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Let G denote the collection of all pairs (G ,T ), with G a compact metric
abelian group and T a continuous automorphism.

My mathematical autobiography: Try to say something non-trivial about
the space G, or about G/meaningful equivalence relation.

Sample question: As you move around in G, which dynamical properties
are ‘rigid’ (granular) and which are ‘flexible’ (smoothly varying)?

If you fix G then Aut(G ) is totally disconnected in its natural topology
(Iwasawa 1949).

The point is to vary G as well as T .



Let G denote the collection of all pairs (G ,T ), with G a compact metric
abelian group and T a continuous automorphism.

My mathematical autobiography: Try to say something non-trivial about
the space G, or about G/meaningful equivalence relation.

Sample question: As you move around in G, which dynamical properties
are ‘rigid’ (granular) and which are ‘flexible’ (smoothly varying)?

If you fix G then Aut(G ) is totally disconnected in its natural topology
(Iwasawa 1949).

The point is to vary G as well as T .



Let G denote the collection of all pairs (G ,T ), with G a compact metric
abelian group and T a continuous automorphism.

My mathematical autobiography: Try to say something non-trivial about
the space G, or about G/meaningful equivalence relation.

Sample question: As you move around in G, which dynamical properties
are ‘rigid’ (granular) and which are ‘flexible’ (smoothly varying)?

If you fix G then Aut(G ) is totally disconnected in its natural topology
(Iwasawa 1949).

The point is to vary G as well as T .



Let G denote the collection of all pairs (G ,T ), with G a compact metric
abelian group and T a continuous automorphism.

My mathematical autobiography: Try to say something non-trivial about
the space G, or about G/meaningful equivalence relation.

Sample question: As you move around in G, which dynamical properties
are ‘rigid’ (granular) and which are ‘flexible’ (smoothly varying)?

If you fix G then Aut(G ) is totally disconnected in its natural topology
(Iwasawa 1949).

The point is to vary G as well as T .



Let G denote the collection of all pairs (G ,T ), with G a compact metric
abelian group and T a continuous automorphism.

My mathematical autobiography: Try to say something non-trivial about
the space G, or about G/meaningful equivalence relation.

Sample question: As you move around in G, which dynamical properties
are ‘rigid’ (granular) and which are ‘flexible’ (smoothly varying)?

If you fix G then Aut(G ) is totally disconnected in its natural topology
(Iwasawa 1949).

The point is to vary G as well as T .



0-dim. connected

entropy rigid
conjecturally rigid:
‘Lehmer’s problem’

growth rate of
periodic points (cheating)

flexible ?

growth rate of
periodic points (honest)

? ?

Mertens’ constant ? flexible

analytic properties
of zeta function

rigid-ish
conjecturally rigid:
‘Polya–Carlson dichotomy’



Entropy

The entropy of a group automorphism T is the rate of decay of
volume of a Bowen-Dinaburg ball:

h(T ) = lim
ε↘0

lim
n→∞

−1

n
logm

(
n−1⋂
i=0

T−iBε(0)

)
.
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Imagine a toral automorphism has eigenvalues λi with

|λ1| 6 · · · 6 |λs | 6 1 < |λs+1| 6 · · · 6 |λd |.

Then we think
⋂n−1

i=0 Bε(0) will have Haar volume roughly

Cεd

(
d∏

i=s+1

|λi |
)−(n−1)

.

So we expect

h(T ) =
d∑

i=s+1

log |λi | =
d∑

i=1

log+ |λi | =

∫ 1

0
log |f (e2πit)|dt,

the Mahler measure m(f ) of the characteristic polynomial.
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This is really a localization or linearization, and adeles can be used
to make a similar calculation for solenoids.

Theorem: The set of entropies of group automorphisms is the
closure of the set {m(f ) | m(f ) > 0} (Yuzvinskii).

Lehmer’s problem: Is

inf{m(f ) | m(f ) > 0} > 0?

If the answer is yes, then the set of possible entropies is countable.

If the answer is no, then there is a compact group automorphism
with any entropy.

The 0-dimensional case is easier, and the possible values are of the
form log k with k ∈ N.
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Periodic points

Example: For any C ∈ [0,∞] there is a compact group
automorphism T : X → X with

1

n
log |{x ∈ X | T nx = x}| → C

as n→∞.

So the invariant ‘logarithmic growth rate of periodic points if it
exists’ is flexible.

But: the examples are zero-dimensional and non-ergodic (this is
really cheating).This result has been improved significantly by
Haynes and White 2015.

We don’t know if the exponential growth rate of periodic points on
connected groups is flexible or rigid, and this is really Lehmer’s
problem in disguise.
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Mertens’ constant

In general FixT (n) = |{x ∈ X | T nx = x}| is very erratic, so more
smoothing is needed.

Let

MT (N) =
∑
|τ |6N

1

eh|τ |
,

where |τ | denotes the length of a closed orbit τ , and h is the
topological entropy (that is, a normalization by the expected
‘usual’ growth rate).
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Illustrative example: For T : x 7→ 2x mod 1 (not quite an
automorphism, but a handy example), we have:

I 2n − 1 points fixed by T n and topological entropy log 2;

I hence 2n/n + O(2n/2) closed orbits of length n;

I hence MT (N) is more or less
∑

n6N
2n/n
2n ∼ logN.

It turns out that many group automorphisms have

MT (N) ∼ κ logN

(and in some cases more refined asymptotics are also known).

We claim that κ is a flexible invariant (joint work with Baier,
Jaidee, Stevens).
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Theorem: For any κ ∈ (0, 1) there is an ergodic compact
connected group automorphism T : X → X
with MT (N) ∼ κ logN.

Theorem: For any r ∈ N and κ > 0 there is an ergodic compact
connected group automorphism T : X → X
with MT (N) ∼ κ(log logN)r .

Theorem: For any δ ∈ (0, 1) and k > 0 there is an ergodic
compact connected group automorphism T : X → X
with MT (N) ∼ k(logN)δ.
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Constructions in 1-solenoids

The simplest connected groups are the one-dimensional solenoids,
which are in 1-to-1 correspondence with subgroups of Q. These
are easy to describe (unlike the subgroups of Q2).

The simplest of these are the subrings: take S a set of primes, and
the map x 7→ 2x on

{r = a
b | p|b =⇒ p ∈ S}.

Dualizing gives a group endomorphism with

|{x ∈ X | T nx = x}| = (2n − 1)
∏
p∈S
|2n − 1|p.

So the construction boils down to statements about sets of primes.
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These ‘exotic’ solenoids are not really all that exotic: they appear
as minimal sets of generic Hamiltonian dynamical systems on
symplectic manifolds (Markus & Meyer 1980).



Typical questions along the way:

I Given δ ∈ (0, 1), find a set L of primes so that∑
p∈L,p6N

log p

p
= δ logN + O(1)

(easy if δ is rational)...

I in such a way that for any c > 1 there is a set L′ ⊂ L with∏
p∈L′

(
1 +

1

p

)
= c

and ∑
p∈L′

log p

p
<∞.
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Dynamical zeta functions

Write

ζ(z) = exp
∑
n>1

FixT (n)

n
zn

and
F (z) =

∑
n>1

FixT (n)zn.
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In many natural settings these functions are rational or have a
meromorphic extension.

The map x 7→ 2x (mod 1) has ζ(z) = 1−z
1−2z .

It is easy to find other phenomena: there is a C∞ diffeomorphism
of T2 with Fix(n) =

(2n
n

)
for all n > 1 and hence with

F (z) =
1√

1− 4z
− 1.

Problem: Is there a topologically transitive diffeomorphism with
this zeta function?

General problem: Is the set of zeta functions of bijections of N
the same as the set of zeta functions of C∞ diffeomorphisms of T2

(yes) that are topologically transitive (?), area-preserving (?),...
(Hunt & Kaloshin 2001 show that a stretched exponential rate is
prevalent)
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For group automorphisms (Fix(n)) has several properties:

I it is a divisibility sequence (and so well understood, and even
‘classified’ when the zeta function is rational by Bezivin,
Petho & van der Poorten 1990);

I and much more besides (which is not well understood).

Cautionary example: The function f (z) = 1
(1−z)(1−z5) is the

dynamical zeta function of the permutation τ = (1)(23456) on the
set {1, 2, 3, 4, 5, 6}. The sequence (Fixτ (n)) is a linearly recurrent
divisibility sequence, but f is not the zeta function of any group
automorphism.

Problem: Is there a combinatorial characterization for being the
zeta function of a group automorphism?



For group automorphisms (Fix(n)) has several properties:

I it is a divisibility sequence (and so well understood, and even
‘classified’ when the zeta function is rational by Bezivin,
Petho & van der Poorten 1990);

I and much more besides (which is not well understood).
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Familiar group automorphisms like toral automorphisms have
rational zeta functions.

The automorphism dual to x 7→ 2x on Z[1/6] has

Fix(n) = (2n − 1)|2n − 1|3,

and we outline a proof that |z | = 1
2 is a natural boundary for its

zeta function.
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Relating ζ to F :

I ζ rational implies that F is rational;

I ζ has analytic continuation beyond its circle of convergence
implies that F does also;

I a natural boundary for F implies one for ζ.

Let R(z) =
∑

n>1 |2n − 1|3zn, so that

F (z) = R(2z)− R(z).

We claim that |z | = 1 is a natural boundary for R, and hence
|z | = 1

2 is one for F (and hence for ζ).
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Write

R(z) =
1
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∑
2|n

|n|3zn +
∑
2-n

zn,

so R(z) = 1
3G (z2) + H2(z), where G (z) =

∑
n>1 |n|3zn.

Since H2 is rational, it is enough to show that G has natural
boundary |z | = 1.

Writing n = 3ek , where e > 0 and 3 - k , gives
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It follows that

G (z) = H3(z) +
1

3
G (z3).

Using this functional equation inductively, we deduce that there are
dense singularities of G on the unit circle, occurring at 3e-th roots
of unity, e ∈ N.

Remark: This is not a reasonable proof – its only method is luck.
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Pólya–Carlson dichotomy: A power series with integer
coefficients and radius of convergence 1 is either rational or has
the unit circle as a natural boundary.

Question: Do zeta functions for compact group automorphisms
enjoy the same dichotomy?
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Baby case: draw a portrait of x → 2x on (some) one-dimensional
solenoids up to topological conjugacy and identify what we know...
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Figure 2. The Hasse diagram of subrings of Q.

follows that FTk
(n) = 1 for n < k and limn→∞(1/n) log FTk

(n) = log 2. It may be
helpful to have in mind that the sequence of fixed point counts for these systems
begins as follows:

FT1 = (1, 3, 7, 15, 31, . . . )

FT2 = (1, 1, 7, 5, 31, . . . )

FT3 = (1, 1, 1, 5, 31, . . . )

FT4 = (1, 1, 1, 1, 31, . . . ),

and so on. We now inductively construct an infinite-dimensional solenoid X to-
gether with an automorphism T as follows, starting at 2 for convenience.

At the first stage, let n2 = �log3 θ2� and let (X(2), T (2)) be the n2-fold Cartesian
product of copies of (X1, T1). By construction,

1 � FT (2)(2)

θ2
� 3 = FT1(2). (6.6)

At the next stage, let n3 = �log7 θ3� − m2 (and assume, as we may, that this is
non-negative by amending the early terms of the sequence θ), and let (X(3), T (3)) be



Two additional fundamental tools:

Hadamard: Let K be a field of characteristic zero, and suppose
that

∑
n>0 bnz

n and
∑

n>1 cnz
n in K[[z ]] are expansions of rational

functions. If there is a finitely-generated ring R over Z
with an = bn

cn
∈ R for all n > 1, then

∑
n>0 anz

n is also the
expansion of a rational function.

Fabry: If 0 < p1 < p2 < · · · are integers with pn
n →∞ as n→∞

and (an) is a sequence of complex numbers for which
∑

n>1 anz
pn

has radius of convergence 1, then the series admits |z | = 1 as a
natural boundary.

Warning: The radius of convergence of the zeta function of a
group automorphism is rarely 1, and is usually unknown.



Two additional fundamental tools:

Hadamard: Let K be a field of characteristic zero, and suppose
that

∑
n>0 bnz

n and
∑

n>1 cnz
n in K[[z ]] are expansions of rational

functions. If there is a finitely-generated ring R over Z
with an = bn

cn
∈ R for all n > 1, then

∑
n>0 anz

n is also the
expansion of a rational function.

Fabry: If 0 < p1 < p2 < · · · are integers with pn
n →∞ as n→∞

and (an) is a sequence of complex numbers for which
∑

n>1 anz
pn

has radius of convergence 1, then the series admits |z | = 1 as a
natural boundary.

Warning: The radius of convergence of the zeta function of a
group automorphism is rarely 1, and is usually unknown.



Two additional fundamental tools:

Hadamard: Let K be a field of characteristic zero, and suppose
that

∑
n>0 bnz

n and
∑

n>1 cnz
n in K[[z ]] are expansions of rational

functions. If there is a finitely-generated ring R over Z
with an = bn

cn
∈ R for all n > 1, then

∑
n>0 anz

n is also the
expansion of a rational function.

Fabry: If 0 < p1 < p2 < · · · are integers with pn
n →∞ as n→∞

and (an) is a sequence of complex numbers for which
∑

n>1 anz
pn

has radius of convergence 1, then the series admits |z | = 1 as a
natural boundary.

Warning: The radius of convergence of the zeta function of a
group automorphism is rarely 1, and is usually unknown.



Two additional fundamental tools:

Hadamard: Let K be a field of characteristic zero, and suppose
that

∑
n>0 bnz

n and
∑

n>1 cnz
n in K[[z ]] are expansions of rational

functions. If there is a finitely-generated ring R over Z
with an = bn

cn
∈ R for all n > 1, then

∑
n>0 anz

n is also the
expansion of a rational function.

Fabry: If 0 < p1 < p2 < · · · are integers with pn
n →∞ as n→∞

and (an) is a sequence of complex numbers for which
∑

n>1 anz
pn

has radius of convergence 1, then the series admits |z | = 1 as a
natural boundary.

Warning: The radius of convergence of the zeta function of a
group automorphism is rarely 1, and is usually unknown.



The simplest case is to assume that X is a one-dimensional
solenoid, so (roughly) the automorphism is dual to the map x 7→ rx
on the ring R = Z[ 1p : p ∈ S ] for some subset S of the primes.

Write fS(n) = |rn − 1| · |rn − 1|S and FS(z) =
∑

n>1 fS(n)zn,
where |x |S =

∏
p∈S |x |p.

To see how Hadamard arises, we claim that FS is rational if and
only if |r |p 6= 1 for all p ∈ S (‘hyperbolicity’).



The simplest case is to assume that X is a one-dimensional
solenoid, so (roughly) the automorphism is dual to the map x 7→ rx
on the ring R = Z[ 1p : p ∈ S ] for some subset S of the primes.

Write fS(n) = |rn − 1| · |rn − 1|S and FS(z) =
∑

n>1 fS(n)zn,
where |x |S =

∏
p∈S |x |p.

To see how Hadamard arises, we claim that FS is rational if and
only if |r |p 6= 1 for all p ∈ S (‘hyperbolicity’).



The simplest case is to assume that X is a one-dimensional
solenoid, so (roughly) the automorphism is dual to the map x 7→ rx
on the ring R = Z[ 1p : p ∈ S ] for some subset S of the primes.

Write fS(n) = |rn − 1| · |rn − 1|S and FS(z) =
∑

n>1 fS(n)zn,
where |x |S =

∏
p∈S |x |p.

To see how Hadamard arises, we claim that FS is rational if and
only if |r |p 6= 1 for all p ∈ S (‘hyperbolicity’).



The first non-trivial case is S finite and S ′ = {p | |r |p = 1} 6= ∅.

S finite implies that the values of

f (n) = |rn − 1|S ′ =
∏
p∈S ′

|rn − 1|p

lie in a finitely-generated extension of Z.

For r = a
b , we can assume that a > |b| and hence that

fS(n) = (an − bn)f (n).

If FS is rational then fS is a linear recurrence sequence, so by
Hadamard we deduce that f is also.

Arithmetic arguments can then be used to show that f takes on
infinitely many values infinitely often, which is impossible.
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For S co-finite it is easy to show that the Pólya–Carlson dichotomy
holds because the theorem itself applies.



With more effort we can show that the Pólya–Carlson dichotomy
holds in several cases:

I If S is finite and dim(X ) = 1.

I If S is co-finite and dim(X ) = 1.

I If dim(X ) = 1 and the complement of S comprises primes
p1 < p2 < · · · with log pn+1

pn
→∞.
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In higher dimensions life is harder. A result of Miles allows each
system to ultimately be associated to a set S of places of a
number field.

I If dim(X ) 6 3 and S is finite then the Pólya–Carlson
dichotomy holds.
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