By the same argument, any other point is also smooth. O

Lemma 3.36 (Connected components). Let G C SL; be an algebraic sub-
group. The connected component G° < G is by definition the unique Zariski
connected component of G that contains the identity, it is an algebraic normal
subgroup. There are points gy, ..., g, € G where n = [G(K) : G°(K)] with

G=|]46"
i=1
If G is defined over K, and K has zero characteristic, then G° is also defined
over K.

As a corollary of the lemma we mention that it makes sense to talk about the
dimension of a (not necessarily Zariski connected) algebraic subgroup. Since all
Zariski connected components are translates of the connected component G°,
they all have the same dimension.

ProoF oF LEMMA [B.36l The first statement is essentially an extension of the
argument in the previous lemma. If

is the decomposition into connected components, then there exists a point which
is contained in only one component. Translating G by g € G(K) we may permute
the connected components

G=g"'G= LnJ 917,
i=1

but would leave the subvariety [ J; 2 Zi N Zj consisting of all points that are
contained in more than one of the connected components invariant. Therefore,
we have

Suppose that Z; = G°. If now g € G° then I € g~ 'G®, which by uniqueness of
the decomposition gives G° = g~ 1G° for all g € G°.

We have shown that G? is a linear algebraic subgroup. If now g € Z; fori > 1,
then the same argument gives g~1Z; = G° = Z;g~!. In other words,

Z; =96 =G’

is a coset of G° in G.
Now suppose that G is defined over K, and let o be a Galois automorphism
of K|K. Then o induces a permutation of the cosets ¢;G°(K) with
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3.5 Linear Algebraic Groups 129

o (€°(K)) = &°(K)

since o(I) = I. As this holds for all Galois automorphisms we see that G° is
defined over K if K has characteristic zero by Lemma B.34 O

For completeness we mention another (more general but, up to isomorphisms,
equivalent) definition: A linear algebraic group is an affine variety equipped with
multiplication and inverse maps such that

e the multiplication and inverse maps are regular functions (from the group
to the group);

e the variety is isomorphic to a linear algebraic subgroup of SL, for some d
such that the multiplication and inverse maps correspond to multiplication
and inversion for matrices.

We note that the standard definition does not make the second requirement
above, and instead derives this property from the first via a construction similar
to the proof of Chevalley’s theorem in Section [3.5.5]

Ezxample 3.37. We list some standard examples of linear algebraic groups.

(a) G, denotes the additive group structure of the field. This is a linear algebraic
group because (for example) it is isomorphic to the algebraic subgroup U <

SL, with
U(E) = {(1 *1‘> xeK},

which we saw earlier is associated to the horocycle flow if K = R.

(b) G,, stands for the multiplicative group structure of the field. This is a lin-
ear algebraic group because (for example) it is isomorphic to the algebraic
subgroup A < SLg with

ac K} ,

- ()

which we saw earlier is associated to the geodesic flow if K = R.

3.5.4 K-points of Linear Algebraic Groups

As noted before, a variety Z defined over a field K does not have to contain
any K-points (that is, Z(K) may be empt)7 and even if it is non-empty it

T A trivial example to have in mind here is the variety defined by the equation
22 492 = —1,

defined over R, and a less trivial example is the variety defined by the equation
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may not be Zariski dense in the variety. Since a subgroup always contains the
identity the former problem cannot arise for linear algebraic subgroups. Even
more is true, as a result of the following lemma, which relies on the fact that G
is smooth at the identity.

Lemma 3.38 (Density of R-points and Q,-points). If G C SL; is a Zariski
connected linear algebraic subgroup defined over R, then G(R) is Zariski dense
in G. The same holds for K = Q, for a prime number p < co.

We note that the above holds much more generally, see [7, Th. 18.3]. We will
come back to this problem for the special case K = Q later.
ProoF OF LEMMA B38 By Lemma 335, #(9) = I € G is a smooth point. By
Lemma 3332 G(R) contains the image of an analytic function of the form

DU (xy,...,x) — (@1, Th, Ppyr (T, -, Th)s oo, Pz (T, Tg)) -
(3.28)
Let Z be the Zariski closure of these real points. By Lemma [3.31] we may write

as a union of irreducible varieties. By Lemma [3.29] either Z = G or
dimZ; < k=dimG

for i = 1,...n. However, the latter case cannot happen since a finite union of
varieties of dimension strictly less than k cannot contain all points

bS(xq,...,xp)

in (3:28). Specifically, in this case each [J(Z;) must contain some non-zero poly-
nomial
fi S (C[i[]l, “ee ,(Ek],

so that every point &(zy,...,z;) in (328) would have to satisfy the equa-
tion f;---f, = 0. This is a contradiction, since every non-empty open subset
of R* in the Hausdorff topology is Zariski dense (since all the partial deriva-
tives, including the Oth, of a polynomial at a point determine the polynomial).
The p-adic case is similar. O

Clearly, the group G(R) of R-points of an algebraic subgroup G C SL; is
a linear Lie group with a real Lie algebra ggg). For the algebraic subgroup G
in SL; we have already defined a Lie algebra g which, by definition, is a complex
vector space. Assuming that G is defined over R, this complex vector space

g Csly(C)

defined over Q.
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can be defined by linear equations with real coefficients, so is invariant under
complex conjugation and, in particular,

g(R) = gNsly(R)
has the same dimension over R as g = g(C) has over C.

Lemma 3.39 (Lie algebras of Lie groups and algebraic groups). Let G
in SLy be an algebraic subgroup defined over R. Then the R-points

g(R) = gNsly(R)

of the Lie algebra g of the algebraic subgroup comprise precisely the Lie algebra
of the Lie subgroup G(R) C SL4(R). The same holds over C or Q, for any

prime p < oQ.

ProOF. Using the same notation and setup as in the proofs of Lemmas
(with d replaced by d?) and Lemma [3.38 we see that the tangent space of G(R)
(in the sense of manifolds or of Lie groups) is the image of the total derivative
of & at (xy,...,x;). However, by the implicit function theorem, this image is
precisely the real subspace defined by the equations

(g, ... uq2) - Vf(I) =0

for j = 1,...,d? — k. This proves the lemma in the real case, and the complex
and p-adic cases are similar. (Il

The following discussion is not essential for later developments, but it may
be useful to bear it in mind. By [142, Ch. VII, Sect. 2.2, Th. 1] the set of C-
points Z(C) of a Zariski connected variety Z is connected in the Hausdorff
topology. For the R-points Z(R) of a Zariski connected variety Z over R this
is not true. However, for algebraic groups G defined over R, the connected
component G(R)? (in the Hausdorff topology) only has finite index. We will
discuss this again for particular algebraic subgroups later (where it will usually
be easy to see). For now, notice that A(R)° < A(R) for A as in Example B37(b)
has index two. Over Q, the analogous question does not make sense, so Zariski
connected is a priori the only sensible notion of connectedness.

3.5.5 Chevalley’s Theorem, Subgroups, and Representations

Clearly, every algebraic representation gives rise to many algebraic subgroups
by defining stabilizer subgroups (as in Section BI.Z). Chevalley’s theorem(20)
almost turns this construction around: Given an algebraic subgroup there ex-
ists an algebraic representation so that the subgroup can be defined via the
representation as a stabilizer of a line (instead of a point as in Section B.1.2).
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Theorem 3.40 (Chevalley). Let H < SL; be an algebraic subgroup. Then
there exists an algebraic representation p: SL; — SLp and a D-dimensional
vector v such that

H = {g € SLy | p(g)v ~ v},

where ~ denotes proportionalit. If H is defined over K, then the algebraic
representation p is also defined over K, and we may choose v € KP.

As we will see, the theorem is proved by transforming the defining ideal of H
(which is finitely-generated) into a single vector in a high-dimensional vector
space.

Proor or THEOREM [3.40l For any g € H we have gH = H and equivalently

Moreover, we also have that A(g)J(H) = J(H) for some g € SL,; implies
that g € H. As the ideal is infinite dimensional we cannot use it directly. How-
ever, by the Noetherian property we know that J(H) C K[Mat,] is finitely
generated (as an ideal). Thus we can assume it is generated by polynomials
of degree less than or equal to m for some m. Write P, for the space of all

polynomials in K[Mat,] of degree < m, and define
T<m = T (H) N Py
Now notice that A(g9)P«,, = P« for all g € SL,; and that

)‘(g)jém = jgm

is equivalent to g € H (since Jg,, generates J(H)). In other words, we have
found a finite-dimensional representation of SL,; and a subspace so that H is
precisely the subgroup of SL,; that sends the subspace into itself. The represen-
tation is also an algebraic representation (which the reader can quickly check).

What is not quite as in the theorem is that the subspace might not be a
single line. However, even that can quickly be rectified. Let ¢ = dim J,, and
define V' = /\é Pepm and let v € /\Z J<m™0}. The algebraic representation
of SL; on P, induces an algebraic representation p on V' (check this) and for
any g € SL, the condition p(g)v ~ v is equivalent to A(g)J<,, = J<m and
hence to g € H.

If H is now additionally defined over K, then Jg,, NK[Mat,] generates J (H)
and we can choose v as the wedge of £ elements in J,, N K[Mat,]. Since the
regular representation (and its ¢th wedge power) are defined over any field, this
proves the last claim of the theorem. O

Lemma 3.41 (Zariski closures of groups). If S C SLy(K) is a subgroup,

then the Zariski closure G =S is a linear algebraic subgroup defined over K.

T Notice that proportionality is itself a polynomial condition, defined by requiring the vanishing
of all 2 x 2 determinants corresponding to pairs of components of p(g)v and of v.

Page: 132 job: AAHomogeneousDynamics macro: svmono.cls date/time: 19-0ct-2025/20:08



3.5 Linear Algebraic Groups 133

PrOOF. By Lemma B.33 we know that G is defined over K, so it is enough to
show that G(K) is a subgroup.

For any g € S we have ¢S = S by the assumption on S, so ¢G = G for
all g € S. However, as in the proof of Theorem this property of preserving
the variety is equivalent to the property of preserving the ideal 7 (G) of relations
defining G or equivalently a particular line inside an algebraic representation
of SLd

As this is a polynomial condition (see one of the footnotes to Theorem BA0)
which holds for all g € S, it must also hold for all ¢ € G. In other words, we
have shown that gG = G also holds for ¢ in the Zariski closure of S, that is for
all g € G = G(K). O

3.5.6 Jordan Decomposition, Algebraic Subgroups and
Representations

Algebraic groups and algebraic representations have some striking differences to
the theory of Lie groups, which we will now start to discuss.

Let p be an algebraic representation of SL,; (or more generally of an algebraic
subgroup H). Then we have the following facts:

e if u € SL; (u € H) is nilpotent, then so is p(u);
e if a € SLy(R) (a € H) is diagonalizable (when considered as an element a €
SL,) and has only real and positive eigenvalues, then the same holds for p(a).

The first property is readily proved for the case SL; and K = Q or K a local
field. Indeed, if u € SL4(K) is unipotent, then there exists some a € SLg4(K)
with a”ua™" — I as n — oo, which implies that

p(a)"p(u)p(a)™" = p(a"ua™") — I

as n — 00, so the eigenvalues of p(u) (which are not changed by conjugation)
must all be 1, and hence p(u) must be unipotent.

The second property requires a bit more work. We also note that if the alge-
braic representation is only defined on the subgroup H then neither claim would
be correct in the context of Lie theory. For this notice that the Lie groups U(R)
and A(R) are not that much different. On the one hand, the former is connected
and the latter is not, so they are not isomorphic. However, there is a surjective
group homomorphism from A(R) onto U(R), and an injective homomorphism
from U(R) into A(R)° < A(R). This does not contradict the above claims, since
the two maps are basically the logarithm and the exponential map, which are
not algebraic homomorphisms.

Recall from linear algebra that every matrix g € SL,(K) has a Jordan de-
composition

9 = Gss9u
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into a K-diagonalizable or semi-simple matrix g, € SL4(K) and a wunipo-
tent g, € SLy4(K). The two components g and g, commute with each other,
and under this requirement the decomposition is unique. If K is R or C,
then ggs = gposGeomp can be further decomposed into a product of two commut-
ing semi-simple elements g,os, Geomp € SL4(C), where the positive semi-simple
part g,.s has only real and positive eigenvalues, and all the eigenvalues of the
compact semi-simple part geomp have absolute value one. This decomposition
is also unique, and if g € SL4(R) then g, gpos) Jeomp lie in SLy(R) (see Ex-
ercise 3.44). If K = Q,, then a similar decomposition can be shown, and the
following results hold in that case also (see Exercise 3.45)).

The following two results contain the claims made in the beginning of this
section in greater generality.

Proposition 3.42 (Jordan decomposition and subgroups). Let H be an
algebraic subgroup of SL,, and let g be an element of H. If g = g.g, is the
Jordan decomposition of g in SLy(K), then gy, g, € H also. If H is defined
over K =R (or K= C) and gss = gposYeomp 5 the decomposition into positive
semi-simple and compact semi-simple parts, then once again g,os, Geomp € H.

Proposition 3.43 (Jordan decomposition and representations). Let H
be an algebraic subgroup of SLy, and let p: H — GLp be an algebraic represen-
tation. Then p(g)y = p(gu) and p(g)ss = p(gss) for all g € H. If K is R or C,

The proof of these results is intertwined. We will first prove Proposition [3.43]
in a special case, then prove Proposition[3.42] and finally obtain Proposition[3.43]
as a corollary.

PROOF OF PROPOSITION FOR A CHEVALLEY REPRESENTATION. Suppose
that p is the representation of SL; obtained in the proof of Theorem for
a subgroup H < SL;. Let g = g, be semi-simple, and assume (without loss of
generality, by applying any necessary conjugation to H and g¢) that g is diagonal.
Then it is easy to sed| that \(g) restricted to Pg,, is diagonal, with eigenvectors
given by monomials in the standard variables. Therefore all eigenvalues of A(g)
are simply products of powers of eigenvalues of g. Taking the ¢th wedge repre-
sentation, the same holds for p(g) = A‘A(g). Let g = g,, be unipotent. If K is Q
or a local field (which is where our main interest lies), we have already shown
that p(g) is unipotent. In general we may argue again step by step as above.
First, show that A(g) restricted to P,, is unipotent by considering monomials
corresponding to the eigendirections (resp. generalized eigendirections). Then
we can show that p(g) = A*A(g) is also unipotent.

If now g = g9, is any element of SL;, then p(g.) is semi-simple, p(g,) is
unipotent, p(g) = p(gss)P(gu), and p(gss), p(g,) commute with each other. This
proves the claim.

If K is R or C, then the argument above also shows that the eigenvalues
of p(gpos) are positive and the eigenvalues of p(geomp) have absolute value one,
giving the theorem. 0

T We use the notation from the proof of Theorem 401
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PROOF OF PROPOSITION Let H < SL; be an algebraic subgroup and
let p,v € K” be as in Theorem Let g € H so that v € K" is an eigen-
vector of p(g) for the Chevalley representation. By the properties of the Jor-
dan decomposition, v is therefore also an eigenvector of p(g)ss = p(gss) and
of p(9)y = p(gy)- It follows that g, g, € H. If Kis R or C, and gss = gposJeomp

then p(g)pos = P(gpos) has v as an eigenvalue. Thus g5, Geomp € H as well.
O

Proor OF PROPOSITION [3.43] Let H < SL; and let p: H — GLp be an
arbitrary algebraic representation. Then

L= Graph(p) g H x GLD g SLd+D+1

is an algebraic subgroup in the following way. We require the elements of L to
be of block form
h

g
det(g)~*

with h € SL; and g € GLp (by using linear equations, the condition det h = 1,

and the polynomial equation that the last entry should be the inverse of the

determinant of the middle block), require h € H (by the known relations of H),

and finally g = p(h) (which is a polynomial condition by assumption on p).
Now let h = hy, € H be semi-simple, so that

g=1| »r(h) el
det(p(h))~"

and hence by Proposition [3.42 we also have

However, since h, = I; and L is a graph of a homomorphism, we also
have p(h), = Ip. This shows that p(h) is semi-simple if h is semi-simple. The
same argument also applies to unipotent elements (respectively, to positive or
compact semi-simple elements if K is R or C). The proposition follows from the
uniqueness of the Jordan decomposition. 0

Exercise 3.44. Let g € SL;(C) be diagonalizable. Define two commuting matrices

9posr) Ycomp S SLd((C)

with ¢ = gp0s9comp such that g, only has positive eigenvalues and g.om,p, only has eigenvalues
of absolute value one. Show that these are also uniquely determined by these properties, and
that g € SLy4(R) implies that g0, geomp € SLg(R).
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136 3 Rationality

Exercise 3.45. Let K = Q, and let P < @: be a subgroup isomorphic to Q and contain-
ing p. Show that every matrix g € SL;(K) is the product of commuting elements Ipos> Jcomp

of SLg(K) where the eigenvalues of g, are elements of P, and the eigenvalues of g.om,p, have
absolute value one. Generalize the results of Section [3.5.6] to include this p-adic case.

3.6 Borel Density Theorem

We will show in this section a version of the Borel density theorem,*!) which will
show another relationship between finite volume orbits and rationally defined
subgroups. It is the generalization of the basic observation that a lattice A < R
cannot be contained in a proper subspace to the setting of lattices in linear
algebraic groups.

For the proof we will need two basic theorems, each of them fundamental to
its own subject. However, the two subjects concerned are often—in the context
of this book, wrongly—considered far from each other. Concretely, we will need
Poincaré recurrence from ergodic theory (in some sense the pigeonhole principle
for ergodic theory, see Theorem 1.30 and Exercise 1.34), and Chevalley’s theorem
from the theory of algebraic groups (see Theorem [B40), and will combine these
with the facts derived in Section This approach goes back to work of
Furstenberg [57] and Dani [17].

Theorem 3.46 (Borel density theorem). Suppose that H < SL, is an alge-
braic subgroup defined over R and suppose that I' < H(R) is a lattice. Then

(1) If H is semi-simpldl such that H(R)® has no compact factors then I' is
Zariski dense in H. If H s only assumed to be semi-simple then the Zariski
closure of I' contains all non-compact factors of H(R)® (and possibly some
or all of the compact factors).

(2) In the general case, the Zariski closure L. < H of I' contains all unipotent
elements of H(R) and more generally all elements of H(R) that only have
positive real eigenvalues.

For the proof we will also need the following simple observation from linear
algebra.

Lemma 3.47 (Convergence to some eigenvector). Let g € SL;(R) have
the property that all its eigenvalues are real and positive, and let

be a finite-dimensional algebraic representation (obtained, for example, from
Chevalley’s theorem). Then for any w € RP\{0} there is some v € RP with

T A linear algebraic group H is semi-simple if it is Zariski connected and its Lie algebra is
semi-simple. Notice that this does not imply that H(R) is connected as a manifold.
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3.6 Borel Density Theorem 137

1

T—p(g")w — v € RP
lo(g™)wl

as n — 0o, and v is an eigenvector of p(g).

PROOF. By Proposition[B:42]if ¢ is unipotent then p(g) is also, and if g has only
positive eigenvalues then the same holds for p(g). Given w € RP~\{0}, we may

write
w = Z wx # 07

A>0

where each w), is a generalized eigenvector for the eigenvalue A and the map p(g).
Then there is some largest eigenvalue A, with w,, # 0 (and hence wy = 0
for any A > Ap). Also notice that ||p(¢g™)w,| is asymptotic to A*n**) for
some k(A) > 0 (this may be seen by looking at the Jordan normal form of p(g),
see also the argument below). Thus

1

T (9"wy,) — 0
[p(g™)w]| -

(g"w) = s
o(g™)wa, |l
as n — oo. This reduces the problem to the case of a single eigenvalue, and
hence (by canceling the eigenvalue) to the case of a unipotent matrix

1
A= EP(Q)ML

acting on the generalized eigenspace V), of p(g) for the eigenvalue Ay . Choosing
a Jordan basis of A, we may assume that A is a block matrix

Ay
A= ]
Ay
where each
11
11
1

We split w = wy, into components > w(® corresponding to this block decom-
position, and apply A; to the vector

to obtain
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(@) (@) (@)

w'? w4+ wy'n + w3 (3) +"'+w1(cl) (%)
1 .
¢ . (7) (1)
() wy’, +w'n
wy @

Wy

If now w(® # 0, then the above is a vector-valued polynomial whose entry of
highest degree is in any case the first row corresponding to the eigenspace of A;.
Since this holds for each 7, the lemma follows. O

PROOF OF THEOREM [3.46] PART (2). Let g € H(R) have positive real eigen-
values, let IL be the Zariski closure of I' < H(R) < SLy(R) and let

p: SLd — SLD

and w € R? be the Chevalley representation for . = Stabgy, (Rw) as in The-
orem By Poincaré recurrence we have for almost every z € H(R)/I" a
sequence n;, — oo with ¢"*x — x as k — oco. We now switch this conver-
gence to the group level as follows: For almost every h € H(R) there exist
sequences n; — oo and €, — e as k — oo, with v, € I' with g"*h = ¢,h~;, for
all k > 1, or equivalently with

v = h~teyh k=g h.
N—_——

—I

Applying this group element to w gives

1 1 . 1 1

T = (Y )w = lim e p(h T g h)w = vy,
[wll = llp(r)wll koo [[p(h= g h)w]|

where we have used the fact that I' < L(R) fixes Rw by definition, and

Lemma [3.47 It follows by the same lemma that w is an eigenvector of p(h~1gh)

for almost every h. Taking h — e shows that w is an eigenvector of p(g) also
and so g € L(R). O

PRrROOF OF THEOREM 346, PART (1). Let H° = H(RR) be the connected compo-
nent of the set of real points of H. Let F' be a non-compact almost direct simple
factor of H°. Then F' contains a one-parameter unipotent subgroup U, and we
can apply Part (2) of the theorem to U and to all its conjugates, which together
generate a normal connected subgroup of F' (and hence all of F'). Thus L(R)
contains F'. We may apply this for all non-compact almost direct factors of H,
which then proves the second claim in Part (1).

This also proves the first claim in Part (1) since by the above L and H have
the same Lie algebra and hence have the same dimension. However, H is by
assumption connected and so IL. = H follows. O

Exercise 3.48. Let Q be a real non-degenerate quadratic form of signature (p,q) in d vari-

ables with p > ¢ > 1. Suppose the orbit SOg(R)SL4(Z) has finite volume. Show that a
multiple of @ has integer coefficients.
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3.7 Irreducible Quotients 139

3.7 Irreducible Quotients

In this section we classify lattices in semi-simple groups into reducible and irre-
ducible lattices, and derive interesting density results (in the standard topology)
from the Borel density theorem (which gives only Zariski density).

Definition 3.49. Let G be a connected semi-simple Lie group. A lattice I' < G
is called reducible if G = H, - Hy can be written as an almost direct product of
nontrivial connected semi-simple Lie subgroups H;, Hy < G with the property
that It = I' N H; is a lattice in Hy and I, = I'N Hy is a lattice in Hy. The
lattice is called irreducible if it is not reducible.

Examples of reducible lattices are of course very easy to find, for exam-
ple SLy(Z) x SLy(Z) is a reducible lattice in SLy(R) x SLy(R). Irreducible lat-
tices are a bit more difficult to ﬁncﬁ, but for now we only note that, for exam-
ple, SLy(Z[+/2]) can be made into an irreducible lattice in SLo(R) x SLy(R), see
Exercise [3.53]

We note that every reducible lattice can be ‘reduced’, or ‘almost decomposed’
into irreducible lattices as follows. If I' < G = H; - H, is a reducible lattice such
that I"'N H; < H; is a lattice for ¢ = 1,2, then

(DA H) (T Hy) C T
is also a lattice in G = H; - Hy and so has finite index in I'. Studying now
I'NH, < H,

we may obtain an irreducible lattice, and if not we may repeat the decomposition
step as before. Ultimately we find finitely many irreducible lattices (that are
potentially lattices in simple groups). In this context the following notion is
useful.

Definition 3.50. Let I A < G be two subgroups of a group. Then we say
that I and A are commensurable if I' N A has finite index in both I'" and A.

Corollary 3.51 (Dense projections of irreducible lattices). Let G be a
semi-simple algebraic group defined over R and suppose that

G == G(R)O - Hl . H2 g SLd(R)

is an almost direct product of semi-simple subgroups Hy, Hy C SL4(R). We
assume furthermore that G has no compact factors. Let I' < G be an irreducible
lattice in G, and suppose that Hy is non-trivial. Then the projection of I’ tdi

T By definition any lattice in a simple group is irreducible, but let us discuss a more interesting
example.

¥ The statement and proof simplify if G = H; x H, is a direct product of two simple sub-
groups Hy, Hy < G. The reader is invited to first consider this simpler case.
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G/H2 ng/HlﬁHQ
is dense in Hy/H; N Hy.

PRrROOF. We note that if ' <G is a connected normal subgroup, then F' = F(R)®
for a normal algebraic subgroup F<1G. In fact, if g = & is a decomposition of
the Lie algebra g of G into the Lie algebra f of F' and a transversal Lie ideal §' of g,
then F = Cg(f')°. In particular H; = H;(R) for an algebraic subgroup H; < G
for j =1, 2. Therefore we may apply the Borel density theorem (Theorem [3.46])
for G or any of its normal subgroups.
Write
m: G — G/Hy~H\/H, N H,

for the projection map. There are two cases to consider: Either 7 (I") is discrete
or it is not.

DISCRETE IMAGE IMPLIES REDUCIBILITY. If 7y (I") is discrete then its pre-image
under the map H, — H;/H; N H, is also discrete. Now let B; C H; be a
fundamental domain for the discrete pre-image of w1 (I") in H; and By C H,
a fundamental domain for I' N H, in Hy. Then we claim that B;By C G is
an injective domain for I'. Indeed, if v € I', by,b] € By, and by, b, € B,
satisfy bybyy = b} b}, then this identity modulo Hy < G gives

(b1(Hy N Hy)) (v(Hy N Hy)) = by (Hy N Hy).

Taking pre-images to H; and applying our assumption that B; is a fundamental
domain, it follows that b; = b}. Multiplying

bibyy = bllb/2

with b, ! we get byy = by and v € Hy. Now by = b, and y = I by the injectivity
assumption on By. Hence B1 By C G is an injective domain for I', and has finite
Haar measure since I" is a lattice by assumption. This also implies thafll each
of B; and B, has finite Haar measure. In particular, I' N H, is a lattice in Hs.

By the Borel density theorem (Theorem B.46]) applied to I' N Hy C H, there
is a finite collection {~;,...,7,} € I' N H, such that

C(yiseeoyvm)={h € Hy|yyh=hy;fori=1,...,n}

is the centre C'(Hy) of H,. In fact, we may choose v, € I'N HyNC(H,) and then
successively choose 75, ... so that at each stage

O(Vlv'- a’}/m) ,C,_ 0(713' . a’ym—l)'

By the Noetherian property, we must find some n with

T As G is the almost direct product of H; and H, the Haar measure m is, in the same sense,
also almost the product of the Haar measures mpg, X my,.
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0(717 s 7771) = C(F N H2)

Since I' N Hy is Zariski dense in Hy we deduce that

0(715 s 7'777,) = O(HQ)

as required.
We claim that this implies for the projection my: G — G/H; = Hy/H,; N Hy
that
mo(I") € Ha/Hy N Hy

must be discrete as well. In fact, if m,(y) is sufficiently small but non-trivial,
then by construction

[m2(7), w2 ()] # 1
for some j € {1,...,n}. This implies that

[v,7] € HoN T

is very close to an element of H;NH, but does not belong to it. However, H;NHy
is finite (it is zero-dimensional because its Lie algebra is trivial). This contradicts
the assumed discreteness of I', so my(I") must be discrete as claimed.

The claim establishes a symmetry between H; and H, in the above discussion.
Applying the argument above again we also see that I'N H; is a lattice in H;.
In other words, we have shown that I is a reducible lattice.

SHOWING DENSITY. We assume now that (") is not discrete. Let
F=nt (wl (F)) nH,

be the pre-image in H; of the closure of 7;(I"). Clearly I" stabilizes the Lie
algebra f of F. By the Borel density theorem (Theorem [340]) applied to the
lattice I' in G, the same holds for G > H;. It follows that f<b; is a Lie ideal in
the Lie algebra b; of Hy. If § = b;, then we get the desired density of 7, (I") in
the connected group H,/H; N Hy.

So suppose that f # b;. We define H; to be the almost direct prod-
uct of all factors of H; whose Lie algebras are not contained in f. Also de-
fine H) = F° - H, to be the almost direct product of all factors in F' and H,.
Note that G = H,-Hy = H{-F°-H, = H{-H}. Since § # by, the group H; is non-
trivial. Let 7] : G — G/ H} denote the analogous projection for the almost direct
product G = Hj - H}. Note that 7} is the composition of 7,: G — H,/H; N H,
with the quotient by 7, (F°). It follows that

() C Hi/H] N H}

is discrete. By the first argument in the proof, this implies that I" is a reducible
lattice in G = H{ - H}. Therefore irreducibility of the lattice implies that f = b,
and the result follows. O
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Our interest in the notion of irreducibility is clearly explained in the fol-
lowing corollary. We note in particular that irreducibility is necessary for the
conclusions to hold.

Corollary 3.52 (Mixing of semi-simple groups). Let G be the connected
component of the group of R-points of a semisimple algebraic group defined
over R. Suppose that G has no compact factors. Let X = I'\G be the quotient by
an irreducible lattice of G. Then every almost direct factor of G acts ergodically
and the action of G is mizing with respect to the Haar measure myx on X.

Proor. By the Howe—Moore theorem for semi-simple groups (Theorem 2.44),
it is sufficient to show that every simple factor acts ergodically.
So let H <1 G be a (non-trivial) simple factor of G, and suppose that the set

HB=BCX

is H -invariantﬁl.
Let
7x:G— X=G/I

be the natural factor map, and let Bg = 75" (B) C G be the set in G cor-
responding to B. By the properties of B we have HB; = Bg, or equiva-
lently B = 7 1(n(Bg)) if 7: G — G/H denotes the projection map. By
construction, BoI' = Bg and so n(Bg)n(I") = n(Bg).

Recall from [45, Prop. 8.6] that, for any two Borel sets By,By C G/H
with mq g (B1)me u(Bs) > 0, the set

{9H € G/H | m¢ i ((Bi(gH)) N By) > 0}

is non-empty and open.

We may apply this to the set B; = 7(Bg) and its complement B,. Since 7w(I”)
is dense in G/H by Corollary B.51] we deduce that either 7(Bg) has zero mea-
sure or its complement does. Since G is the almost direct product of H and G/ H,
the Haar measure on G can be obtained from the Haar measures on H and
on G/H. Hence either By or its complement has zero measure in G. It follows
that either mx(B) = 0 or mx(X~B) = 0 as required. O

Exercise 3.53. Let D > 1 be a non-square integer, and for
a=a+b/Dc QWD)

let @ = a — bv/D denote its Galois conjugate. Now let

SLy(Z[VD)) = {g - (O‘M 0‘1’2)

Q1 Qg2

Q11,012,002 1,02 € Z[V'D], det(g) = 1} ,

and consider SLq(Z[v/D]) as a subgroup of SLy(R) x SLo(R) using the diagonal embedding

t By [45, Prop. 8.3], we may assume the strict invariance H-B = B rather than the a priori
weaker invariance in the measure algebra mx (geBAB) =0 for all g € H.
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1: SLy(Z[V'D]) — SLy(R) x SLy(R)
_ [©&1,1 X12 _
g= ( ) — (9,9)

Q1 Qg2

__ (o1 a9

g (52,1 a2,2) '
(a) Show that I' =1 (SL2 (Z[\/B})) < SLy(R) x SLy(R) is a discrete subgroup.
(b) Show that I' is a lattice in SLgy(R) x SLo(R).

where

Notes to Chapter 3

(14 (Page[00) Almost any algebra text will cover this material, for example Gerstein [58] or,
for the more sophisticated aspects of the algebraic theory, see Lam [93].

(15)(Page [@0) The word signature is used in various ways, all meaning that the number
of +1s, —1s (and in the degenerate case 0Os) can be reconstructed from the signature (and the
dimension). The fact that the signature is a property of the form itself is Sylvester’s law of
inertia [149] (see Lang [95, XV, Sec. 4] for a modern treatment).

(16) (Page [@2)) Hilbert [68] proved this in his development of invariant theory.

(17) (Page @) This kind of approximation was studied by Dickinson and Dodson [30] and
by Drutu [35] (implicitly), by Fukshansky [53] for n = 2, and by Schmutz [136] and Ghosh,
Gorodnik, and Nevo [59, 60] for all n > 2 and in more general settings.

(18) (Page [T05) This was shown by Dirichlet [32] in 1846 for the ring Z[¢] (the understanding
that this may not be the ring of integers in Q(¢) for an algebraic integer ¢ came later, and of
course the rank is not affected as Z[{] has finite index in the ring of integers). We refer to the
paper of Elstrodt [50] for an account of the history.

(19) (Page[122)) The history, and various generalizations, of the implicit function theorem may
be found in the account by Krantz and Parks [92]. The p-adic implicit function theorem may
be found in the notes of Serre [139, p. 83].

(20) (Page M3T) A modern proof from a sophisticated point of view is given by Conrad [15],
and the original proof in Chevalley [13]. Any book on algebraic groups will contain a version
of the theorem (possibly not under this name).

(21)(Page [[36) Borel [6] proved this for semi-simple Lie groups without compact factors;
generalizations and simplifications have been provided by Furstenberg [57], Moskowitz [115]
and Dani [17] among others.
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