
Chapter 7

Smooth Vectors and Decay for SL(3)

We will introduce in this chapter the notion of smooth vectors for a unitary
representation. This notion will be important for the study of unitary rep-
resentations of Lie groups in the following chapters. Already in this chapter
we will use smooth vectors in our study of effective decay of matrix coeffi-
cients, and an effective Howe–Moore theorem for the group SL3(R) (see also
Theorem 1.88).

7.1 Smooth Vectors

7.1.1 Differential Operators and Smooth Vectors

Throughout this section we assume that G is a Lie group with Lie algebra g.

Definition 7.1 (Partial derivative). Let π be a unitary representation of
the Lie group G. A vector v ∈ Hπ has a partial derivative π∂(a)v ∈ Hπ in
the direction a ∈ g if

π∂(a)v =
d

dt

∣∣∣∣
t=0

(
πexp(ta)

)
v = lim

t→0

1

t

(
πexp(ta)v − v

)

exists in Hπ. We say that v is C1-smooth if π∂(a)v exists for all a ∈ g, is Cr-
smooth for some r > 1 if π∂(a1) · · ·π∂(ar)v exists for all a1, . . . , ar ∈ g, and
is smooth if v is Cr-smooth for all r > 1.

These notions will become more familiar after we see an example and
establish some standard properties of derivatives and integrals in this context.

Example 7.2 (Smooth vectors for unitary representations of SO2(R)). Let

G = SO2(R) =
{
kθ =

(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣ θ ∈ [0, 2π)

}
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298 7 Smooth Vectors and Decay for SL(3)

and let

w =

(
0 −1
1 0

)
∈ g = so2(R).

Furthermore, let π be a unitary representation of SO2(R). Suppose first
that v ∈ Hπ is an eigenvector of weight n ∈ Z (that is, πkθv = einθv for
all kθ ∈ SO2(R)). Then v is smooth, since

π∂(w)v = lim
t→0

1

t

(
πexp(tw)v − v

)
= lim
t→0

1

t

(
eint − 1

)
v = inv.

More generally, v ∈ Hπ with eigenvector decomposition v =
∑
n∈Z vn has

a partial derivative π∂(w)v if and only if
∑

n∈Z n
2‖vn‖2 < ∞, and in this

case
π∂(w)v =

∑

n∈Z

invn.

Indeed, suppose first that
∑

n∈Z n
2‖vn‖2 <∞, which gives that

π∂(w)v = lim
t→∞

∑

n∈Z

1

t

(
eint − 1

)
︸ ︷︷ ︸

|·|6n

vn =
∑

n∈Z

invn

by (a trivial form of) dominated convergence. Suppose now that π∂(w)v = ṽ
exists, and assume that ṽ =

∑
n∈Z ṽn is the eigenvalue decomposition. For

any n ∈ Z and u ∈ Hπ with eigenvector decomposition u =
∑

m∈Z um, we
then have

〈ṽn, u〉 = 〈ṽn, un〉 = 〈ṽ, un〉 = lim
t→0

1

t
〈πexp(tw)v − v, un〉

= lim
t→0

1

t

(
〈πexp(tw)v, un〉 − 〈v, un〉

)

= lim
t→0

(
〈v, πexp(−tw)un〉 − 〈v, un〉

)

= lim
t→0

1

t

(
eint − 1

)
〈vn, un〉 = 〈invn, u〉.

As this holds for all u ∈ Hπ, we see that ṽn = invn and hence

‖ṽ‖2 =
∑

n∈Z

n2‖vn‖2 <∞

as claimed.
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7.1 Smooth Vectors 299

7.1.2 Fundamental Properties

The following will be a convenient tool for establishing basic properties of
partial derivatives.

Lemma 7.3 (Fundamental theorem). Let π be a unitary representation
of G. If for v ∈ Hπ the derivative π∂(a) exists for some a ∈ g, then

πexp(ta)v − v =

∫ t

0

πexp(sa)π∂(a)v ds (7.1)

for all t ∈ R (with the usual sign conventions for Riemann integrals). Con-
versely, if v, ṽ ∈ Hπ satisfy

πexp(ta)v − v =

∫ t

0

πexp(sa)ṽ ds (7.2)

then the partial derivative π∂(a)v = ṽ exists.

Proof. First notice that πexp(sa)π∂(a)v depends continuously on s, which
implies that the Hπ-valued weak integral on the right-hand side of (7.1)
exists. Now fix some vector w ∈ Hπ and notice that the derivative of the
map s 7→

〈
πexp(sa)v, w

〉
is given by

lim
t→0

〈
πexp((s+t)a)v, w

〉
−
〈
πexp(sa)v, w

〉

t

= lim
t→0

1

t

〈
πexp(ta)v − v, πexp(−sa)w

〉

=
〈
π∂(a)v, πexp(−sa)w

〉

=
〈
πexp(sa)π∂(a)v, w

〉
,

and so is also continuous in s. Hence, by the fundamental theorem of calculus
(for C-valued functions),

〈
πexp(ta)v, w

〉
− 〈v, w〉 =

∫ t

0

〈
πexp(sa)π∂(a)v, w

〉
ds

=

〈∫ t

0

πexp(sa)π∂(a)v ds, w

〉
.

As this holds for all w ∈ Hπ, we see that (7.1) holds for a (assuming only
that π∂(a)v exists).

Suppose now for the converse that v, ṽ ∈ Hπ satisfy (7.2). Then

lim
t→0

1

t

(
πexp tav − v

)
= lim

t→0

1

t

∫ t

0

πexp(sa)ṽ ds = ṽ
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300 7 Smooth Vectors and Decay for SL(3)

follows from continuity of the representation, as in the proof of Proposi-
tion 1.49. �

Exercise 7.4. Suppose that π is a unitary representation of a Lie group G with Lie al-
gebra g. Suppose v ∈ Hπ has va ∈ Hπ as a weak derivative in the direction a ∈ g in the

sense that
d

dt

∣∣∣
t=0

〈
πexp(ta)v, w

〉
= 〈va, w〉

for all w ∈ Hπ (or just for a dense set of vectors). Show in this case that va = π∂(a)v is
in fact the derivative of v in the sense of Definition 7.1.

We note that the following linearity claim comes as no surprise. However,
our assumptions regarding the existence of partial derivatives is significantly
different to the standard lemma from multi-dimensional analysis.

Lemma 7.5 (Linearity). Let b1, . . . ,bdimg be a basis of the Lie algebra g

of the Lie group G. Let π be a unitary representation of G, and suppose
that v ∈ Hπ has the property that π∂(bj)v exists for all j = 1, . . . , dim g.
Then π∂(a)v exists for all a ∈ g, and depends linearly on a.

Proof. By assumption, π∂(bj)v exists for j = 1, . . . , d = dim g so that (7.1)
holds, in particular, already for a = bj . We will combine (7.1) with the
coordinate system of the second kind defined by

Ψ : Rd ∋ (t1, t2, . . . , td) 7−→ exp(t1b1) exp(t2b2) · · · exp(tdbd) ∈ G.

Since the derivative of Ψ at 0 is the map (s1, . . . , sd) 7→ s1b1+ · · ·+ sdbd ∈ g

and so is invertible, Ψ indeed defines a local diffeomorphism. For some a ∈ g

we define smooth functions tj(t) for t close to 0 and j = 1, . . . , d by

(t1(t), t2(t), . . . , td(t)) = Ψ−1 (exp(ta)) ,

or equivalently by

exp(ta) = exp(t1(t)b1) · · · exp(td(t)bd). (7.3)

Recall that the derivative of t 7→ exp(ta) at t = 0 is a ∈ g. Hence, taking
the derivative of (7.3), we obtain from the chain rule in multi-dimensional
analysis that

a = s1b1 + · · ·+ sdbd

where

lim
t→0

tj(t)

t
= sj (7.4)

for j = 1, . . . , d.
We now express πexp(ta)v − v as the telescoping sum
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7.1 Smooth Vectors 301

d∑

j=1

(
πexp(t1b1)··· exp(tjbj)v − πexp(t1b1)··· exp(tj−1bj−1)

v
)

=

d∑

j=1

πexp(t1b1)··· exp(tj−1bj−1)

(
πexp(tjbj)v − v

)

and apply (7.1) for the directions b1, . . . ,bd. This shows that πexp(ta)v − v
equals

d∑

j=1

πexp(t1b1)··· exp(tj−1bj−1)

∫ tj

0

πexp(sbj)π∂(bj)v ds

=

d∑

j=1

∫ tj

0

πexp(t1b1)··· exp(tj−1bj−1) exp(sbj)
π∂(bj)v ds.

We now divide by t and use (7.4) together with continuity of the representa-
tion to obtain

lim
t→0

1

t

(
πexp(ta)v − v

)
=

d∑

j=1

sjπ∂(bj)v.

This proves that

π∂(a)v = s1π∂(b1)v + · · ·+ sdπ∂(bd)v

exists and depends linearly on a ∈ g. �

We will now bring this into connection with the adjoint representa-
tion Adg : g → g for g ∈ G, satisfying exp(Adg(a)) = g exp(a)g−1 for g ∈ G
and a ∈ g.

Proposition 7.6 (Chain rule). Let π be a unitary representation of the Lie
group with Lie algebra g. Let v ∈ Hπ be C1-smooth and g ∈ G. Then πgv
is C1-smooth and

πgπ∂(a)v = π∂(Adg a)πgv (7.5)

for all a ∈ g. In particular, the vector space of Cr-smooth vectors is invariant
under πg for every g ∈ G and r > 1.

Proof. By Lemma 7.3 we have

πexp(ta)v − v =

∫ t

0

πexp(sa)π∂(a)v ds

for all t ∈ R. We apply πg on both sides. On the left-hand side this gives

πg
(
πexp(ta)

)
πg−1πgv︸ ︷︷ ︸

=v

−πgv = πexp(tAdg a)πgv − πgv.
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302 7 Smooth Vectors and Decay for SL(3)

Applying the same trick on the right-hand side gives

πexp(tAdg a)πgv − πgv =

∫ t

0

πexp(sAdg a)πgπ∂(a)v ds

for all t ∈ R. However, the second part of Lemma 7.3 applies and gives

π∂(Adg a)πgv = πgπ∂(a)v.

As this holds for all a ∈ g and Adg : g→ g is bijective, we also obtain that πgv
is C1-smooth as claimed. �

Proposition 7.7 (Existence of smooth vectors). Let π be a unitary rep-
resentation of a Lie group G with Lie algebra g, v ∈ Hπ, and ψ ∈ C∞

c (G).
Then π∗(ψ)v is smooth, and π∂(a)π∗(ψ)v = π∗

(
λ∂(a)ψ

)
v for any a ∈ g,

where†

λ∂(a)ψ(g) =
∂

∂t

∣∣∣
t=0

ψ (exp(−ta)g)

is the partial derivative with respect to the left regular representation. More-
over, for a smooth approximate identity (ψn) in C

∞
c (G) (see Proposition 1.43)

we have
v = lim

n→∞
π∗(ψn)v

for any v ∈ Hπ and so, in particular, the smooth vectors in Hπ are dense.

Proof. Using the definition of the convolution operator we see that

πexp(ta)π∗(ψ)v =

∫

G

πexp(ta)ψ(h)πhv dm(h)

=

∫

G

ψ (exp(−ta)g)πgv dm(g)

by using the substitution g = exp(ta)h. This gives

1

t

(
πexp(ta)π∗(ψ)v − π∗(ψ)v

)
=

1

t

∫

G

(
ψ (exp(−ta)g)− ψ(g)

)
πgv dm(g)

=

∫

G

ψ(exp(−ta)g)− ψ(g)
t

πgv dm(g)

for all t ∈ Rr{0}. As ψ ∈ C∞
c (G), we know that

ψ(exp(−ta)g)− ψ(g)
t

−→ λ∂(a)ψ(g)

† This formula may look a bit unusual, as it corresponds to a right-invariant vector field
on G (rather than a left-invariant vector field).
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7.1 Smooth Vectors 303

as t → 0, that this convergence is uniform in g, and that this conver-
gence takes place inside a compact subset of G in the sense that the
left-hand side vanishes for all t ∈ [−1, 1]r{0} outside the compact sub-
set exp ([−1, 1]a) supp(ψ) ⊆ G. In particular, the convergence also takes place
in L1(G), and it follows that π∂(a)π∗(ψ)v = π∗(λ∂(a)ψ)v exists. Applying
this inductively to expressions of the form π∂(an) · · ·π∂(a1)π∗(ψ)v for n > 1
shows that π∗(ψ)v is smooth.

Using an approximate identity in C∞
c (G) ⊆ L1(G) the proposition follows

from Proposition 1.49. �

Definition 7.8 (Sobolev norm). Let π be a unitary representation of G,
let b1, . . . ,bdimg be a basis of g = LieG, and let r > 0 be an integer. The
degree r Sobolev norm of a Cr-smooth vector v ∈ Hπ (with respect to the
fixed basis) is defined by

S(v)2 = Sr(v)2 = ‖v‖2 +
r∑

s=1

dim g∑

j1,...,js=1

‖π∂(bj1 ) · · ·π∂(bjs)v‖2.

Essential Exercise 7.9 (Lipshitz bound). Let π be a unitary representa-
tion of the Lie group G and v a C1-smooth vector. Show that

‖πexpav − v‖ 6 ‖a‖ S(v)

for all a ∈ g, where S is a degree-one Sobolev norm defined by an orthonormal
basis of g.

Exercise 7.10. Extend Proposition 7.7, and show that Sr(π∗(ψ)v) ≪ψ ‖v‖ (and express
the implicit constant in terms of ψ).

Essential Exercise 7.11. Let π be a unitary representation of a Lie groupG
with Lie algebra g. Let r > 1 and v ∈ Hπ be a Cr-smooth vector. Let S denote
the degree r Sobolev norm. Show that S(πgv)≪g S(v), and that the implicit
constant can be chosen to be uniformly bounded on compact subsets of G.

Exercise 7.12. Let π be a unitary representation of G, let b1, . . . ,bdimg be a basis

of g, the Lie algebra of G, and let b̃1, . . . , b̃dimg be another basis of g. Let r > 1 and

let S (respectively S̃) be the degree r Sobolev norm defined by b1, . . . ,bdimg (resp.

by b̃1, . . . , b̃dimg). Show that we have S(v) ≪ S̃(v) ≪ S(v) for any Cr-smooth v ∈ Hπ.
Show also that if r = 1 and both bases are orthonormal with respect to an inner product
on g, then S(v) = S̃(v) for any C1-smooth v ∈ Hπ.

7.1.3 Smooth Vectors for Unitary Flows

Example 7.13 (Derivatives and smooth vectors for Rd). We let G = Rd for
some d ∈ N, and will use the standard basis e1, . . . , ed of its Lie algebra g
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304 7 Smooth Vectors and Decay for SL(3)

(which is also Rd). Let π be a unitary representation. Applying the spectral
theorem (Corollary 2.12), we assume that Hπ = L2

µ(X) for a finite (or σ-
finite) measure µ on X = Rd ×N and that π is defined by the multiplication
representation† (

πxv
)
(t, n) = e2πi(x·t)v(t, n)

for all x ∈ Rd, v ∈ L2
µ(X), and (t, n) ∈ Rd × N. In this case we obtain, for

a C1-smooth vector v, that

π∂(ej)v = lim
s→0

e2πistj − 1

s︸ ︷︷ ︸
|·|62π|tj|

v(t, n) = 2πitjv(t, n) (7.6)

for j = 1, . . . , d, so that

S1(v)2 = ‖v‖2 +
d∑

j=1

‖M2πitj
v‖ (7.7)

where M2πitj
is the multiplication operator on L2

µ(X) defined by

(
M2πitj

v
)
(t, n) = 2πitjv(t, n)

for all v ∈ L2
µ(X), t = (t1, . . . , td) ∈ Rd, and n ∈ N. Conversely, if v ∈ L2

µ(X)
and j ∈ {1, . . . , d} have the property that M2πitj

(v) belongs to L2
µ(X), then,

by applying dominated convergence in (7.6), we see that π∂(ej)(v) exists.
If this holds for all j ∈ {1, . . . , d}, then v is C1-smooth and the degree-one
Sobolev norm is given by (7.7).

Now let r ∈ N. Applying the above recursively to the partial derivatives,
we see that v ∈ Hπ is Cr-smooth if and only if pv ∈ L2

µ(X) where p is any
polynomial in C[t1, . . . , td] of degree at most r.

Finally, we wish to apply this to the regular representation λ of Rd

on L2(Rd), which will reveal the connection to Sobolev spaces (see, for ex-
ample, [24, Ch. 5]). By the Plancherel formula (Theorem 2.15), the regular
representation is isomorphic to the multiplication representation as above
for the Lebesgue measure µ = mRd on X = Rd. Applying the above, we
see that v ∈ L2(Rd) is smooth for the regular representation if and only
if

̂
v ∈ L2(Rd) satisfies p

̂
v ∈ L2(Rd) for any polynomial p ∈ C[t1, . . . , td]. We

define the polynomial

p(t) =
d∏

j=1

(t2j + 1)

† In Corollary 2.12 we used a simplified notation and wrote Mg for the multiplication

operator defined by the function Ĝ ∋ t 7→ 〈g, t〉 ∈ S1. In the case of x ∈ Rd and t ∈ R̂d ∼= Rd

this function corresponds to Rd ∋ t 7→ e2πi(x·t) by Exercise 2.6 or Proposition 2.40.
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7.1 Smooth Vectors 305

and note that 1
p ∈ L2(Rd). It follows that

̂
v = 1

p (p

̂
v) ∈ L1(Rd) and hence, by

Theorem 2.15 and Corollary 2.5 applied to the Fourier transform instead of

the Fourier back transform, that v = (̂

̂
v) ∈ C0(Rd).

We claim that a smooth v ∈ L2(Rd) actually belongs to C∞(Rd). For
this, fix some index j in {1, . . . , d}, and note that the above also applies
to λ∂(ej)v ∈ C0(Rd). Here

λ∂(ej)v = lim
s→0

1

s

(
λsejv − v

)

is defined as a limit in L2, which, for the isometric Fourier transform on L2,
becomes as above

M∂(ej)
̂
v(t) = lim

s→0

1

s

(
e2πistj − 1

)̂
v(t) = 2πitj

̂
v(t) (7.8)

in L2(Rd) and for almost any t ∈ Rd. We now multiply this once more by p(t)
and apply dominated convergence (by relying on the fact that t 7→ tjp(t)

̂
v(t)

lies in L2(Rd)) to see that

lim
s→0

p(t)
1

s

(
e2πistj − 1

)
︸ ︷︷ ︸

|·|62π|tj|

̂
v(t) = p(t)2πitj

̂
v(t)

converges in L2(Rd). Multiplying by 1
p ∈ L2(Rd) gives convergence of (7.8)

in L1(Rd) by the Cauchy–Schwarz inequality. However, this gives

∥∥∥∥
1

s

(
λsejv − v

)
− λ∂(ej)v

∥∥∥∥
∞

6

∥∥∥∥
1

s

(
e2πistj − 1

)̂
v(t)−

̂

λ∂(ej)v

∥∥∥∥
1

−→ 0

as s → 0 by the continuity bound in Corollary 2.5. As this holds for all j
in {1, . . . , d} and can be applied recursively to the partial derivatives of v, it
follows that v ∈ C∞(Rd).

Once again the reasoning above can be reversed to see that v ∈ L2(Rd) is
smooth with respect to the regular representation if and only if v ∈ C∞(Rd)
and its partial derivatives ∂αv belong to L2(Rd) for all α ∈ Nd0 (see Exer-
cise 7.14).

Exercise 7.14. Complete the proof of the last claim in Example 7.13.

Exercise 7.15. (a) Let G = SO2(R) ⋉ R2 be the isometry group of the plane as in Sec-
tion 3.3.1. Let π ∈ Ĝ be an irreducible representation. Find and prove a description of the
space of smooth vectors in Hπ. Also show that any v ∈ Hπ is smooth for the restriction
of π to H = R2.
(b) Let G be the ‘ax + b’ group as in Section 3.3.2, and let π+ ∈ Ĝ be the irreducible

representation corresponding to the set (0,∞) ⊆ R ∼= R̂. Show that any f ∈ C∞
c

(
(0,∞)

)

is a smooth vector. Can you again characterize smoothness with an appropriate moment
condition?
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306 7 Smooth Vectors and Decay for SL(3)

(c) Let G be the Heisenberg group as in Section 3.3.4, and let πξ ∈ Ĝ be the irreducible
representation corresponding to the central character χξ determined by ξ ∈ R×. Show that
any f ∈ C∞

c (R) is a smooth vector. Can you again characterize smoothness?

7.2 The Total Derivative*

We wish to study the functorial properties of partial derivatives, which will
lead to some interesting results, for example, for G = SU2(R).

7.2.1 Definition and Basic Properties

Definition 7.16 (Total derivative). Let π be a unitary representation
of G. The total derivative of π is defined on every C1-smooth vector v ∈ Hπ
as the linear map Tπ(v) in Hom(g,Hπ) given by

Tπ(v) : a 7−→ π∂(a)v

for a ∈ g. After fixing a basis b1, . . . ,bdim g of g we can identify Tπ(v) with
the tuple

(
π∂(b1)v, . . . , π∂(bdim g)v

)
∈ Hdimg

π
∼= Hom(g,Hπ).

Lemma 7.17 (Closed operator). Let π be a unitary representation of G.
Then the total derivative Tπ with domain

DTπ
= {v ∈ Hπ | v is C1-smooth}

is a densely defined closed operator.

Proof. Suppose that (vn) in DTπ
is a sequence with

(vn, Tπ(vn)) −→ (v, L) ∈ Hπ ×Hom(g,Hπ)

as n→∞, and let a ∈ g. By Lemma 7.3 this implies that

πexp(ta)vn − vn =

∫ t

0

πexp(sa) π∂(a)vn︸ ︷︷ ︸
=Tπ(vn)a

ds

for any t ∈ R. Since Tπ(vn)→ L in Hdimg
π as n→∞ we have

Tπ(vn)(a) −→ L(a)
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7.2 The Total Derivative 307

as n→∞. Moreover, since the integral defines a continuous operator on Hπ
we also obtain from this that

πexp(ta)v − v =

∫ t

0

πexp(sa)L(a) ds.

By the second part of Lemma 7.3, this gives π∂(a)v = L(a) for any a ∈ g.
However, this implies that v ∈ DTπ

and Tπ(v) = L, and hence the lemma. �

Lemma 7.18 (Chain rule). Let π be a unitary representation of G. Then

Tπ(πgv) = Dπg(Tπ(v))

for every C1-smooth vector v ∈ Hπ, where Dπ is the continuous representa-
tion defined by Dπg(L) = πg ◦ L ◦Adg−1 for any linear map L : g→ Hπ.

We note that continuity of the representation is defined as in Defini-
tion 1.1(3) but that we did not claim unitarity of the representation Dπ
(see Section 7.2.2).

Proof of Lemma 7.18. Let g ∈ G, a ∈ g, and let v ∈ Hπ be a C1-smooth
vector. Using the fact that πg is bounded we have

π∂(a)πgv =
∂

∂t

∣∣∣
t=0

πexp(ta)gv

= lim
t→0

1

t
πg

(
πexp(tAd−1

g a)v − v
)
= πgπ∂(Ad

−1
g a)v.

As this holds for any a ∈ g we see that Tπ ◦ πg = Dπg ◦ Tπ (where defined).
We note that the formulation in (7.5) is obtained by replacing a with Adg a.

To see that Dπ defines a representation on Hom(g,Hπ) let g, h ∈ G and
let L ∈ Hom(g,Hπ), and calculate

Dπg (Dπh(L)) = πg ◦Dπh(L) ◦Adg−1

= πg ◦ πh ◦ L ◦Adh−1 ◦Adg−1 = Dπgh(L).

Moreover, notice that Dπe(L) = L.
As noted after Definition 7.16, we make the identification of End(g,Hπ)

with Hdimg
π using a fixed basis of g = LieG. This identification gives the

vector space Hom(g,Hπ) the structure of a Hilbert space. With this, we also
have
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∥∥Dπg(L)
∥∥2 =

dimg∑

j=1

‖πg
(
L(Ad−1

g bj)
)
‖2 =

dimg∑

j=1

‖L(Ad−1
g bj)‖2

6 dim g max
j=1,...,dimg

∥∥∥∥∥

dimg∑

k=1

[
Ad−1

g

]
kj

(L(bk))

∥∥∥∥∥

2

6 (dim g)3 max
j,k=1,...,dimg

[
Ad−1

g

]2
kj
‖(L(bk))‖2 ≪g ‖L‖2,

where
[
Ad−1

g

]
kj

denotes the matrix entry of the matrix representing the linear
map

Ad−1
g : g −→ g

in the basis b1, . . . ,bdim g. In other words, Dπg is a bounded operator
on Hom(g,Hπ). To see the continuity of the representation Dπ, let L ∈
Hom(g,Hπ), fix some j ∈ {1, . . . , dim g}, and suppose (gn) is a sequence in G
with gn → g as n→∞. Then

Dπgn(L)(bj)=πgn
(
L
(
Ad−1

gn
bj
))

=

dimg∑

k=1

[
Ad−1

gn

]
kj
πgn (L(bk))

−→
dim g∑

k=1

[
Ad−1

g

]
kj
πg (L(bk))=πg

(
LAd−1

g bj
)
=Dπg(L)(bj)

as n→∞, This gives Dπgn(L)→ Dπg(L) as n→∞, as required. �

We finish this subsection with an interesting exercise, which requires the
following definition.

Definition 7.19 (Adjoint operator). Let T be a densely defined closed
operator from H1 to H2. The adjoint operator T ∗ is defined on the domain

DT∗ =
{
w ∈ H2

∣∣∣ DT ∋ v 7−→ 〈Tv, w〉H2
is bounded

}

and satisfies
〈Tv, w〉H2

= 〈v, T ∗w〉H1

for all v ∈ DT and w ∈ DT∗ .

We refer to [24, Lemma 13.3] for the properties of the adjoint operator.

Exercise 7.20. Show that π∂(a)∗ agrees with −π∂(a) on smooth vectors for any unitary
representation π of G and element a ∈ g.
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7.2.2 Unitarity of the Derivative Representation

In this section we prove the following proposition which gives unitarity of the
total derivative in some interesting cases.

Proposition 7.21 (Unitarity of D and Equivariance of T ∗
πTπ). Let G

be a Lie group with Lie algebra g = LieG. Suppose that g is equipped with an
inner product with the property that Adg is orthogonal for any g ∈ G, and
let π be a unitary representation of G. Use an orthonormal basis of g to define
the isomorphism Hom(g,Hπ) ∼= Hdimg

π , and hence a Hilbert space structure
on Hom(g,Hπ). Then the derivative representation Dπ on Hom(g,Hπ) is
unitary, and hence Ω = T ∗

πTπ is a densely defined closed equivariant operator
from Hπ to Hπ. If b1, . . . ,bdimG is an orthonormal basis of g and v ∈ Hπ
is C2-smooth, then

T ∗
πTπv = −

dimG∑

j=1

π∂(bj)
2v = Ωv. (7.9)

If π is irreducible, then there exists some απ > 0 with Ωv = απv for all v
in Hπ.

Notice that the Hilbert space structure of Hom(g,Hπ) and the represen-
tation D becomes clearer after noting that Hom(g,Hπ) ∼= Hπ ⊗R g and that
the latter carries a unitary representation since Hπ carries a unitary repre-
sentation and the real Hilbert space g carries a natural representation of G
that is assumed to be ‘orthogonal’.

Allowing ourselves to consider formal products of Lie algebra elements
(giving elements of the so-called universal enveloping algebra; see Section 9.1),

we may write the differential operatorΩ onHπ also as−π∂
(∑dimG

j=1 bj ◦ bj
)
.

Proof of Proposition 7.21. Let g = LieG and π be as in the proposition
and suppose that b1, . . . ,bdimG is an orthonormal basis with respect to the
assumed inner product on g. For g ∈ G and L ∈ Hom(g,Hπ) we have, by

unitarity of πg, that
∥∥DπgL

∥∥2
Hom(g,Hπ)

is equal to

dim g∑

j=1

∥∥πgL
(
Ad−1

g bj
)∥∥2

Hπ
=

dimg∑

j=1

∥∥L
(
Ad−1

g bj
)∥∥2

Hπ

=

dimg∑

j=1

∥∥∥∥∥

dimg∑

k=1

[
Ad−1

g

]
kj
L(bk)

∥∥∥∥∥

2

Hπ

=

dimg∑

j=1

dimg∑

k,ℓ=1

[
Ad−1

g

]
kj

[
Ad−1

g

]
ℓj
〈L(bk), L(bℓ)〉Hπ

,
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where [Ad−1
g ]kj again denotes the entries of the matrix representation of Ad−1

g

in the basis b1, . . . ,bdimg. Reordering the summation in the last expression
above we obtain

∥∥DπgL
∥∥2
Hom(g,Hπ)

=

dim g∑

k,ℓ=1

dimg∑

j=1

[
Ad−1

g

]
kj

[
Ad−1

g

]
ℓj

︸ ︷︷ ︸
δk,ℓ

〈L(bk), L(bℓ)〉Hπ

=

dim g∑

k=1

‖L(bk)‖2Hπ
= ‖L‖Hom(g,Hπ)

as required.
This implies that T ∗

πTπ is equivariant where it is defined. To see this, we
first recall that for g ∈ G we have

Tππg = Dπg ◦ Tπ

by Lemma 7.18. Suppose now that v is in the domain of T ∗
πTπ and g ∈ G.

Then, for all w in the domain of Tπ, we have

〈πgT ∗
πTπv, w〉Hπ

= 〈T ∗
πTπv, π

−1
g w〉Hπ

= 〈Tπv, Tππg−1w〉Hom(g,Hπ)

= 〈Tπv,Dπ
g−1

Tπw〉Hom(g,Hπ)

= 〈Dπg
Tπv, Tπw〉Hom(g,Hπ)

= 〈Tππgv, Tπw〉Hom(g,Hπ)
.

However, this, by definition of the adjoint, implies that Tππgv belongs to the
domain of T ∗

π and that

T ∗
πTππgv = πgT

∗
πTπv.

This shows that the domain of T ∗
πTπ is invariant under πg, and that

πgT
∗
πTπ ⊇ T ∗

πTππg

for all g ∈ G. Applying this for g−1 together with the invariance of the domain
of T ∗

πTπ, we actually obtain

πgT
∗
πTπ = T ∗

πTππg

for g ∈ G, as required. For the proof that T ∗
πTπ is densely defined and closed,

we refer to [24, Th. 13.10] (see also Section 1.3.4 for similar arguments).
Now let w1, . . . , wdimg ∈ Hπ be C1-smooth vectors. We claim that the

linear map L defined by
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L




dim g∑

j=1

sjbj


 =

dimg∑

j=1

sjwj

belongs to the domain DT∗
π
of T ∗

π , and

T ∗
π (L) = −

dimg∑

j=1

π∂(bj)wj .

For this, let v ∈ Hπ be C1-smooth (that is, in the domain of Tπ) and calculate

〈
−

dimg∑

j=1

π∂(bj)wj , v

〉

Hπ

= −
dimg∑

j=1

〈
π∂(bj)wj , v

〉
Hπ

= −
dimg∑

j=1

lim
t→0

1

t

〈
πexp(tbj)wj − wj , v

〉
Hπ

= −
dimg∑

j=1

lim
t→0

1

t

〈
wj , πexp(−tbj)v − v

〉
Hπ

=

dim g∑

j=1

〈
wj , π∂(bj)v

〉
Hπ

= 〈L, Tπv〉Hom(g,Hπ)
.

As v ∈ DTπ
was arbitrary, this gives the claim and the claim implies (7.9). The

final claim in the proposition follows from Schur’s lemma (Corollary 1.38). �

7.2.3 The Casimir Operator for SU2(R)

We wish to study an example of Proposition 7.21 and explicitly calcu-
late the constants απ for all irreducible representations of G = SU2(R)
(which we already classified in Section 6.2). For this we will also use the
basis b1,b2,b3 ∈ SU2(R) in (6.5). Moreover, we will also consider formal
products a ◦ b ∈ E, squares a◦2 = a ◦ a ∈ E in the so-called universal en-
veloping algebra E of su2(R), the formal identity 1E of E, and the rules

{
π∂(a ◦ b) = π∂(a)π∂(b),

π∂(1E) = I

for all Lie algebra elements a,b ∈ su2(R) (see also Section 9.1).

Corollary 7.22 (Casimir operator on Symn(C2)). For every n ∈ N0 the
so-called(13) Casimir element Ω = 1E − (b1 ◦ b1 + b2 ◦ b2 + b3 ◦ b3) acts
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on Symn(C2) by differentiation, and equals the scalar multiplication

π∂(Ω) = I − π∂(b◦2
1 + b◦2

2 + b◦2
3 ) = (n+ 1)2I

by the square of the dimension of Symn(C2).

We note that we added 1E in the definition of Ω to make the conclusion
of the corollary easier to remember.

Proof of Corollary 7.22. We first note that b1,b2,b3 ∈ su2(R) as de-
fined in (6.5) form an orthonormal basis for the inner product defined by the
quadratic form det. Moreover, as discussed in Section 6.2.2, SU2(R) acts via
the adjoint representation by orthogonal matrices on su2(R) with respect to
this inner product. Thus G = SU2(R) and su2(R) equipped with this inner
product satisfy the assumptions in Proposition 7.21.

Let n ∈ N0. As the representation π on Symn(C2) is an irreducible repre-
sentation of SU2(R) by Theorem 6.6, we obtain from Proposition 7.21 that

−π∂(b◦2
1 + b◦2

2 + b◦2
3 ) = αnI

for some αn > 0.
To calculate αn, we use the basis vectors e⊙n1 ∈ Symn(C2). For t ∈ R we

have

exp(tb1) = exp

(
it
−it

)
=

(
eit

e−it

)

and
πexp tb1

e
⊙n
1 = einte

⊙n
1 ,

which implies that
π∂(b1)e

⊙n
1 = ine

⊙n
1

and
π∂(b

◦2
1 )e

⊙n
1 = −n2e

⊙n
1 . (7.10)

For b2,b3 we similarly have

exp(tb2) = exp

(
it

it

)
=

(
cos t i sin t
i sin t cos t

)
,

exp(tb3) = exp

(
−t

t

)
=

(
cos t − sin t
sin t cos t

)
,

πexp tb2
e
⊙n
1 = (cos t e1 + i sin t e2)

⊙n,

and

πexp tb3
e
⊙n
1 = (cos t e1 + sin t e2)

⊙n.

Expanding the latter expressions using the binomial theorem, we can take
the derivative with respect to t at t = 0 and notice that only one term is
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relevant to obtain
π∂(b2)e

⊙n
1 = ine

⊙(n−1)
1

⊙ e2

and
π∂(b3)e

⊙n
1 = ne

⊙(n−1)
1

⊙ e2.

We repeat this step and obtain

πexp tb2
π∂(b2)e

⊙n
1 = in(cos t e1 + i sin t e2)

⊙(n−1) ⊙ (i sin t e1 + cos t e2)

= in
(
cosn−1 t e

⊙(n−1)
1 + i(n− 1) cosn−2 t sin t e

⊙(n−2)
1

⊙ e2 +· · ·
)

⊙ (i sin t e1+cos t e2)

= in
(
i sin t cosn−1 t e

⊙n
1 + i(n− 1) sin t cosn−1 t e

⊙(n−2)
1

⊙ e
⊙2
2 + · · ·

)

and

πexp tb3
π∂(b3)e

⊙n
1 = n

(
cos t e1 + sin t e2

)⊙(n−1)
⊙
(
− sin t e1 + cos t e2

)

= n
(
cosn−1 t e

⊙(n−1)
1 + (n− 1) cosn−2 t sin t e

⊙(n−2)
1

⊙ e2 + · · ·
)

⊙
(
− sin t e1 + cos t e2

)

= n
(
− sin t cosn−1 t e

⊙n
1 + (n− 1) sin t cosn−1 t e

⊙(n−2)
1

⊙ e
⊙2
2 + · · ·

)
,

which implies that

π∂(b
◦2
2 )e

⊙n
1 = −ne⊙n1 − n(n− 1)e

⊙(n−2)
1

⊙ e
⊙2
2

and
π∂(b

◦2
3 )e

⊙n
1 = −ne⊙n1 + n(n− 1)e

⊙(n−2)
1

⊙ e
⊙2
2 .

Together with (7.10) this gives

−π∂(b◦2
1 + b◦2

2 + b◦2
3 )e

⊙n
1 = (n2 + 2n)e

⊙n
1 .

Adding e⊙n1 to this, the corollary follows. �

7.3 Effective Decay, Definitions, and First Results

In the following we will be interested in concrete examples of closed linear
groups. By a closed linear group we mean a closed subgroup G of SLd(R) for
some d > 1. The assumption that G < SLd(R) instead of the seemingly more
general G < GLd(R) is harmless, as we can consider GLd(R) itself as a closed
subgroup of SLd+1(R). One reason for the assumption is that it gives the
following notion of norm on G more meaning. We fix the Hilbert–Schmidt
norm ‖ · ‖HS on Matd,d(R) and will write ‖g‖HS = ‖g‖HS for elements g ∈ G
of the closed linear group G < SLd(R) ⊆ Matd,d(R). We also note that for
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the purposes of establishing effective decay, the notion of degree r Sobolev
norms for unitary representations from Definition 7.8 will be important.

Definition 7.23 (Effective decay of matrix coefficients). Let G be a
closed linear group with Lie algebra g, let π be a unitary representation of G,
let r > 0, denote the degree r Sobolev norm on Cr-smooth vectors in Hπ
by S(·), and write

HGπ = {v ∈ Hπ | πgv = v for all g ∈ G}

for the subspace of fixed vectors. We say that π has effective decay of matrix
coefficients if there exists some κ > 0 such that

∣∣〈πgv, w
〉∣∣≪ ‖g‖−κHS S(v)S(w)

for all Cr-smooth v, w ∈ (HGπ )⊥ and for all g ∈ G, where the implicit constant
is allowed to depend on π, κ, and r > 0. We will call κ a decay exponent, and
define the almost decay exponent κπ of the unitary representation by

κπ = sup
(
{κ > 0 | κ is a decay exponent} ∪ {0}

)
.

For semi-simple groups effective decay of matrix coefficients as defined
above gives a formulation of effectiveness of the Howe–Moore theorem (see
Section 1.7 and Theorem 1.88). Our aim is to show that many natural ac-
tions have this property, and we will give an example of a decay exponent in
Section 7.4.

We emphasize that the above notions as defined depend on the fact that
we consider closed subgroups G 6 SLd(R). The reader troubled by this may
fix a Riemannian metric on an abstract Lie group G and use instead of the
norm ‖g‖HS for g ∈ G the expression e−d(g,e) for g ∈ G, and use this to define
a notion of exponential decay of matrix coefficients. We note, however, that
this notion will now depend on the choice of the Riemannian metric (instead
of the particular embedding). We have chosen the terminology above as it is
much easier to generalize Definition 7.23 in its formulation for closed linear
subgroups of SLd(Qp) or SLd

(
Fp((t))

)
for a prime p. We also note that for

the simply connected Lie group S̃L2(R) with infinite centre (any kind of)
decay of matrix coefficients cannot hold for irreducible representations due
to Corollary 1.32. Finally, we will only be interested in SLd(R) for d ∈ {2, 3},
and here there should be no doubt that the Hilbert–Schmidt norm ‖ · ‖HS is
a meaningful measuring tool for the size of the group elements.
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7.3.1 Relationship to Spectral Gap

We will show here that effective decay of matrix coefficients implies spectral
gap (see Section 4.2.1). We will also see in Section 7.4 that SL3(R) satisfies
the following stronger property.

Definition 7.24 (Uniform decay exponent). We say that a closed linear
group G has a uniform decay exponent κ > 0 if κ is a decay exponent for any
unitary representation of G, and both the Sobolev degree r and the implicit
constant in Definition 7.23 can be chosen absolute.

Proposition 7.25 (Effective decay implies spectral gap). A unitary
representation of a closed linear group with effective decay of matrix coeffi-
cients has spectral gap. Moreover, any closed linear group G for which there
exists a uniform decay exponent κ > 0 has property (T).

Proof. Let G be a closed linear group, let κ > 0 be a decay exponent
for a unitary representation π of G, and let S be the Sobolev norm as in
Definition 7.23. Also let ψ ∈ C∞

c (G) satisfy ‖ψ‖1 = 1 and ψ > 0. We define

A = π∗(ψ)
∗πgπ∗(ψ)

for some g ∈ G to be determined.
For v, w ∈ Hπ we apply Exercise 7.10 to see that S

(
π∗(ψ)v

)
≪ψ ‖v‖

and S
(
π∗(ψ)w

)
≪ψ ‖w‖. By assumption, we also have

∣∣〈Av,w
〉∣∣ =

∣∣〈πgπ∗(ψ)v, π∗(ψ)w
〉∣∣≪ψ ‖g‖−κHS‖v‖‖w‖

for all v, w ∈
(
HGπ
)⊥

. We now choose g ∈ G sufficiently large to ensure that†

∣∣〈Av,w
〉∣∣ 6 1

2‖v‖‖w‖

for all v, w ∈
(
HGπ
)⊥

, or, equivalently, so that

‖A‖(HG
π )⊥ 6 1

2 .

Now recall that by Section 1.4.3—and (1.17) in particular—we have

A = π∗(ψ
∗)πgπ∗(ψ) = π∗

(
ψ∗ ∗ λgψ

)
.

Thus Proposition 4.24 implies that π has spectral gap.
If G has a uniform decay exponent, then any unitary representation has

spectral gap by the above. However, this implies that G has property (T). �

The following exercise shows that property (T) and possessing a positive
uniform decay exponents are not equivalent in general.

† Note that if G is compact, then G has property (T) by Exercise 4.18 in any case.
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Exercise 7.26. For the purpose of this exercise, use the fact that SL3(Z) has property (T),
which follows from the fact that SL3(R) has property (T) (see Theorem 7.28), and the fact
that SL3(Z) is a lattice in SL3(R) (see [24, Sec. 10.3]). Show that the natural action
of SL3(Z) on T3 ∼= R3/Z3 is ergodic, and that it does not have (effective) decay of matrix
coefficients.

7.3.2 Eigenvectors of SO2(R) for Representations of SL2(R)

In this section we study unitary representations of SL2(R), obtaining some
technical results for later use. For this we define the subgroups

A =

{
at =

(
et

e−t

) ∣∣∣∣ t ∈ R
}
< SL2(R)

and

K = SO2(R) =

{
kθ =

(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣ θ ∈ [0, 2π)

}
< SL2(R),

and will frequently use the following terminology.
For a unitary representation π of SL2(R), we say that a vector v ∈ Hπ is

a K-eigenvector if there exists some n ∈ Z with

πkθv = einθv

for all kθ ∈ K. We will also refer to n as the weight of the K-eigenvector.
Moreover, in the cases where Hπ is clearly a space of functions, we will also
call any K-eigenvector a K-eigenfunction.

Using ‘Fourier series’ we now show that for establishing effective decay of
matrix coefficients for SL2(R), it suffices to study K-eigenvectors. We will
use this observation repeatedly.

Proposition 7.27 (Upgrade to smooth vectors for SL2(R)). Let π be a
unitary representation of SL2(R), c > 0, and κ > 0 so that

∣∣〈πatv, w〉
∣∣ 6 ce−κt‖v‖‖w‖

for all t ∈ R and all K-eigenvectors v, w ∈ Hπ. Suppose also that B ∈ B(Hπ)
is a bounded operator that commutes with πk for all k ∈ SO2(R). Then we
have ∣∣〈πgBv,w〉

∣∣≪ c‖B‖op‖g‖−κHS S(v)S(w)
for all g ∈ SL2(R) and all C1-smooth vectors v, w ∈ Hπ, where the implicit
constant is absolute.

Proof. If v ∈ Hπ is C1-smooth, then the decomposition of v =
∑

m∈Z vm
into K-eigenvectors not only converges in Hπ (which it always does) but in
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fact converges absolutely. To see this, let w ∈ sl2(R) denote the element in
the Lie algebra of SL2(R) corresponding to SO2(R) such that

π∂(w)vm = lim
θ→0

πkθvm − vm
θ

= lim
θ→0

eimθ − 1

θ
vm = imvm

and
π∂(w)v =

∑

m∈Z

imvm

by Example 7.2. Let b1,b2,b3 be a basis of sl2(R), so that π∂(w)v can
be expressed as a sum of π∂(b1)v, π∂(b2)v, and π∂(b3)v (see Lemma 7.3).
Therefore,

∑

m∈Z

m2‖vm‖2 = ‖π∂(w)v‖2 ≪
(
‖π∂(b1)v‖ + ‖π∂(b2)v‖ + ‖π∂(b3)v‖

)2

≪ S(v)2 <∞

by the triangle inequality, and

∑

m∈Z

‖vm‖ = ‖v0‖+
∑

m∈Zr{0}

1
mm‖vm‖

6 ‖v0‖+


 ∑

m∈Zr{0}

1
m2




1
2

 ∑

m∈Zr{0}
m2‖vm‖2




1
2

≪ S(v)

by the Cauchy–Schwarz inequality in ℓ2(Zr{0}) and the fact that the se-
quence

(
1
m2

)
m∈N

is summable.
Also note that B and πkθ for kθ ∈ K map any K-eigenvector to a K-

eigenvector with the same weight.
With this, we can now finish the proof using the Cartan decomposition

g = kθatkθ′

of g ∈ SL2(R) with t > 0 and kθ, kθ′ ∈ K satisfying ‖g‖HS = ‖at‖HS ≍ et.
Indeed, we obtain from our assumption applied separately to each summand
below that

∣∣〈πgBv,w〉
∣∣ =

∣∣∣
∑

m,n

〈πatπkθ′Bvm, π
∗
kθ
wn〉

∣∣∣

≪ c e−κt︸︷︷︸
≪‖g‖−κ

HS

∑

m,n

‖Bvm‖︸ ︷︷ ︸
6‖B‖op‖vm‖

‖wn‖

≪ c‖B‖op‖g‖−κHS S(v)S(w)

as claimed. �
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7.4 A Uniform Decay Exponent for SL3(R)*

We start with the following accessible case. We note that the decay expo-
nent 3

8 below is not optimal, and refer to work of Oh [61] for more general
and sharp results.

Theorem 7.28 (Effective decay for SL3(R)). The group SL3(R) has a
uniform decay exponent: If π is a unitary representation of SL3(R) and the

vectors v, w ∈
(
HSL3(R)
π

)⊥
are C1-smooth, then

∣∣〈πgv, w
〉∣∣≪ ‖g‖−

3
8

HS S(v)S(w)

for all g ∈ SL3(R), where the implicit constant is absolute and S is a degree-
one Sobolev norm. In particular, SL3(R) has property (T).

7.4.1 Eigenvectors of SO2(R)

We will use the terminology of Section 7.3.2 for the restriction of a unitary
representation π of SL3(R) to the subgroup

ASL2(R) =
{(

g x
0 1

) ∣∣∣∣ g ∈ SL2(R), x ∈ R2

}
< SL3(R),

containing

SL2(R) =
{(

g 0
1

) ∣∣∣∣ g ∈ SL2(R)
}

and so also K = SO2(R). We will also make use of the normal abelian closed
subgroup

H ⊳ ASL2(R)

defined by

H =

{
hx =

(
I x
1

) ∣∣∣∣ x ∈ R2

}
∼= R2,

as well as the elements

at =



et 0 0
0 e−t 0

1


 ∈ SL2(R) (7.11)

for t ∈ R. Since H ⊳ ASL2(R), we may use the results in Section 3.1
for π|ASL2(R)

for the proof of the following first step towards Theorem 7.28.
For this, we first note that for g ∈ SL2(R) we will denote the inner automor-
phism of ASL2(R) defined by
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(
g 0
1

)
∈ ASL2(R)

by θg, so

θg(hx) =

(
g 0
1

)(
I x
1

)(
g−1 0

1

)
=

(
I gx

1

)
= hgx

for all x ∈ R2. In particular, the dual automorphism θ̂g on Ĥ ∼= R2 is given
by the linear map defined by gt, and the action of g ∈ SL2(R) on this dual
group R2 from Section 3.1 is defined by (gt)−1.

Lemma 7.29 (Eigenvectors). Let π be as in Theorem 7.28, and suppose

that v, w ∈
(
HSL3(R)
π

)⊥
are K-eigenvectors with

SO2(R) = K < ASL2(R) < SL3(R).

Then the diagonal matrices in (7.11) satisfy

∣∣〈πatv, w
〉∣∣≪ e−

|t|
2 ‖v‖‖w‖

for all t ∈ R, where the implicit constant is absolute.

Proof. Let v ∈ H be a K-eigenvector of weight n ∈ Z, so that

πkθv = einθv (7.12)

for all kθ ∈ SO2(R) < ASL2(R). Now notice that (7.12) and sesqui-linearity
of the inner product implies µπkθv

= µv (also see Proposition 2.51(2)). By

Proposition 3.1, this implies that the spectral measure µv is invariant under
the rotation kθ for all θ ∈ R.

Since v ∈ (HSL3(R)
π )⊥, we have µv({0}) = 0 by Exercise 1.86 (see also the

hint on p. 505) and the same holds for µw. We assume that t > 0 (switching
the roles of v and w then gives the general case). We define the subsets

Bhorizontal = {(x1, x2) |
∣∣x2

x1

∣∣ 6 e−t}

and
Bvertical = {(x1, x2) |

∣∣x2

x1

∣∣ > et},

which are the two sectors in R2 illustrated in Figure 7.1.
Next we use these and the functional calculus for π|H to define the asso-

ciated projection operator ΠB for

B ∈ {Bhorizontal,R
2rBhorizontal, Bvertical,R

2rBvertical}

and split v and w into two parts according to these two sectors in R2,

v = vmain + vhorizontal

Page: 319 job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



320 7 Smooth Vectors and Decay for SL(3)

Bvertical

Bhorizontal

|x2| > et|x1|

|x2| 6 e−t|x1|

Fig. 7.1: The sets used for decomposing v and w.

with vmain = ΠR2rBhorizontal
(v), vhorizontal = ΠBhorizontal

(v) and

w = wmain + wvertical,

with wmain = ΠR2rBvertical
(w) and wvertical = ΠBvertical

(w).
We now use the fact that µv is invariant under rotation, µv({0}) = 0,

and Bhorizontal consists of two sectors with internal angle ≪ e−t. Using Ex-
ercise 2.58 (see the hint on p. 506) we obtain from these the bound

‖vhorizontal‖2 = µv(Bhorizontal)≪ e−t‖v‖2, (7.13)

and similarly
‖wvertical‖2 = µw(Bvertical)≪ e−t‖w‖2. (7.14)

Also, by Exercise 2.58 we have

µvmain
= µv|R2rBhorizontal

,

which together with Proposition 3.1 gives

µπatvmain
= (a−1

t )∗µv|R2rBhorizontal

since the transpose of at is at itself. A simple calculation now reveals that
the set a−1

t (R2rBhorizontal) agrees with Bvertical with the exception of the
boundaries, which are null sets. It follows that

µπatvmain
⊥ µwmain

which implies that πatvmain ⊥ wmain by Proposition 2.51(7). Together
with (7.13) and (7.14), this gives
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∣∣〈πatv, w
〉∣∣6

∣∣∣
〈
πatvmain, wmain

〉∣∣∣
︸ ︷︷ ︸

=0

+
∣∣∣
〈
πatvmain, wvertical

〉∣∣∣+
∣∣∣
〈
πatvhorizontal, w

〉∣∣∣

≪ e−
t
2 ‖v‖‖w‖

by the Cauchy–Schwarz inequality. �

7.4.2 Bootstrapping to the General Case

Lemma 7.29 will allow us to use the following lemma with the value κ = 1
2 .

Lemma 7.30 (Smooth vectors for SL3). Let π be a unitary representation
of SL3(R) and assume that

∣∣〈πatv, w〉
∣∣ 6 ce−κt‖v‖‖w‖ (7.15)

holds for some constants c, κ > 0 and all SO2(R)-eigenfunctions v, w lying

in
(
HSL3(R)
π

)⊥
. Then

|〈πav, w〉| ≪ ce−
1
2
κ|t2−t1| S(v)S(w)

for all C1-smooth vectors v, w ∈
(
HSL3(R)
π

)⊥
, where

a =



et1

et2

et3


 (7.16)

for t1, t2, t3 ∈ R with t1 + t2 + t3 = 0.

Proof. We will use Proposition 7.27 and its notation for π restricted to

(
HSL3(R)
π

)⊥
.

For this, we notice that

a =



et1

et2

et3


 =



et1+

1
2 t3

et2+
1
2 t3

1




︸ ︷︷ ︸
=a

t1+1
2
t3



e−

1
2 t3

e−
1
2 t3

et3




︸ ︷︷ ︸
=b

where at1+ 1
2 t3
∈ ASL2(R) is as defined in (7.11) and b ∈ SL3(R) commutes

with K. We set B = πb and apply Proposition 7.27. We note that its conclu-
sion holds even if S(·) denotes the Sobolev norm with respect to the unitary
action π of SL3(R). Indeed, we may include a basis of sl2(R) in the basis
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of sl3(R) in the definition of the Sobolev norm, and then use Exercise 7.12 to
see that this assumption does not matter since we allow ourselves to change
the implicit constant. Therefore

|〈πav, w〉| =
∣∣∣
〈
πa

t1+ 1
2
t3

Bv,w
〉∣∣∣≪ ce−κ|t1+

1
2 t3| S(v)S(w)

for all C1-smooth vectors v, w ∈
(
HSL3(R)
π

)⊥
. Since t1+

1
2 t3 = 1

2 (t1− t2), this
gives the lemma. �

Proof of Theorem 7.28. By Lemma 7.29, we have (7.15) for κ = 1
2 . By

conjugation with permutation matrices, we have that Lemma 7.30 also shows

|〈πav, w〉| ≪ e−
1
4 |t3−t1| S(v)S(w) (7.17)

and
|〈πav, w〉| ≪ e−

1
4 |t3−t2| S(v)S(w)

for all diagonal matrices a, in the notation of (7.16). Hence we may choose
the best of these three estimates. Suppose without loss of generality that

t3 > t2 > t1,

so that the best estimate is given by (7.17). Now notice that ‖a‖HS is essen-
tially equal to et3 in the sense that

et3 6 ‖a‖HS ≪ et3 ,

and t1 + t2 + t3 = 0 gives

et1−t3 6 e
1
2 (t1+t2)−t3 = e−

3
2 t3 ≪ ‖a‖−

3
2

HS .

Combining this with (7.17), it follows that Theorem 7.28 holds for diagonal
matrices.

To generalize the estimate to an arbitrary g ∈ SL3(R) we use the Cartan
decomposition g = kak′ for k, k′ ∈ SO3(R) and a diagonal a (see the footnote
on p. 62). Notice that ‖g‖HS = ‖a‖HS, and that S(πkv) ≪ S(v) uniformly
for k in SO3(R) (see Exercise 7.11). Therefore

∣∣〈πgv, w
〉∣∣ =

∣∣〈πa(πk′v), π−1
k w

〉∣∣

≪ ‖a‖−
3
8

HS S(πk′v)S(π−1
k w)

≪ ‖g‖−
3
8

HS S(v)S(w),

as required. Going through the implicit constants appearing in the proof,
starting with Lemma 7.29 and Proposition 7.27, one verifies that the implicit
constant above is also absolute. The last claim now follows from Proposi-
tion 7.25. �
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Exercise 7.31. Extend the argument used in the proof of Theorem 7.28 to give an effective
estimate on the decay of matrix coefficients for G = SLd(R) with d > 3 (for example by
again using subgroups of the form ASL2(R) = SL2(R)⋉R2 leading to the exponent 1

4
d
d−1

).

Exercise 7.32. Recall that SL3(R) has a double cover S̃L3(R) (since the fundamental

group of SO3(R) is Z/2Z). Generalize Definition 7.23 and Theorem 7.28 to S̃L3(R) by using

the isogeny ı : S̃L3(R)→ SL3(R) to define the size of g ∈ S̃L3(R) by ‖g‖HS = ‖ı(g)‖HS.

7.5 Summary and Outlook

The main purpose of this chapter was to introduce smoothness to our discus-
sion of unitary representations. As we have already seen in the discussion of
effective decay of matrix coefficients, smoothness may be a required assump-
tion in certain applications of the theory. We will study this notion further in

Chapter 9, where it will also become an important tool for describing ŜL2(R)
completely.
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