Chapter 7
Smooth Vectors and Decay for SL(3)

We will introduce in this chapter the notion of smooth vectors for a unitary
representation. This notion will be important for the study of unitary rep-
resentations of Lie groups in the following chapters. Already in this chapter
we will use smooth vectors in our study of effective decay of matrix coefhi-
cients, and an effective Howe-Moore theorem for the group SL3(R) (see also

Theorem [L.8S)).

7.1 Smooth Vectors
7.1.1 Differential Operators and Smooth Vectors

Throughout this section we assume that G is a Lie group with Lie algebra g.

Definition 7.1 (Partial derivative). Let m be a unitary representation of
the Lie group G. A vector v € H, has a partial derivative mg(a)v € H, in
the direction a € g if

d

o (a)v = E —o (ﬂ-exp(ta))v = %E}% ; (ﬂ-exp(ta)v - 1))

exists in H . We say that v is C1-smooth if my(a)v exists for all a € g, is C”-
smooth for some r > 1 if my(a;)---m5(a,)v exists for all a;,...,a, € g, and
is smooth if v is C"-smooth for all » > 1.

These notions will become more familiar after we see an example and
establish some standard properties of derivatives and integrals in this context.

Ezample 7.2 (Smooth vectors for unitary representations of SO, (R)). Let

G = SO,(R) = {ke . <C°SH _Sin9> ‘ 0 e [0,271')}

sinf cos6
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298 7 Smooth Vectors and Decay for SL(3)
and let
0-1
W= (1 0 ) € g = s0y(R).

Furthermore, let m be a unitary representation of SO,(R). Suppose first

that v € H, is an eigenvector of weight n € Z (that is, m,v = e"fy for
all kg € SO4(R)). Then v is smooth, since
Tp(W)v = lim l(w v—v) = lim 1 (e —1)v = inv
o 0 ¢\ xP(tw) t—0 ¢t '
More generally, v € H, with eigenvector decomposition v =73 _, v, has

a partial derivative my(w)v if and only if >, n?*[jv,[|* < oo, and in this

case
To(W)v = Z inv,,.

neZ

Indeed, suppose first that Y-, ., n?||v,||* < co, which gives that

: 1 int :
ma(W)v = tgrgo ;(e —1)v, = Z inv,,
N E L —— neZ
I'I<n

by (a trivial form of) dominated convergence. Suppose now that m5(w)v =0
exists, and assume that v = ) _, v, is the eigenvalue decomposition. For
any n € Z and u € H, with eigenvector decomposition v = we
then have

mez Ym>

</Unu u> = <5n,un> = <5, ’U,n> = }Lr}r(}) ¥<7Tcxp(tw)v — v, un>

1

= gl_r)% ; (<7Texp(tw)vv un> - <U7 un>)

= }i‘r}%(<vvﬂ-oxp(7tw)un> - <U7un>)

3 1 int s
- }1_{% ; (e - 1) <Un7 un> - <l7’L’Un, u>

As this holds for all u € H,, we see that v,, = inv,, and hence
I3 =Y n®[lval|* < o0
ne

as claimed.
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7.1 Smooth Vectors 299

7.1.2 Fundamental Properties

The following will be a convenient tool for establishing basic properties of
partial derivatives.

Lemma 7.3 (Fundamental theorem). Let w be a unitary representation
of G. If for v € H, the derivative mg5(a) exists for some a € g, then

t
Texp(ta)V — UV = / Texp(sa) o (a)v ds (71)
0

for all t € R (with the usual sign conventions for Riemann integrals). Con-
versely, if v,v € H,. satisfy

¢
Texp(ta)V — U = / Texp(sa)¥ ds (7.2)
0
then the partial derivative Tg(a)v = U ewxists.

ProoF. First notice that wcxp(sa)wa(a)v depends continuously on s, which
implies that the H, -valued weak integral on the right-hand side of ()
exists. Now fix some vector w € H, and notice that the derivative of the
map s — <ﬂ'exp(sa)v, w> is given by

lim <7Texp((s+t)a)vv ’LU> - <7Texp(sa)v7 ’LU>
t—0 t

= lim — <7Texp(ta)v -0, 7Texp(—sa)w>

= <7T8 (a)v, 7Texp(—sa)u}>

= <7Tcxp(sa)ﬂ—8(a)v7 w> )

and so is also continuous in s. Hence, by the fundamental theorem of calculus
(for C-valued functions),

t
<7Texp(ta)vaw> - <’U,’LU> = /0 <7Texp(sa)7r8(a)vvw> ds

t
= </ Texp(sa)To(a)V ds,w>.
0

As this holds for all w € H,, we see that (T.I]) holds for a (assuming only
that 7y (a)v exists).
Suppose now for the converse that v,v € H, satisfy (Z2). Then

! 1t _ _
}g% ? (ﬂ—cxptav - U) = }g% ? 0 chp(sa)vds =v
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300 7 Smooth Vectors and Decay for SL(3)

follows from continuity of the representation, as in the proof of Proposi-
tion [1.49 O

Exercise 7.4. Suppose that 7 is a unitary representation of a Lie group G with Lie al-
gebra g. Suppose v € ‘H,. has v, € H, as a weak derivative in the direction a € g in the

sense that
d

@ lio
for all w € H, (or just for a dense set of vectors). Show in this case that v, = mg(a)v is
in fact the derivative of v in the sense of Definition [7-1]

Texp(ta)Vs w> = <Uav w>

We note that the following linearity claim comes as no surprise. However,
our assumptions regarding the existence of partial derivatives is significantly
different to the standard lemma from multi-dimensional analysis.

Lemma 7.5 (Linearity). Let by, ..., by, be a basis of the Lie algebra g
of the Lie group G. Let m be a unitary representation of G, and suppose
that v € H, has the property that my(b;)v exists for all j = 1,...,dimg.
Then ma(a)v exists for all a € g, and depends linearly on a.

PROOF. By assumption, 74 (b;)v exists for j = 1,...,d = dim g so that (ZI])
holds, in particular, already for a = b;. We will combine (ZI) with the
coordinate system of the second kind defined by

: RS (ty,tg, ... tg) — exp(t;b;) exp(taby) - - - exp(t b,) € G.

Since the derivative of ¥ at 0 is the map (sq,...,84) — s1b;+---+s4bs €9
and so is invertible, ¥ indeed defines a local diffeomorphism. For some a € g
we define smooth functions ¢;(t) for ¢ close to 0 and j = 1,...,d by

(t1(), ta(t), - ta(t)) = " (exp(ta)) ,

or equivalently by
exp(ta) = exp(t;(t)by) - - - exp(ty(t)bg). (7.3)

Recall that the derivative of ¢t — exp(ta) at t = 0 is a € g. Hence, taking
the derivative of (3]), we obtain from the chain rule in multi-dimensional
analysis that

a:51b1+~-~—|—sdbd

where £ (0)

T AN

}gr(l) " 5, (7.4)
forj=1,...,d.

We now express Teyp(1a)0 — v as the telescoping sum
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7.1 Smooth Vectors 301

d
Z (TreXP(tlbl)”' exp(t;b;)V ~ Mexp(t,by) eXp(tj—lbj—l)v)
Jj=1

d
= Z chp(tlbl)"'Cxp(tj—lbj—l) (WCXP(tjbj)U - ’U)
j=1

and apply (ZI)) for the directions by, ..., bg. This shows that . ayv — v
equals

d t;
Z Texp(t;by)--- exp(t;_1b;_1) /0 ﬂ-cxp(sbj)wa(bj)v ds

Jj=1
d t;
:Z o Trexp(tlbl)mexp(tj,lbj,l)exp(sbj)wa(bj)vdS'
j=1

We now divide by ¢ and use (4] together with continuity of the representa-
tion to obtain

d

1

lim — (chp(ta)v — U) = Z s;ma(bj)v.
j=1

t—0 t
This proves that
mp(a)v = symy(by)v + -+ - + sqmy(bg)v

exists and depends linearly on a € g. (|

We will now bring this into connection with the adjoint representa-
tion Ad,: g — g for g € G, satisfying exp(Ad,(a)) = gexp(a)g~ ' for g € G
and a € g.

Proposition 7.6 (Chain rule). Let 7 be a unitary representation of the Lie
group with Lie algebra g. Let v € H, be Cl-smooth and g € G. Then TV
is C''-smooth and

T,me(a)v = mg(Ady a)m v (7.5)

for all a € g. In particular, the vector space of C"-smooth vectors is invariant
under w, for every g € G and r > 1.

PROOF. By Lemma [(.3] we have
t
Texp(ta)V — UV = / Texp(sa)To (a)v ds
0

for all ¢ € R. We apply 7, on both sides. On the left-hand side this gives

g (Texp(ta)) Tg-1Tg¥ —Tg0 = Texp(s Adgya)TTgV — MgV
——

=v
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302 7 Smooth Vectors and Decay for SL(3)

Applying the same trick on the right-hand side gives

t
7Texp(t Adgy a) TgU — gV = / 7Texp(s Ady a) TgTo (a)v ds
0
for all ¢ € R. However, the second part of Lemma applies and gives
To(Ad, a)mv = T mH(a)0.

As this holds for all a € g and Ad,: g — g is bijective, we also obtain that 7 v
is C'-smooth as claimed. O

Proposition 7.7 (Existence of smooth vectors). Let w be a unitary rep-
resentation of a Lie group G with Lie algebra g, v € H,, and ¢ € C°(G).
Then m.(¢)v is smooth, and ma(a)m, (v)v = m, (Ap(@)y)v for any a € g,
wher

Ao(a)v(g) = % L:O W (exp(—ta)g)

18 the partial derivative with respect to the left reqular representation. More-
over, for a smooth approzimate identity (1,,) in C°(G) (see Proposition [[A3)
we have

v=lim 7 (¢,)v

for any v € H, and so, in particular, the smooth vectors in H, are dense.

PrOOF. Using the definition of the convolution operator we see that
chp(ta)ﬂ—* (w)v = ‘/Gﬂ-cxp(ta)w(h)ﬂ—hv dm(h)
= /Gw (exp(—ta)g) m,vdm(g)

by using the substitution g = exp(ta)h. This gives

(T‘—exp(ta)ﬂ—* W)U — Ty (w)v) = l/ ("/] (exp(—ta)g) - w(g))ﬂ—gv dm(g)

1
t t Jo
Y(exp(—ta)g) — ¥(g)
o t

mgvdm(g)

for all ¢ € RN{0}. As ¢ € C°(G), we know that

Y(exp(—ta)g) — ¥(g)
t

— X (a)¢(9)

T This formula may look a bit unusual, as it corresponds to a right-invariant vector field
on G (rather than a left-invariant vector field).
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7.1 Smooth Vectors 303

as t — 0, that this convergence is uniform in g, and that this conver-
gence takes place inside a compact subset of G in the sense that the
left-hand side vanishes for all ¢ € [—1,1]»{0} outside the compact sub-
set exp ([—1, 1]a) supp(¢)) C G. In particular, the convergence also takes place
in L1(Q), and it follows that my(a)m, (¥)v = 7, (N\g(a)y)v exists. Applying
this inductively to expressions of the form 7y (a,,) - - my(a; ), (¢Y)v for n > 1
shows that 7, (¢)v is smooth.

Using an approximate identity in C2°(G) C L*(G) the proposition follows
from Proposition O

Definition 7.8 (Sobolev norm). Let 7 be a unitary representation of G,
let by,...,bgqimg be a basis of g = LieG, and let 7 > 0 be an integer. The
degree r Sobolev norm of a C"-smooth vector v € H, (with respect to the
fixed basis) is defined by

r dim g

S@P =8, =0l +3 D lma(by,) - mo(by, Joll*.

s=171,....J5=1

Essential Exercise 7.9 (Lipshitz bound). Let 7 be a unitary representa-
tion of the Lie group G and v a C'-smooth vector. Show that

[Texpat — vl < lla]| S(v)

for all a € g, where S is a degree-one Sobolev norm defined by an orthonormal
basis of g.

Exercise 7.10. Extend Proposition [[.7, and show that S,.(7, (¥)v) <y, [[v]| (and express
the implicit constant in terms of ).

Essential Exercise 7.11. Let 7 be a unitary representation of a Lie group G
with Lie algebra g. Let > 1 and v € H . be a C"-smooth vector. Let S denote
the degree r Sobolev norm. Show that S(m,v) <, S(v), and that the implicit
constant can be chosen to be uniformly bounded on compact subsets of G.

Exercise 7.12. Let m be a unitary representation of G, let by,...,bgiy 4 be a basis
of g, the Lie algebra of G, and let Bl, .. '7Bdimg be another basis of g. Let » > 1 and

let S (respectively S) be the degree r Sobolev norm defined by byq,...,bgim 4 (resp.

by Bl, co Bdim g)- Show that we have S(v) < S(v) < S(v) for any CT-smooth v € ..
Show also that if = 1 and both bases are orthonormal with respect to an inner product
on g, then S(v) = S(v) for any C'-smooth v € H,.

7.1.3 Smooth Vectors for Unitary Flows

Ezample 7.18 (Derivatives and smooth vectors for R?). We let G = R? for
some d € N, and will use the standard basis eq,..., e, of its Lie algebra g

Page: 303  job: AAUnitaryRepresentations macro: svmono.cls date/time:25-Mar-2022/16:40



304 7 Smooth Vectors and Decay for SL(3)

(which is also R?). Let 7 be a unitary representation. Applying the spectral
theorem (Corollary 212), we assume that H, = L7 (X) for a finite (or o-
finite) measure p on X = R? x N and that 7 is defined by the multiplication
representatio

(mv)(t,n) = @y (¢t n)

for all z € R, v € LZ(X), and (t,n) € R? x N. In this case we obtain, for
a C'-smooth vector v, that

) e27'ristj _ ]
To(ej)v = 213% — v(t,n) = 2mit;v(t,n) (7.6)
|-]<2m]t,]
for j=1,...,d, so that
d
S1(v)? = [[0l* + Y 1Moy v (7.7)
j=1

where My, is the multiplication operator on L2(X) defined by
(M2witjv) (t,n) = 2mit;v(t,n)

for all v € L%(X), t = (t,...,ts) € R?, and n € N. Conversely, if v € L2(X)
and j € {1,...,d} have the property that My (v) belongs to LZ(X), then,
by applying dominated convergence in (Z.G), we see that my(e;)(v) exists.
If this holds for all j € {1,...,d}, then v is C*-smooth and the degree-one
Sobolev norm is given by ([Z.7).

Now let r € N. Applying the above recursively to the partial derivatives,
we see that v € M, is C"-smooth if and only if pv € L2(X) where p is any
polynomial in C[t,...,t,] of degree at most r.

Finally, we wish to apply this to the regular representation A of R?
on L?(R?), which will reveal the connection to Sobolev spaces (see, for ex-
ample, [24] Ch. 5]). By the Plancherel formula (Theorem 2.1H), the regular
representation is isomorphic to the multiplication representation as above
for the Lebesgue measure u = mge on X = R% Applying the above, we
see that v € L2%(RY) is smooth for the regular representation if and only
if 7 € L2(R?) satisfies pv € L2(R?) for any polynomial p € C[ty,...,t,]. We
define the polynomial

d
p(t) =[] +1)

T In Corollary 2121 we used a simplified notation and wrote M, for the multiplication

operator defined by the function Gotrm (g,t) € S'. In the case of z € R? and t € R4 = R¢
this function corresponds to RY 3 ¢ s ¢27i(@t) by Exercise or Proposition 2.401
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7.1 Smooth Vectors 305

and note that + € L*(R?). It follows that T =  (pv) € L'(R?) and hence, by
Theorem and Corollary appligc\l to the Fourier transform instead of
the Fourier back transform, that v = (¥) € Cy(R?).

We claim that a smooth v € L?(RY) actually belongs to C*°(R?). For
this, fix some index j in {1,...,d}, and note that the above also applies
to Ag(e;)v € Cy(R?). Here

1
Ao(ej)v = lim » (Ase,v —v)

is defined as a limit in L2, which, for the isometric Fourier transform on L2,
becomes as above

Mp(e;)o(t) = lim l(e%ist:‘ —1)0(t) = 2mit;v(t) (7.8)

in L?(R?) and for almost any ¢ € RY. We now multiply this once more by p(t)
and apply dominated convergence (by relying on the fact that ¢ — ¢;p(¢)0(t)
lies in L%(R%)) to see that

lim p(t) - (€% — 1) 5(t) = p(t)2mit;0(t)

s—0 S

[-|<2t]

converges in L?(R%). Multiplying by % € L?(R?) gives convergence of (7.8)
in L'(R?) by the Cauchy-Schwarz inequality. However, this gives

1 , -
—(eQmSti — 1)5(t) — Xa(e;)v
s

< —0

1
H;()\SQJU —v) — Ap(e;)v
1

oo

as s — 0 by the continuity bound in Corollary As this holds for all j
in {1,...,d} and can be applied recursively to the partial derivatives of v, it
follows that v € C°°(R9).

Once again the reasoning above can be reversed to see that v € L2(R%) is
smooth with respect to the regular representation if and only if v € C>°(R?)
and its partial derivatives 9%v belong to L?*(R?) for all a € N¢ (see Exer-

cise [[T7)).
Exercise 7.14. Complete the proof of the last claim in Example [T.13]

Exercise 7.15. (a) Let G = SO5(R) x R? be the isometry group of the plane as in Sec-
tion B30l Let 7 € G be an irreducible representation. Find and prove a description of the
space of smooth vectors in H,. Also show that any v € H, is smooth for the restriction
of m to H = R2.

(b) Let G be the ‘ax + b’ group as in Section and let 7+ € G be the irreducible
representation corresponding to the set (0,00) C R 2 R. Show that any f € Cgo((O, oo))
is a smooth vector. Can you again characterize smoothness with an appropriate moment
condition?
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306 7 Smooth Vectors and Decay for SL(3)

(c) Let G be the Heisenberg group as in Section 3.3.4) and let 7¢ € G be the irreducible
representation corresponding to the central character x, determined by £ € R*. Show that
any f € C°(R) is a smooth vector. Can you again characterize smoothness?

7.2 The Total Derivative*

We wish to study the functorial properties of partial derivatives, which will
lead to some interesting results, for example, for G = SUL(R).

7.2.1 Definition and Basic Properties

Definition 7.16 (Total derivative). Let m be a unitary representation
of G. The total derivative of 7 is defined on every C*-smooth vector v € H.,
as the linear map T.(v) in Hom(g, H,.) given by

T,.(v): ar— my(a)v

for a € g. After fixing a basis by, ..., by, 4 of g we can identify T, (v) with
the tuple

(ﬂ-a(bl)vv s aﬂ-a(bdim g)v) € Hgimg = Hom(g, Hﬂ')

Lemma 7.17 (Closed operator). Let m be a unitary representation of G.
Then the total derivative T, with domain

Dy ={veH, |visC'-smooth}
1s a densely defined closed operator.
PROOF. Suppose that (v,,) in Dy,_ is a sequence with
(U, Tre(vy)) — (v, L) € H, x Hom(g, H,)
as n — oo, and let a € g. By Lemma [T.3] this implies that

t
7r tv—v:/w ma(a)v, ds
exp(ta)Yn n 0 exp(sa) n
=T, (v,)a
for any ¢ € R. Since T, (v,) — L in HE™9 as n — oo we have

Tr(v)(a) — L(a)
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7.2 The Total Derivative 307

as n — 0o. Moreover, since the integral defines a continuous operator on H
we also obtain from this that

t
Texp(ta)V — U = /0 7Texp(sa)L(a) ds.

By the second part of Lemma [[13] this gives my(a)v = L(a) for any a € g.
However, this implies that v € Dy, and T, (v) = L, and hence the lemma. [J

Lemma 7.18 (Chain rule). Let m be a unitary representation of G. Then
Tr(mgv) = Dy (T (v))

for every C*-smooth vector v € H,., where Dt is the continuous representa-
tion defined by Dr,(L) = m 0 Lo Ad 1 for any linear map L: g — H,.

We note that continuity of the representation is defined as in Defini-
tion [LTY3) but that we did not claim unitarity of the representation D7

(see Section [T22).

PROOF OF LEMMA [T.I8 Let g € G, a € g, and let v € H, be a C'-smooth
vector. Using the fact that 7, is bounded we have

0
= 37 |oo Tetars?

1

. -1
= %1_{1(1) T (chp(tAdgl a)V — v) = m,my(Ad, " a)v.

) (a)ﬂg

As this holds for any a € g we see that T, o7y = Dy o T, (where defined).
We note that the formulation in (Z3) is obtained by replacing a with Ad, a.

To see that D defines a representation on Hom(g,H,) let g,h € G and
let L € Hom(g, H, ), and calculate

Dr, (D, (L)) = 7y 0 Dy (L) o Adg—
=mgom,oLoAd,-10Ad,—1 = Dry,(L).

Moreover, notice that D (L) = L.

As noted after Definition [.T6 we make the identification of End(g, M)
with Hdmse using a fixed basis of g = Lie G. This identification gives the
vector space Hom(g, H,.) the structure of a Hilbert space. With this, we also
have
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308 7 Smooth Vectors and Decay for SL(3)

dim g dim g
[ Dmy(L) Z Iy (L(Ad, " b)) 17 = Y IL(Ad, " by)|)?
=1
dim g 2
< dim ma b
g max Z (L(by)
(dlmg) _max [ dg ],w (L) 1* <4 LI,

.....

where [Ad;l} ki denotes the matrix entry of the matrix representing the linear
map
Ad;l: g—9g

in the basis by,...,bgiy 4 In other words, Dm, is a bounded operator
on Hom(g, H,). To see the continuity of the representation Dm, let L €
Hom(g, H,), fix some j € {1,...,dim g}, and suppose (g,,) is a sequence in G
with g,, — ¢ as n — co. Then

dim g
Dy, (L)(bj)=m,, (L (Ady!by))=2" [Ady'], m, (L(by))
k=1
dim g
— > [Adg ], 7 (L(by)) =7, (L Ady ' bj) =Dy (L)(b;)
k=1
as n — 0o, This gives D7, (L) — Dm,(L) as n — o0, as required. O

We finish this subsection with an interesting exercise, which requires the
following definition.

Definition 7.19 (Adjoint operator). Let T be a densely defined closed
operator from H; to H,. The adjoint operator T is defined on the domain

Dry. = {w € H, ‘ Dro>vr— (Tv,w>H2 is bounded}

and satisfies
(T, )y, = (v, T W)y,
for all v € Dy and w € Drp..
We refer to |24, Lemma 13.3] for the properties of the adjoint operator.

Exercise 7.20. Show that m4(a)* agrees with —mg(a) on smooth vectors for any unitary
representation m of G and element a € g.
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7.2 The Total Derivative 309

7.2.2 Unitarity of the Derivative Representation

In this section we prove the following proposition which gives unitarity of the
total derivative in some interesting cases.

Proposition 7.21 (Unitarity of D and Equivariance of T;T,). Let G
be a Lie group with Lie algebra g = Lie G. Suppose that g is equipped with an
inner product with the property that Ad, is orthogonal for any g € G, and
let ™ be a unitary representation of G. Use an orthonormal basis of g to define
the isomorphism Hom(g, 1) = HE™9 and hence a Hilbert space structure
on Hom(g,H,). Then the derivative representation Dm on Hom(g, H,) is
unitary, and hence 2 = T;T,. is a densely defined closed equivariant operator
from H, to H,. If by,...,bamag i an orthonormal basis of g and v € H,
is C%-smooth, then

dim G
T:T.v=— Z Ta(b;)%v = Qv. (7.9)
j=1

If 7 is irreducible, then there exists some o, = 0 with 2v = a v for all v

m H,.

Notice that the Hilbert space structure of Hom(g, H,) and the represen-
tation D becomes clearer after noting that Hom(g, H,) = H, ®g g and that
the latter carries a unitary representation since H, carries a unitary repre-
sentation and the real Hilbert space g carries a natural representation of G
that is assumed to be ‘orthogonal’.

Allowing ourselves to consider formal products of Lie algebra elements
(giving elements of the so-called universal enveloping algebra; see Section[@.1]),

we may write the differential operator {2 on H . also as —mg (E]d‘:"; ¢ b, o bj) .
PRrROOF OF PROPOSITION [T.21l Let g = Lie G and 7 be as in the proposition
and suppose that by, ..., bgim, ¢ is an orthonormal basis with respect to the
assumed inner product on g. For ¢ € G and L € Hom(g,H,) we have, by

unitarity of 7 , that HDngHiom( is equal to

9, M)

dim g dim g

> Iy L(Ad;  b,) 5 > |z (Ad;  by)|15,

dimg ||dim g 2
=2 || 2 [Adg], L(by)
j=1 || k=1 ",
dimg dimg
= > D (A (A, (Lo, L(by))y,
=1 k=1
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310 7 Smooth Vectors and Decay for SL(3)

where [Adg_l] k; again denotes the entries of the matrix representation of Adg_1
in the basis by, ..., bgiy 4. Reordering the summation in the last expression
above we obtain

dimg dimg
107 L [omare,) = 2o D [Adg™], [AdS "] (L (by). L(by))sy
k=1 j=1
)
dim g
= > IL0W)%, = I Lllom(a..)
k=1

as required.
This implies that T}T, is equivariant where it is defined. To see this, we
first recall that for g € G we have

T.my=DmgoTy

by Lemma [[.T8 Suppose now that v is in the domain of 7T, and g € G.
Then, for all w in the domain of T ., we have

<7TgT:T7rvaw>H <T vaaﬂ- U)> <T v, T Ty 1w>Hom(g,H,,)

< _ Tﬂ'w>Hom(g’H )
<D T v, T w>Hom(g’H )
=

T 7T v, T w>Hom(gH B

However, this, by definition of the adjoint, implies that T 7 v belongs to the
domain of T} and that

Tl =7, Tv.
This shows that the domain of T;T’; is invariant under 7, and that

Ty T 2 T T,

for all g € G. Applying this for g~ together with the invariance of the domain
of TXT,., we actually obtain

7, T, =T;T,m,

for g € G, as required. For the proof that 7T is densely defined and closed,
we refer to [24, Th. 13.10] (see also Section [[L34] for similar arguments).

Now let wy, ..., W4img € Hy be C'-smooth vectors. We claim that the
linear map L defined by
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7.2 The Total Derivative 311

dim g dim g

L Z sib; | = Z 8w,
j=1 j=1

belongs to the domain Dy of Ty, and

dim g

Tr(L)=— Y ma(b;)uw;.

Jj=1

For this, let v € H,. be C-smooth (that is, in the domain of T;) and calculate

dim g dim g
<— Z Wa(bj)wj,v> = - Z <7Ta(bj)wj,v>ﬂﬂ
H, j=1

J=1
dim g
1

== 3 iy 7 (mosptan s~ w300),

™

= — lim — <wj, Texp(—tb;)V — U>HTr

=D {(wma(bj)v), = (L, Tet)pom(g ) -

™

Aswv € Dy_was arbitrary, this gives the claim and the claim implies (Z.9). The
final claim in the proposition follows from Schur’s lemma (Corollary [[38]). O

7.2.3 The Casimir Operator for SU,(R)

We wish to study an example of Proposition [[.2T] and explicitly calcu-
late the constants «, for all irreducible representations of G = SU,y(R)
(which we already classified in Section [6.2). For this we will also use the
basis by, by, by € SU,(R) in ([G.5). Moreover, we will also consider formal
products aob € €&, squares a®®> = aoa € € in the so-called universal en-
veloping algebra € of su,(R), the formal identity 1 of €, and the rules

Ty(aob) = my(a)my(b),
mo(le) =1

for all Lie algebra elements a, b € suy(R) (see also Section [0.1]).

Corollary 7.22 (Casimir operator on Sym"(C?)). For every n € N, the
so-called™® Casimir element 2 = 1g — (by o by + by 0 by + by 0 by) acts
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312 7 Smooth Vectors and Decay for SL(3)
on Sym™(C?) by differentiation, and equals the scalar multiplication

To(2) = I — my(b9* + b5> +b3?) = (n+1)°I
by the square of the dimension of Sym™(C?).

We note that we added 14 in the definition of {2 to make the conclusion
of the corollary easier to remember.

PrROOF OF COROLLARY We first note that by, by, bs € suy(R) as de-
fined in (6.3 form an orthonormal basis for the inner product defined by the
quadratic form det. Moreover, as discussed in Section .22 SU,(R) acts via
the adjoint representation by orthogonal matrices on su,(R) with respect to
this inner product. Thus G = SU,(R) and suy(R) equipped with this inner
product satisfy the assumptions in Proposition [Z.211

Let n € Ny. As the representation 7 on Sym”(C?) is an irreducible repre-
sentation of SU,(R) by Theorem [6.6] we obtain from Proposition [[.2T] that

—7a(b7* + b5* + bg?) = a,, 1

for some «,, > 0.
To calculate «,, we use the basis vectors ;™ € Sym"(C?). For t € R we

have N
it e'
exp(tby) = exp ( —it) = ( eit)

On __ _int_On
7Tcxptblel =€ €,

and

which implies that
7o(by)ei™ = inei™

and
mo(bi)el™ = —nZei". (7.10)

For by, by we similarly have
it cost isint
exp(thy) = exp (it ) o (i sint cost) ’

—t cost —sint
exp(thy) = exp <t ) - <sint cost > ’

O C— ©
Texptb,€1 = (coste; +isintey)™

)
and
©On

Texptb €1 = (coste; +sintes)

Expanding the latter expressions using the binomial theorem, we can take
the derivative with respect to ¢t at ¢ = 0 and notice that only one term is
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7.3 Effective Decay, Definitions, and First Results 313

relevant to obtain

. o(n—
mo(bg)er™ = mel(" Do €y
and
O} O(n—1
my(bs)el” = ne;(n ) o e,

We repeat this step and obtain

wcxptbzwa(bQ)e?" = in(coste; +isintey)” ™V o (isinte; 4 costey)

= in(cos™ ! te,f(nfl) +i(n — 1) cos™ 2 tsintef(nd) ©eg )
© (isinte;+costey)

= in(i sintcos" 'tei™ +i(n — 1)sint cos™ ! tef("_m ©eg? 4. )
and

Texp tbswa(bg)ef" = n(cos te; +sint 62)@(71_1) ) (— sinte; + cost 62)

= n(cos™ ! te‘f(nfl) +(n—-1) cos"_Qtsintef(nd) cegte)
® (— sinte; + cost 62)

= n(— sint cos" ' te;™ 4 (n — 1) sint cos™ ! teilg(niz) ey’ 4 ')=
which implies that
02\ On on O(n—=2) 02
mo(bz )er” = —ne;" —n(n —1)e; ¢

and )
78(b§2)€?" = —ne?” +n(n— 1)6*1”(71—2) o 652'

Together with (ZI0) this gives
a5 + B £ b§)ei" = (0 + 2m)es”

Adding €™ to this, the corollary follows. O

7.3 Effective Decay, Definitions, and First Results

In the following we will be interested in concrete examples of closed linear
groups. By a closed linear group we mean a closed subgroup G of SLy4(R) for
some d > 1. The assumption that G < SL4(R) instead of the seemingly more
general G < GL4(R) is harmless, as we can consider GL,4(R) itself as a closed
subgroup of SL;,;(R). One reason for the assumption is that it gives the
following notion of norm on G more meaning. We fix the Hilbert—Schmidt
norm || - ||gs on Maty 4(R) and will write ||g||ns = ||g/|us for elements g € G
of the closed linear group G' < SL4(R) € Mat, 4(R). We also note that for
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314 7 Smooth Vectors and Decay for SL(3)

the purposes of establishing effective decay, the notion of degree r Sobolev
norms for unitary representations from Definition [Z.8 will be important.

Definition 7.23 (Effective decay of matrix coefficients). Let G be a
closed linear group with Lie algebra g, let 7 be a unitary representation of G,
let » > 0, denote the degree r Sobolev norm on C"-smooth vectors in H,
by S(+), and write

Hf:{ve}lﬂ|ﬁgv:vforallg€G}

for the subspace of fixed vectors. We say that 7 has effective decay of matrixz
coefficients if there exists some x > 0 such that

[(mgv,w)| < Nlglll S(v) S(w)

for all C"-smooth v, w € (HE)* and for all g € G, where the implicit constant
is allowed to depend on 7, x, and r > 0. We will call x a decay exponent, and
define the almost decay exponent k., of the unitary representation by

tir =sup({rk > 0|k is a decay exponent} U {0}).

For semi-simple groups effective decay of matrix coeflicients as defined
above gives a formulation of effectiveness of the Howe-Moore theorem (see
Section [L7 and Theorem [[.88)). Our aim is to show that many natural ac-
tions have this property, and we will give an example of a decay exponent in
Section [T241

We emphasize that the above notions as defined depend on the fact that
we consider closed subgroups G < SLy(R). The reader troubled by this may
fix a Riemannian metric on an abstract Lie group G and use instead of the
norm ||g||gg for g € G the expression e~4(9:¢) for g € G, and use this to define
a notion of exponential decay of matrixz coefficients. We note, however, that
this notion will now depend on the choice of the Riemannian metric (instead
of the particular embedding). We have chosen the terminology above as it is
much easier to generalize Definition [[.23] in its formulation for closed linear
subgroups of SL4(Q,) or SL4(F,((t)) for a prime p. We also note that for

—_—

the simply connected Lie group SLy(R) with infinite centre (any kind of)
decay of matrix coefficients cannot hold for irreducible representations due
to Corollary [[L32] Finally, we will only be interested in SLy(R) for d € {2, 3},
and here there should be no doubt that the Hilbert—Schmidt norm || - ||gg is
a meaningful measuring tool for the size of the group elements.
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7.3 Effective Decay, Definitions, and First Results 315

7.3.1 Relationship to Spectral Gap

We will show here that effective decay of matrix coefficients implies spectral
gap (see Section 271]). We will also see in Section [T that SL3(R) satisfies
the following stronger property.

Definition 7.24 (Uniform decay exponent). We say that a closed linear
group G has a uniform decay exponent k > 0 if k is a decay exponent for any
unitary representation of GG, and both the Sobolev degree r and the implicit
constant in Definition [7.23] can be chosen absolute.

Proposition 7.25 (Effective decay implies spectral gap). A unitary
representation of a closed linear group with effective decay of matrix coeffi-
cients has spectral gap. Moreover, any closed linear group G for which there
exists a uniform decay exponent k > 0 has property (7T).

PrOOF. Let G be a closed linear group, let k > 0 be a decay exponent
for a unitary representation 7 of G, and let S be the Sobolev norm as in
Definition [72231 Also let ¢ € C°(G) satisfy |||, = 1 and ¢ > 0. We define

A=m () Ty (¢)

for some g € G to be determined.
For v,w € M, we apply Exercise [[10 to see that S(m.(¢)v) <, v
and S(7, (¢Y)w) < [|[w]|. By assumption, we also have

|(Av,w)] = |(mym. (), 7, (B)w)] <y Il o]l
for all v, w € (H,C,; )L. We now choose g € G sufficiently large to ensure thadf
|(4v, w)] < 3llvllllw]
for all v,w € (Hf )l, or, equivalently, so that
|4l gy < 3.
Now recall that by Section [[43—and (LI7) in particular—we have
A=m () mym () = 7, (7 x ).

Thus Proposition [4.24] implies that 7 has spectral gap.
If G has a uniform decay exponent, then any unitary representation has
spectral gap by the above. However, this implies that G has property (T). O

The following exercise shows that property (T) and possessing a positive
uniform decay exponents are not equivalent in general.

 Note that if G is compact, then G has property (T) by Exercise EI8 in any case.
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316 7 Smooth Vectors and Decay for SL(3)

Exercise 7.26. For the purpose of this exercise, use the fact that SL3(Z) has property (T),
which follows from the fact that SL3(R) has property (T) (see Theorem [7.2])), and the fact
that SL3(Z) is a lattice in SL3(R) (see [24] Sec. 10.3]). Show that the natural action
of SL3(Z) on T2 = R3/Z3 is ergodic, and that it does not have (effective) decay of matrix
coefficients.

7.3.2 Eigenvectors of SO,(R) for Representations of SL,(R)

In this section we study unitary representations of SLy(R), obtaining some
technical results for later use. For this we define the subgroups

A= {at = (et et> ’ te R} < SLy(R)

cosf —sinf
sinf cos6

and

K =S0,(R) = {ka = ( ) ‘ 0 e [0,27T)} < SL,y(R),
and will frequently use the following terminology.

For a unitary representation 7 of SLy(R), we say that a vector v € H, is
a K -eigenvector if there exists some n € Z with

T,V = ey

for all kg € K. We will also refer to n as the weight of the K-eigenvector.
Moreover, in the cases where H. is clearly a space of functions, we will also
call any K-eigenvector a K-eigenfunction.

Using ‘Fourier series” we now show that for establishing effective decay of
matrix coefficients for SL,(R), it suffices to study K-eigenvectors. We will
use this observation repeatedly.

Proposition 7.27 (Upgrade to smooth vectors for SL,(R)). Let w be a
unitary representation of SLy(R), ¢ > 0, and k > 0 so that

[(ma, v, 0)| < ce™ v [l

for allt € R and all K -eigenvectors v,w € H,. Suppose also that B € B(H.,)
is a bounded operator that commutes with m), for all k € SO5(R). Then we
have

(g Bv, w)| < ¢||Bllop|lgll55 S(v) S(w)

for all g € SLy(R) and all C*-smooth vectors v,w € H,, where the implicit
constant is absolute.

PROOF. If v € H,, is C'-smooth, then the decomposition of v = Y mez Um
into K-eigenvectors not only converges in H, (which it always does) but in
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fact converges absolutely. To see this, let w € s[,(R) denote the element in
the Lie algebra of SLy(R) corresponding to SO, (R) such that

TkeUm — Um i eim0 -1 .
= lim v, = imu
450 0 >0 6 ™ "

and

mo(W)v = Z imu,,

mEZ

by Example Let by, by, bs be a basis of sl,(R), so that m5(w)v can
be expressed as a sum of m5(by)v, m5(by)v, and 7y(bs)v (see Lemma [T.3)).
Therefore,

> m2[on? = llma(w)ol* < (Ima(br)oll + [ma(bo)ull + [lma(bs)oll)”

meZ
< S(W)? < o0

by the triangle inequality, and

Do lvml =lvoli+ > Emlvnl

meZ meZ~{0}
2 2
<wll+{ Y = > milloal® | < S)
meZ~{0} meZ~{0}

by the Cauchy-Schwarz inequality in ¢2(Z~{0}) and the fact that the se-
quence (#)m N is summable.

Also note that B and m;, for ky € K map any K-eigenvector to a K-
eigenvector with the same weight.

With this, we can now finish the proof using the Cartan decomposition

g = k@@tkg/

of g € SLy(R) with ¢ > 0 and ky, kg € K satisfying || g|lus = [|a;|lug < €.
Indeed, we obtain from our assumption applied separately to each summand
below that

|(my Bo,w)| = S (e, 7y B, 71, 00)

<e @™ Y |Bogl Jwnl

K M,M

<lglag ™" <IBllop v
< ¢||Bllopllglls S(v) S(w)

as claimed. O
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318 7 Smooth Vectors and Decay for SL(3)

7.4 A Uniform Decay Exponent for SL3(R)*

We start with the following accessible case. We note that the decay expo-
nent 2 below is not optimal, and refer to work of Oh [61] for more general
and sharp results.

Theorem 7.28 (Effective decay for SL;(R)). The group SL3(R) has a
uniform decay exponent: If w is a unitary representation of SL3(R) and the

vectors v, w € (’HTSFLS(R))J' are C'-smooth, then

(0, w)] < [gllgs Sw) S(w)

for all g € SL3(R), where the implicit constant is absolute and S is a degree-
one Sobolev norm. In particular, SL3(R) has property (T).

7.4.1 Eigenvectors of SO, (R)

We will use the terminology of Section [[.3.2] for the restriction of a unitary
representation 7 of SL3(R) to the subgroup

ASLy(R) = {(g ”f) ’ g€ SLy(R),z € R2} < SLy(R),

SL,(R) = {(g ?) ‘ ge SLZ(R)}

and so also K = SO, (R). We will also make use of the normal abelian closed
subgroup

containing

H < ASL,(R)
defined by
H= {hx_ (If) xeR2} ~ R2,
as well as the elements
et 00
a,= | 0e 0| €SLy(R) (7.11)
1

for ¢ € R. Since H < ASL,(R), we may use the results in Section B.1]
for 7|sgr,,(r) for the proof of the following first step towards Theorem
For this, we first note that for g € SLy(R) we will denote the inner automor-
phism of ASL,(R) defined by
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(g ?) € ASL,(R)

= () ()Y 5) .

for all 2 € R?. In particular, the dual automorphism é\g on H~R?is given
by the linear map defined by ¢*, and the action of g € SLy(R) on this dual
group R? from Section B.1]is defined by (g*)~!.

by 6, so

Lemma 7.29 (Eigenvectors). Let m be as in Theorem [[28] and suppose
that v,w € ('7'-[75'71‘3(]R))L are K -eigenvectors with

SO,(R) = K < ASLy(R) < SLy(R).

Then the diagonal matrices in (11 satisfy

(7o, 0, w)] < €™ ol
for all t € R, where the implicit constant is absolute.
PRrROOF. Let v € H be a K-eigenvector of weight n € Z, so that
TV = ey (7.12)

for all ky € SO,(R) < ASLy(R). Now notice that (TI2)) and sesqui-linearity
of the inner product implies Porgyv = Hho (also see Proposition [Z51(2)). By

Proposition [31] this implies that the spectral measure p,, is invariant under
the rotation ky for all 8 € R.

Since v € (’H,,STL3(R))L, we have 1, ({0}) = 0 by Exercise (see also the
hint on p.[B05) and the same holds for u,,. We assume that ¢t > 0 (switching
the roles of v and w then gives the general case). We define the subsets

Bhorizontal = {($17$2) | |§_ﬂ < eit}

and
Bvcrtical = {(I15I2) | ‘z_i’ 2 et}7

which are the two sectors in R? illustrated in Figure [Z.11
Next we use these and the functional calculus for 7|z to define the asso-
ciated projection operator IIg for
2 2
B e {B]m:urizomaula}R \Bhorizontala Bverticalv]R \Bvertical}

and split v and w into two parts according to these two sectors in R?,

U = Unain + Uhorizontal
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B

vertical

|zo] = €|z

o] < ety

Bhorizontal

Fig. 7.1: The sets used for decomposing v and w.

with Umain = H]R2\Bh0rizomal (U)u Uhorizontal = HBhorizontal (U) and
W = Wiain T Wyertical

with Wmain = H]RZ\B‘,enical (w) and Wyertical = HBvertical (’LU)

We now use the fact that p, is invariant under rotation, u,({0}) = 0,
and Byizonta] CONSists of two sectors with internal angle < e~*. Using Ex-
ercise 258 (see the hint on p. [E06) we obtain from these the bound

||vhorizontal||2 = My (Bhorizontal) < eit||v||2v (713)
and similarly
”wve]rtical”2 = ,LLw(Bvertical) < eitHw”Q' (714)
Also, by Exercise 2.58 we have

= 2
'LLvmain 'MU|R N Bhorizontal ?

which together with Proposition Bl gives

-1
/’Lﬂ'at Umain (at )*MU|R2\Bhorizontal
since the transpose of a,; is a; itself. A simple calculation now reveals that
the set a; 1(R2\Bhorizontal) agrees with B qica With the exception of the
boundaries, which are null sets. It follows that

Mﬂ'atvmain 2 Mwmain

which implies that 7, Vpain L Wpain by Proposition 25I(7). Together

with (CI3]) and (TI4)), this gives
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‘ <7Tat v, w> ’ < ‘ <7Tat VUmains wmain> +‘ <7Tat Vmain» wvcrtical> ‘ + ‘ <7Tat Vhorizontal ’LU> ‘

=0
_t
< e o] [jwl]

by the Cauchy—Schwarz inequality. O

7.4.2 Bootstrapping to the General Case

Lemma [7.29] will allow us to use the following lemma with the value xk = %

Lemma 7.30 (Smooth vectors for SL3). Let 7 be a unitary representation
of SL3(R) and assume that

(7o, v,0)| < ce™ [lv] [l (7.15)

holds for some constants ¢,k > 0 and all SO, (R)-eigenfunctions v, w lying
m (’HELS(R))J‘. Then

(70, w)| < ce™ 2270l (1) S(w)

for all C*-smooth vectors v, w € (’HELS(R))J—, where
a= el (7.16)

fOT tl,tQ,tg S R T,UZth tl + t2 + t3 = O
PRrOOF. We will use Proposition [[.27] and its notation for 7 restricted to

( 7STL3(]R))J_'

For this, we notice that

el otit3ts e~ 3t
1 1
a = etz = et2t3ts e~ 2ls

—a, 1
t1t35t3

where a, 1, € ASLy(R) is as defined in (ZII) and b € SL3(R) commutes
with K. We set B = m, and apply Proposition [7.27 We note that its conclu-
sion holds even if S(-) denotes the Sobolev norm with respect to the unitary
action m of SL3(R). Indeed, we may include a basis of sl,(R) in the basis
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of sl5(R) in the definition of the Sobolev norm, and then use Exercise [[.12] to
see that this assumption does not matter since we allow ourselves to change
the implicit constant. Therefore

|(m,v, w)| = ‘<7T Bv,w>‘ < ce M htatl §(v) S(w)

a, 1
t1+5t3

for all C'-smooth vectors v, w € (HTSrLC*(R))l. Since t; + 2t = 2(t; —ty), this
gives the lemma. (|

PROOF OF THEOREM [[28. By Lemma [7.29, we have (TIF) for x = 3. By
conjugation with permutation matrices, we have that Lemma [7.30] also shows

(v, w)| < e~ 5=l §(v) S(w) (7.17)

and )
|(Tqv, w)| < e~ 1t~ S(v) S(w)

for all diagonal matrices a, in the notation of (ZI6]). Hence we may choose
the best of these three estimates. Suppose without loss of generality that

t3 2ty 2 1y,

so that the best estimate is given by (.I7). Now notice that ||a||yg is essen-
tially equal to e’s in the sense that

e’ < Jlaflus < €',
and t; + ty + t3 = 0 gives
eli—ts < e%(t1+t2)7t3 — e*%ts < ||a||I;S%

Combining this with (ZI7T), it follows that Theorem holds for diagonal
matrices.

To generalize the estimate to an arbitrary g € SL3(R) we use the Cartan
decomposition g = kak’ for k, k" € SO3(R) and a diagonal a (see the footnote
on p. [62). Notice that ||g|lgs = [|a|lgs, and that S(m,v) < S(v) uniformly
for k in SO3(R) (see Exercise [L.T1]). Therefore

| (g0, w)| = |[(ma(myv), m M)
< llallgd S(r0) S(ri w)
< lgllad S@) S(w),
as required. Going through the implicit constants appearing in the proof,
starting with Lemma and Proposition[.27 one verifies that the implicit

constant above is also absolute. The last claim now follows from Proposi-
tion [7.25] |
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Exercise 7.31. Extend the argument used in the proof of Theorem[Z.28]to give an effective
estimate on the decay of matrix coefficients for G = SL4(R) with d > 3 (for example by
again using subgroups of the form ASL,(R) = SL,(R) x R? leading to the exponent id;fl)‘
Exercise 7.32. Recall that SL3(R) has a double cover SL3(R) (since the fundamental
group of SO3(R) is Z/2Z). Generalize Definition[[.223land Theorem [[28to SL3(R) by using

e —~

the isogeny 1: SL3(R) — SL3(R) to define the size of g € SL3(R) by ||gllas = |l2(9)|lus-

7.5 Summary and Outlook

The main purpose of this chapter was to introduce smoothness to our discus-
sion of unitary representations. As we have already seen in the discussion of
effective decay of matrix coefficients, smoothness may be a required assump-
tion in certain applications of the theory. We will study this notion furtﬁe_lin
Chapter[@ where it will also become an important tool for describing SLy(R)
completely.
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