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‘ Is this a book which one could allow one’s children or one’s servants to read?’

asked Melford-Stevenson Q.C. Although he was in no doubt about the answer in

the case of Lady Chatterley’s lo�er, I am certain that he would have given two

outrageously reactionary thumbs up for this book. In fact, I am certain that he would

have recommended it, as I do, for postgraduates and undergraduates alike to read.

It ranges through a number of topics, varying from the elementary to the

sophisticated, all featuring polynomials.

Let us start with something to interest an undergraduate. In 1933, D. H. Lehmer

discovered a method for manufacturing large primes. Take a polynomial with integer

coefficients, F(x)¯xd­a
d−"

xd−"­…­a
!
, and factorise it as F(x)¯0d
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primes if it does not grow too quickly. For example,
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are two such primes. However, ∆
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(F ) has problems when F has a root lying on the

unit circle. A more serviceable measure is a function introduced by Mahler :
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This logarithmic Mahler measure is a simple yet intriguing function. It vanishes for

a primitive polynomial F if and only if all the zeros of F are roots of unity. Provided

that no zero is a root of unity, ∆
n
(F )}n tends to m(F ) as n tends to infinity. In view

of the connection with primes, it is of interest to find polynomials with smallest

possible Mahler measure. The book under review describes the current state of

knowledge on this, thereby laying the ground for an investigative project suitable for

undergraduates.

Interesting as the historical background is, my interest was awakened by the

connections with other areas, which the book goes on to describe. From a self-map

of the d-dimensional torus, one obtains a matrix which realises its effect on the first

homology group, and from this one obtains the characteristic polynomial. Ergodicity

of the self-map corresponds to no zero of the characteristic polynomial being a root

of unity. These observations suggest that the Mahler measure is relevant here. In fact,
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the authors explain why the Mahler measure of the characteristic polynomial is equal

to the topological entropy of the self-map. Many similar connections may be made

once one has extended m(F ) to polynomials of several variables. From Mahler

measure on a topological torus, the authors go on to develop Mahler measure on

the tori which occur in arithmetic geometry—elliptic curves. After a very useful

introduction to elliptic curves, Mordell’s theorem and the theory of the canonical

height, the arithmetic part of the book explains how the elliptic analogue of m(F ) is

related to the canonical height.

I imagine that this text provides an excellent basis for a beginning postgraduate

course, since most of the material is not too demanding and yet it arouses the curiosity

to learn more about dynamical systems, algebraic number theory or primality testing.

In addition, there are 103 exercises with hints, five useful appendices sketching the

prerequisites, and an extensive bibliography—all in 212 pages.

University of Southampton V P. S

RANDOM DYNAMICAL SYSTEMS

(Springer Monographs in Mathematics)

By L A : 586 pp., £57.50,  3 540 63758 3 (Springer, 1998).

STOCHASTIC DYNAMICS

Edited by H C and M G : 440 pp., £49.50,

 0 387 98512 3 (Springer, 1999).

Ito# ’s first papers describing a new dynamics for the sample paths of Markov

processes appeared in 1942. Ito# ’s calculus not only gave a sound mathematical basis

to the notion and study of dynamical systems ‘perturbed by white noise ’, but also tied

them in to Markov semigroups and their associated semi-elliptic operators and

generalised heat equations. The need for the new calculus came from the fact that the

paths of the processes involved, and in particular those of the standard model of

Brownian motion ²B
t
, t& 0´, are not differentiable nor even locally of bounded

variation. The ‘white noise ’ driving this equation is formally the derivative of

Brownian motion, and a typical Ito# stochastic differential equation (SDE) on 2n is

written as

dx
t
¯A(x

t
) dt­3

m

j="

X j(x
t
) dB j

t
, (1)

where A and X ",… ,Xm are vector fields on 2n, and B"
t
,… ,Bm

t
refer to independent

Brownian motions on 2. It could be considered as a random perturbation of the

deterministic dynamical system determined by A.

In 1961, Blagovescenskii and Freidlin showed that if the coefficients of (1) have

enough bounded derivatives, then it will have a solution flow ²ξ
t
, t& 0´ which is

smooth in the initial point, although in time it is continuous but not differentiable.

Behind (1) lies a probability space ²Ω,),0´, with Ω parametrising each B j

t
to give

continuous paths ²B t

j
(ω) : t& 0´, for ω `Ω, and similarly parametrising x

t
so that the

flow is a map ξ
t
:2m¬ΩMN2n, for t& 0, with ξ

t
(x

!
,ω)¯x

t
(ω). For each ω, the flow
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can be differentiated in x
!

to yield a process satisfying the linearisation of (1) along

the trajection x.(ω). It is normal to include a shift operator θ
t
:ΩMNΩ, for t& 0,

preserving 0, and the flow will satisfy the cocycle property

ξ
t
(ξ

s
(x

!
,ω), θ

s
(ω))¯ ξ

t+s
(x

!
,ω), (2)

though it seems that nearly 20 years passed before the importance of this was

appreciated, and the study of the ergodic and dynamical aspects of these flows got

underway.

Associated to (1) is a Markov semigroup on bounded measurable functions given

by P
t
f(x)¯ !Ω f(ξ

t
(x,ω)) d0(ω), with differential generator ! given by

!( f ) (x)¯Df (x)(A(x))­"

#
3
j

D#f (x)(X j(x),X j(x)). (3)

If this posesses an invariant probability measure ρ on 2n, then the transformations

Θ
t
:Ω¬2n MNΩ¬2n,

Θ
t
(ω,x)¯ (θ

t
(ω), ξ

t
(x,ω)), t& 0, (4)

will be a semigroup preserving the measure µ, where µ¯ΩC ρ. This enabled

Carverhill to apply Oseledets’ multiplicative ergodic theorem (MET) to the derivative

of ξ
t
to obtain Lyapunov exponents for non-linear SDEs and carry over some of the

smooth ergodic theory of Pesin as developed by Ruelle. That work was stimulated by

questions of Ludwig Arnold, who, together with his ex-students and co-workers, is

responsible for much of the progress in this, and related areas, which forms the basis

of his monograph.

Professor Arnold’s object of study is random dynamical systems (RDS).

Essentially, these are ‘skew products ’ ξ
t
as above, satisfying a cocycle property (2)

with time t `T where T is 2(& 0), 2, : or .. This therefore includes random

diffeomorphisms and a class of ordinary differential equations with random co-

efficients, as well as SDEs (the introduction above was biased) ; a chapter describes

in detail how they are generated. There is emphasis on 2-sided time. This is somewhat

strange to those used to Markov processes, but is a key point in enabling a more

detailed analysis to be given of the dynamics. In particular, invariant measures µ for

(4) which have 0 as marginal, but are not product measures (that is, random invariant

measures for ξ
t
), are crucial as a tool and as an object of study. (For example, the

‘dynamical ’ or ‘D’-bifurcations discussed in Arnold’s book correspond to changes in

these measures ; changes in ρ are called ‘phenomenological ’ or ‘P’-bifurcations.)

The monograph is a most substantial and careful piece of work. The foundations

are laid with great care, and the measure-theoretic niceties of cocycles and their

perfection are nailed down. Oseledets’ MET is proved in detail, with versions for

bundles to allow, in particular, for the important cases which arise of RDS on

projective and other homogeneous spaces. Generalised rotation numbers are

described. Following this is a long chapter on invariant manifolds, for example, stable

and unstable manifolds in the sense of Pesin, in which is included a version for RDS

of Hartman–Grobman linearisation. Normal form theory comes next, with a careful

exposition first describing the non-random theory. For random systems this is very

complex computationally (106 cohomological equations are mentioned for a noisy

Duffing–van der Pol oscillator). For SDEs there is the extra theoretical problem,

which arises often in this analysis, that the objects involved, for example, Oseledets
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spaces, are usually not only random but are anticipative ; they depend on all time.

Non-anticipation was essential for Ito# ’s calculus as originally described, and the

anticipative versions are harder to use.

The final chapter on bifurcation theory is well worth reaching, however. Arnold’s

account of the concepts of stochastic bifurcation theory, the notions of random

attractors, and Baxendale’s conditions for bifurcations, is a delight to read. Many

examples, especially bifurcations associated to noisy versions of Duffing–van der Pol

equations, are examined at length. The distinction between the P-bifurcations and

D-bifurcations mentioned above is emphasised. The first type depend only on the

generator (3) of the SDE (in the white noise case), that is, on the one point motion,

whereas the second type depend on the SDE or flow. Many different equations (1) can

give rise to the same generator (3), and the qualitative behaviour of their flows can

be quite different. In practical applications, it is therefore especially important to be

clear about what is being modelled and how any noise should enter into the equation.

Despite its nearly 600 pages, the monograph had to omit several topics, as the

author points out: in particular, the infinite-dimensional theory needed for stochastic

or random PDEs and functional equations, the highly-developed theory of products

of random matrices, and geometrical aspects of stochastic flow theory. For some

sections, the reader will want the thesis of H. Crauel [1], on which key sections are

based, and the book of Kunita [2] to obtain further details or to complete proofs.

However, the foundations of the subject are firmly laid here. It is a major

achievement, which will be of immense value. Anyone who works near this area will

be deprived if they do not have a volume ready to refer to, and the lengthy section

on Oseledets’ MET should be of use to a wider audience.

The volume Stochastic dynamics arose from a conference in honour of Professor

Arnold’s 60th birthday. It is a very useful complement to his monograph. In

particular, the bifurcation theory there is extended in several articles. In general,

‘ stochastic dynamics ’ is given a wider interpretation here than in the monograph;

infinite-dimensional dynamics, SPDE theory, and geometric behaviour all appear.

Articles on computational aspects reflect the increasing interest in them. The quality

of the articles makes this book a fitting response to Professor Arnold’s achievement.

References
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The University of Warwick K. D. E

THE REAL FATOU CONJECTURE

(Annals of Mathematics Studies 144)

By J G and G S! :  : 148 pp., £18.95,  0 691 00258 4

(Princeton University Press, 1998).

One of the main open problems in the theory of dynamical systems is the problem

of describing the structurally stable maps. (A map is called structurally stable in some

topology if there exists some neighbourhood of this map such that all maps in this
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neighbourhood are topologically conjugate.) This problem goes back to Poincare! ,
Fatou and Andronov. In his famous paper, Fatou expressed the belief that ‘general ’

rational maps are expanding on the Julia set. In today’s language, we would

formulate his conjecture in the following way: ‘Hyperbolic rational (polynomial)

maps are dense in the space of rational (polynomial) maps’. Here, we say that a map

is hyperbolic if it is expanding on its Julia set or, equivalently, if iterates of all its

critical points converge to attracting cycles. This conjecture is very closely related

to the local connectivity of the Mandelbrot set : if the Mandelbrot set is locally

connected, then hyperbolic quadratic polynomials are dense in the space of all

quadratic polynomials.

The authors of the book under review consider the simplest non-trivial case

of the Fatou conjecture; namely, they consider a family of real quadratic maps

x* ax(1®x). For this family, they prove that the conjecture indeed holds. Thus

they prove the following important theorem.

T 1. In the real quadratic family

f
a
:x* ax(1®x),

where 0! a! 4, the map f
a
has an attracting cycle, and thus is hyperbolic, for an open

and dense set of parameters a.

The whole book is devoted to the proof of this theorem. The proof is well

structured and contains many results which are very useful for other applications in

one-dimensional dynamics. Unfortunately, these results are too technical to state

here ; however, one of them ought to be mentioned. It appears that if f
a

is a non-

renormalizable map, then one can construct a sequence of induced maps with

exponential decay of moduli. Moreover, the speed of the exponential decay depends

only on the modulus of the given map f
a
. The proof of the main theorem is based on

this fact and, undoubtedly, it will play a key role in proofs of other theorems.

The University of Warwick O. S. K

MODEL CATEGORIES

(Mathematical Surveys and Monographs 63)

By M H : 207 pp., US$54.00,  0 8218 1359 5

(American Mathematical Society, 1998).

The theory of model categories was introduced in 1967 by Quillen [5] to unify a

number of contexts in which one can do homotopy theory, notably with chain

complexes, spaces, and simplicial sets, groups or rings. Shortly afterwards, he used it

to give an algebraic description of spaces whose homotopy groups are rational vector

spaces [6], which has led to a rich and beautiful theory with many concrete examples.

Later, Bousfield showed how to use exotic model structures on the category of

simplicial sets to solve some foundational problems in the theory of homological

localisation [1, Appendix]. Model categories of simplicial rings were also used as the

foundation for homology theories for associative algebras (Hochschild homology)
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and commutative algebras (Andre! –Quillen homology). Although these applications

flourished, for some time there was relatively little work on the general theory of

model categories. In the last decade, several developments have conspired to change

this. The first begins with the work of Hopkins and Miller, in which they outlined an

obstruction theory for showing that certain ring spectra can be made strictly (rather

than just homotopically) commutative. As the outline has been filled in, the ro# le of

Quillen’s theory has become more and more prominent : it involves model categories

of ring spectra, model categories of simplicial operads, and so on. Partially inspired

by this, Elmendorf et al. gave a new and much more satisfactory topological

foundation for stable homotopy theory [2]. In this context, it is easy to construct new

topological categories of ring spectra, module spectra, and so on. Another way of

revamping the foundations of the stable category was discovered by Smith [4]. In each

case there is a corresponding homotopy theory, which is best understood using model

categories.

Another completely independent development was the spectacular work of

Voevodsky in algebraic K-theory, including his proof of the Milnor Conjecture. This

involves setting up a homotopy category of simplicial schemes, and comparing a

corresponding stable homotopy category with the ordinary topological stable

homotopy category. This point of view is most visible in the joint work of Voevodsky

and Morel, which again relies on model categories to control homotopical behaviour.

The book under review is thus very timely. It starts with an account of the

definitions, and a development of the homotopy theory of model categories. This is

probably the first time in which the important notion of cofibrant generation has

appeared in a book, and the consideration of the 2-category of model categories

and Quillen adjunctions is another interesting feature. Hovey then treats the basic

examples of spaces, simplicial sets and chain complexes of modules over a ring or

comodules over a Hopf algebra (the last of which is new). Many subtle details (usually

left to the reader) are treated in full. Next, there is a new discussion of monoidal

products on model categories (such as the smash product of pointed spaces, or of

various kinds of spectra), with conditions under which they are homotopically well-

behaved; these considerations are essential in the new applications discussed earlier.

Hovey also extends Quillen’s discussion of pointed model categories by developing a

theory of fibre and cofibre sequences and the comparison between them. This involves

a suspension functor from the pointed model category to itself ; the category is said

to be stable if this functor is an equivalence. The book develops a general theory of

stable model categories, and gives mild criteria under which the associated homotopy

categories are stable homotopy categories in the sense of [3]. Again, this covers many

of the new applications. There is also a chapter showing that the homotopy category

of any model category is enriched over the homotopy category of spaces, a

remarkable result with origins in work of Dwyer and Kan.
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The University of Sheffield N. P. S

QUANTUM GROUPS AND THEIR REPRESENTATIONS

(Texts and Monographs in Physics)

By A K and K S$  : 552 pp., £49.00,  3 540 63452 5

(Springer, 1997).

ALGEBRAS OF FUNCTIONS ON QUANTUM GROUPS: PART I

(Mathematical Surveys and Monographs 56)

By L I. K and Y S. S : 150 pp., US$49.00,

 0 8218 0336 0 (American Mathematical Society, 1998).

There is, as Klimyk and Schmu$ dgen point out in their Preface, no recognised

mathematical definition of a ‘quantum group’. And as a comparison of their book

with that by Korogodski and Soibelman will show, different discussions of these non-

existent objects can be almost disjoint in their content. Is there actually anything there

to discuss?

Nothing there, perhaps, but plenty to discuss. Start with the pointless attitude

of algebraic geometry, shifting attention from a space of points to the algebra of

functions on that space as an equivalent notion. This algebra is necessarily com-

mutative, but there may be non-commutative algebras very close to it which one

would like to think of in the same way. A ‘quantum space’ is the space that one would

then like to think of, a virtual space. If the space we start from is a group, then its

algebra of functions A has not only a (pointwise) multiplication, but also a second

operation, reflecting the group operation in the underlying space, namely a

comultiplication taking a function f of one variable to a function ∆f of two variables

given by ∆f(x, y)¯ f(xy). Reflecting the inverse operation in the underlying space is

the antipode, the operation S on the algebra of functions given by Sf(x)¯ f(x−") ;

reflecting the identity e is the counit, the functional ε : f* f(e). This is an example of the

general notion of a Hopf algebra, an algebra with a comultiplication ∆ :A!ACA,

an antipode S :A!A, and a counit ε :A!# satisfying appropriate axioms; even

if non-commutative, such an algebra can possibly be regarded as an algebra of

(virtual) functions on a ‘quantum group’.

This fanciful way of thinking is most mathematically fruitful when the non-

commutative ‘algebra of functions ’ retains some similarity to a genuine (com-

mutative) Hopf algebra of functions /(G). It should be a deformation of /(G) in the

sense that it depends on a continuous parameter q and becomes equal to /(G) for one

value of this parameter ; and it should stay close to commutativity in the sense that

there should be some manageable general relation between xy and yx. In quantum

group theory this replacement for commutativity is provided by a further element

of structure, the uni�ersal R-matrix, which makes our ‘algebra of functions ’ into a

coquasitriangular Hopf algebra.

There is enough structure here to provide scope for a wide range of approaches

and emphases. The concept of a Hopf algebra A has an in-built duality, it being
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possible to regard the comultiplication as a multiplication on an appropriate dual of

A, which then becomes a quasitriangular Hopf algebra. If we are deforming the

algebra of functions on a Lie group G, then this dual algebra is a deformation of the

universal enveloping algebra of the Lie algebra of G. This is the initial object of

attention in the book by Klimyk and Schmu$ dgen. They prepare the way with a

chapter on Hopf algebras and a chapter on q-calculus, which is an essential ingredient

in the construction of quantum groups. They then devote the remaining hundred

pages of their Part I to a detailed study of the simplest quantum group, that based

on the classical Lie algebra MF(2). This Part I is called ‘An introduction to quantum

groups’, but anyone who reads all of it will have passed well beyond an introduction

to intimacy with this particular quantum group and some closely related ones. Its

representations and their tensor products are completely determined, with detailed

formulae for the Clebsch–Gordan coefficients and related quantities such as 6j-

coefficients. Both the deformed universal enveloping algebra and the algebra of

functions are discussed, a chapter being devoted to each, and quantum spaces appear

in the form of quantum spheres. Part I finishes with a chapter on q-oscillator algebras,

which are defined by relations inspired by those of quantum groups and which have

been popular in the physics literature.

The general theory of quantised enveloping algebras for simple Lie algebras is

presented in Part II of the book, with treatments of the (non-trivial) quantised

versions of the Weyl group, the Poincare! –Birkhoff–Witt theorem and the Harish-

Chandra homomorphism, and an account of the representation theory of quantised

enveloping algebras, including general work on Clebsch–Gordan coefficients (to

which Klimyk has himself contributed) and the result of Schmu$ dgen and Schu$ ler
that the differential calculus on a quantised version of a classical group is not a

deformation of the classical calculus; the tangent space inevitably has a different

dimension from the classical one.

Klimyk and Schmu$ dgen are kind to their readers. Proofs are given in full, and

there are helpful explanations of the basic concepts (like the elaboration of the

definition of h-adic topology on page 25). It is unfortunate that there is a lapse on the

very first page (where the last equation contains ∆C id, although ∆ has not been

defined in terms of tensor products), but in the rest of the book errors are rare.

Occasionally explicitness displaces elegance (for example, in the Wigner–Eckart

theorem, where the authors could have made things easier by remembering that they

were in a Hopf algebra), and if index notation is to be used, then it is a pity not to take

advantage of its full power by placing indices correctly ; but the book has the virtue

of comprehensiveness in its chosen range of topics. It is easy to dip into and use as

a reference book, and there is a good (though not totally complete) index of symbols

which aids this. The bibliography is irritatingly split into two lists, one for books and

one for papers, though the labels do not tell us which list to look in, and the items

are not sorted alphabetically by label.

Comprehensive though this selection of topics may seem, Korogodski and

Soibelman show us a bookful of material, just as close to the foundations of the

subject, for which Klimyk and Schmu$ dgen have no room. They adopt Drinfeld’s

approach to quantum groups, which shows that there is more justification for the use

of the word ‘quantum’ than is apparent in the other book. In quantum mechanics,

the dynamical variables of classical mechanics (functions on phase space) are

replaced by non-commuting quantities depending on Planck’s constant h, not in any

old way, but so as to maintain a relation between the Poisson bracket of the functions
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on phase space and the first-order (in h) terms in the quantum commutator. There is

a similar relation in quantum group theory: if the parameter q in a quantised

enveloping algebra U
q
(A) is written as q¯ eh, so that the classical enveloping algebra

is described by h¯ 0, and if the cocommutator (dual to the commutator in the

quantised algebra of functions) is expanded in powers of h, then the first-order term

(called the ‘classical r-matrix’) gives an extra structure on the Lie algebra of G (a

cobracket δ :A! A) making it into a Lie bialgebra. The existence of an R-matrix in

the quantised enveloping algebra is detected by a property of the Lie bialgebra which

is also called quasitriangularity. A Lie bialgebra structure yields a symplectic

structure on the classical Lie group G which is compatible with the group operation,

making G into a Poisson Lie group.

Korogodski and Soibelman devote the first of their four chapters to the study

of Poisson Lie groups and Lie bialgebras, including a proof of the celebrated

Belavin–Drinfeld theorem which classifies (most) quasitriangular Lie bialgebra

structures on finite-dimensional complex simple Lie algebras. They also give the

complete description of the symplectic leaves (the maximal symplectic submanifolds)

of the Poisson Lie groups corresponding to the Drinfeld–Jimbo quantised enveloping

algebras.

Quantum groups (in the form of quantised enveloping algebras) make their

appearance only in the second chapter, where they are regarded as being obtained

from a Lie bialgebra by a process of quantisation. It is only recently that Etingof and

Kazhdan have settled the question of whether a given Lie bialgebra can be quantised

and to what extent the quantisation is unique; the result is given in this chapter,

though it would be out of the question to present the proof. The chapter continues

with succinct treatments of quasitriangular Hopf algebras, the centre and the

representation theory of quantised universal algebras. Following the same order as

Klimyk and Schmu$ dgen, Korogodski and Soibelman proceed to discuss quantised

algebras of functions ; but the two discussions are quite different. The former authors

dealt with representations of such algebras only in the form of corepresentations

which are roughly the same as the representations of their duals, the quantised

enveloping algebras. This is to ignore the fact that the quantised algebras of functions

are themselves non-commutative algebras with an interesting representation theory,

which is fully described by Korogodski and Soibelman (who is responsible for the

ideas and much of their implementation). The main result is that the irreducible

*-representations of the quantised algebra of functions on a compact simple Lie group

are in one-to-one correspondence with the symplectic leaves of the appropriate

Poisson Lie group.

The final chapter, now intersecting once again with the book of Klimyk and

Schmu$ dgen, contains the construction of the quantum Weyl group which makes it

possible to define all the root vectors in a quantised enveloping algebra (initially only

the simple roots are defined), and hence to formulate the Poincare! –Birkhoff–Witt

theorem; they are also needed for the formula for the universal R-matrix which was

discovered by Soibelman.

This book is not an easy read. Korogodski and Soibelman leave the reader to do

a lot of the work, and their dismissive remarks that this work is easy are not always

to be trusted. (They characterise as ‘straightforward’ a number of computations

which either have quite sharp corners or would be better done in a less than

straightforward way: for example, the proof of compatibility of the quantised Serre

relations with the Drinfeld–Jimbo coproduct, which takes a full page in Klimyk and
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Schmu$ dgen even after they have prepared the ground of q-analysis.) Some of their

proofs appear to me not to prove anything, which may mean that I do not meet their

expectations of their readers but in at least one case is because they are attempting

to prove an incorrect statement. There is no index.

The University of York A. S

p-AUTOMORPHISMS OF FINITE p-GROUPS

(London Mathematical Society Lecture Note Series 246)

By E. I. K : 204 pp., £24.95 (US$39.95, LMS Members’ price £18.70),

 0 521 59717 X (Cambridge University Press, 1998).

This is a beautiful book. It may attract a smaller audience than it deserves on

account of its rather specialised title. Those who jib at having mathematical symbols

in the title of a book will indeed read it as ‘Automorphisms of prime-power order of

groups of prime-power order, the primes being the same’. So the first question to be

answered is ‘why should we care? ’. There are two answers. The first is that this book

is a delightful introduction to very general techniques in group theory, such as the

use of Lie algebras, and to central ideas, such as powerful groups, in the theory of

p-groups. But more important than its use as an introduction to techniques are the

results that are proved. We should be concerned with p-automorphisms of p-groups

because they give an insight into the structure of arbitrary p-groups.

The general theme of this book is Khukhro’s deep result that a p-group P that

possesses an automorphism that is of order a small power of p, and whose centraliser

in P is small, has a normal subgroup of small index and small derived length.

Most sensible classification theorems of p-groups make precise, in some way,

the fact that all p-groups look like the dihedral groups of order 2n. Note that these

dihedral groups have an automorphism of order 2, fixing only two elements, and a

normal subgroup of small index (namely 2) of small derived length (namely 1).

Of course, every p-group of order greater than p does have an automorphism of

prime-power order, so one really does have to worry about the meaning here of

‘small ’. The precise result is as follows.

T 12.15. If a finite p-group P admits an automorphism of order di�iding

pn that fixes at most pm elements of P, then P contains a characteristic subgroup of

(p,m, n)-bounded index which is soluble of (p, n)-bounded deri�ed length ; in fact of

deri�ed length at most 2k(pn), where k is Kreknin’s function.

Kreknin’s function derives from a similar result for Lie algebras; it is known that

k(a)% 2a−", so the bounds given are rather extravagant.

This result should be compared with S. McKay’s theorem, proved independently

by I. Kiming, which is as follows.

T 13.1. If a finite p-group P admits an automorphism of order di�iding pn

that fixes exactly p elements of P, then P has a subgroup P
"

of (p, n)-bounded index

which is nilpotent of class 2 (abelian if p¯ 2).
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Not only is this result (for which a new proof is given) far stronger than suggested

by Theorem 12.15, but very realistic bounds for the index of P
"

in P can be given,

and more importantly a very good description of the groups in question can also be

given. So we may regard the groups coming under McKay’s theorem as being

well understood. However, McKay’s theorem does not apply to all p-groups, whereas

Khukhro’s theorem, for some m and n, does always apply.

Now McKay’s theorem was conceived as part of the successful coclass project,

which does claim to give a description of all p-groups; that is, it describes all p-groups

of coclass r modulo a normal subgroup of order bounded by an explicit function of

p and r. A most beautiful proof of the coclass conjectures, with quite realistic bounds,

is due to Shalev [1]. For a proof that exhibits the structure of the p-groups in question

(modulo the small normal subgroup) see [2].

The unavoidable problem with the coclass theory is that the small normal

subgroup may in fact be very large, even swallowing up the whole of P, unless the

coclass of P is small enough. So the question arises of whether there is any hope that

a better structure theorem can be produced based on Khukhro’s theorem, or perhaps

on the following theorem of Medvedev.

T 14.1. If a finite p-group P admits an automorphism of order p that fixes

at most pm elements of P, then P has a subgroup P
"

of (p,m)-bounded index which is

nilpotent of m-bounded class.

Medvedev’s theorem bounds the class of P
"

in terms of m, whereas Khukhro’s

bound to the derived length of the subgroup of small index is in terms of p and n. This

is an unexpected feature of Khukhro’s theorem; having a p-automorphism of small

order says nothing about a p-group; it is having an automorphism with a small

centraliser that should give strong information.

Of course, Medvedev’s theorem applies to all p-groups of order greater than p

for some value of m ; but, unlike McKay’s theorem, it does not come with an

understanding of the groups in question modulo small edge effects of (p,m)-bounded

size.

The question then arises of whether the results in this book may lead to a much

closer understanding of p-groups. For this discussion it is convenient to consider not

a p-group P, and an automorphism of P of order dividing pn and fixing at most pm

points, but rather the class '(p,m, n) of p-groups G which are split extensions of a

specified normal subgroup P by a cyclic group of order dividing pn that centralises at

most pm elements of P. These concepts are almost equivalent. Now an easy result

(Lemma 2.12) shows that '(p,m, n) is closed under taking normal subgroups, in the

sense that if G with specified normal subgroup P lies in '(p,m, n), then so does G}N

with specified normal subgroup P}N, whenever N is a normal subgroup of G

contained in P.

The next step is to construct a graph 4(p,m, n) whose vertices are the groups in

'(p,m, n) (up to isomorphism preserving the specified subgroup), where a group G

with (non-trivial) specified subgroup P is joined by an edge to the group G}N, with

specified subgroup P}N, where N is the intersection of P with the centre of G. To

understand '(p,m, n), one could try to understand 4(p,m, n) ; and the first step

would be to understand the infinite chains in this graph. Such an infinite chain

corresponds to a pro-p-group, namely the inverse limit of the groups in the chain.
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Now Khukhro’s theorem states that these pro-p-groups are soluble ; and this is a

powerful condition on a pro-p-group. It follows at once that every just-infinite pro-

p-group arising in this way is abelian-by-finite, and hence is an extension of a lattice

over the p-adic integers by a finite p-group acting irreducibly.

Whether this approach will lead to any further understanding of the groups in

question is not clear to me. If so, there is much work to be done before we get to this

point. It is a feature of this book that it is almost free of examples. The only specific

groups that play a major role are free groups and relatively free groups. The reason

is that while any p-group affords an example, no one seems to know how to produce

a sequence of examples (or a pro-p-group as above) that would give an interesting

lower bound to the functions appearing in Khukhro’s theorem or Medvedev’s

theorem.

The book has been written in a most readable style. It is entirely suited to anyone

wishing to learn group theory at a graduate level. Thus the author not only begins

at the beginning, but he does not make excessive assumptions of mathematical

sophistication. For example, he points out that it is surprising that a non-abelian free

group is residually soluble although it maps onto every finite simple group. He has

also gone to the trouble of drawing beautiful pictures in TEX. So if, unfortunately,

you are not interested in group theory, you should still buy a copy of this book and

try to write a TEX program that will produce an animated version of the two steam

trains colliding on page 96.
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(Birkha$ user, 1999).

Since non-abelian group theorists made progress by studying ‘abelian-like’

conditions, such as nilpotency and solubility, it is not surprising that a substantial
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part of semigroup theory has been concerned with ‘group-like’ conditions. In

particular, there is a substantial theory concerning semigroups S with an extra unary

operation x*x−" satisfying the laws xx−"x¯x, (x−")−"¯x. Extra laws can be

adjoined to define varieties, the most important being given in the following table.

Groups

xx−"¯ yy−"

Completely regular semigroups

x−"x¯xx−"

Inverse semigroups

xx−"yy−"¯ yy−"xx−"

It is clear from the definitions that the class CR of completely regular semigroups and

the class Inv of inverse semigroups both contain the class of groups. While the

defining law of CR seems more natural than that of Inv, it is Inv that has hitherto

received more attention, since inverse semigroups have a natural representation as

partial symmetries.

The book by Petrich and Reilly is a natural sequel to Petrich’s encyclopædic

account [3] of inverse semigroups, published fifteen years ago. Although the study of

CR goes back to the ‘dawn’ of semigroup theory, in Clifford’s seminal article [1], an

intensive and thorough study is much more recent, and aficionados of this area will

be delighted that such a thorough and readable account is now available. Whether

CR will ever be as important as Inv remains to be seen, but this book will make the

subject accessible to potential users in a way that it has not been before.

Lawson’s book is quite different in spirit. While it does develop certain areas

of ‘pure’ inverse semigroup theory, the whole emphasis of the book is on the

applicability of the notion, on the ‘naturalness ’ of the inverse semigroup concept as

a means of studying local symmetries. He traces the origin of the inverse semigroup

concept back to the ‘pseudogroups’ of Veblen and Whitehead [4], who realised that

the Erlanger-Programm, with its vision of groups as the key to all geometry, could

never be the whole answer, and this historical observation colours the whole

approach of the book. Semigroupers have too often followed the internal logic of

their subject, with little attention to actual and potential connections with other areas

of mathematics. Lawson’s persuasive account may persuade them to take a broader

view, and may also convince other mathematicians that they might need to know

some semigroup theory.

Paterson, whose main interest is in C*-algebras and operator theory, is already

convinced, and at an early stage we are introduced to a theorem from [2] to the

effect that a semigroup is an inverse semigroup if and only if it is isomorphic to a

*-semigroup of partial isometries on a Hilbert space. The emphasis of the book is,

however, on groupoids rather than inverse semigroups, where a groupoid is defined

as a set G with a partial binary operation (a, b)* ab and an everywhere defined unary

operation a* a−" satisfying the following.

(1) (a−")−"¯ a for every a in G.

(2) If ab, bc are defined, then so are (ab)c and a(bc), and (ab)c¯ a(bc).

(3) The product bb−" is defined for all b, and if ab is defined, then a−"(ab)¯ b and

(ab)b−"¯ a.

This notion is not unrelated to the notion of an inverse semigroup: members of a

special class of groupoids, called inducti�e, can be made into inverse semigroups by

the simple expedient of adjoining a zero and defining all products to be 0 if not

already defined.

Paterson gives a readable account of the contribution of these ideas in operator

algebras. The contents of the book are perhaps best described by quoting from the

back cover.
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The representation theories of locally compact and r-discrete groupoids are

developed in the third chapter, and it is shown that the C*-algebras of r-discrete

groupoids are the covariance C*-algebras for inverse semigroup actions on locally

compact Hausdorff spaces. A final chapter associates a uni�ersal r-discrete

groupoid with any inverse semigroup.
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Cohomological methods have revolutionised the theory of C*-algebras in recent

decades. K-theory has played a particularly prominent role, but one of the earliest

significant appearances of cohomology in a C*-algebraic context is to be found in

work of Dixmier and Douady [2] from 1963 on the classification of continuous-trace

C*-algebras using an invariant based on C3 ech cohomology.

The continuous-trace C*-algebras possess a structure sufficiently tractable to

make them amenable to classification, yet rich enough to display a range of

interesting properties. A trivial example of a continuous-trace C*-algebra is the

algebra C
!
(X,K(H )) of continuous functions from a locally compact Hausdorff space

X to the algebra of compact operators K(H ) on a separable Hilbert space. More

general examples arise as section algebras of certain continuous bundles of C*-

algebras over such X, where the fibre at each point x is the algebra K(H
x
) for some

Hilbert space H
x

whose dimension depends on x. (The precise definition, though

rather technical, implies that a continuous-trace C*-algebra over X has a natural

C
!
(X )-module structure.)

In essence, Dixmier and Douady showed that for a general separable continuous-

trace C*-algebra, the obstruction to being trivial is purely topological. They dis-

covered a map δ from the continuous-trace algebras over a given locally compact

Hausdorff space X to the third C3 ech cohomology group H $(X ;:) which is surjective

if X is paracompact. Moreover, if A and B satisfy certain separability assumptions,

then δ(A)¯ δ(B) if and only if A and B are C
!
(X )-stably isomorphic, that is, the C*-

tensor products ACK(F #(.)) and BCK(F #(.)) are C
!
(X )-isomorphic. An account of

this work was given by Dixmier in his classical treatise [1] on C*-algebras.

The authors’ primary aim in the book under review is to give a self-contained

account of the Dixmier–Douady theory in a formulation which takes account of

subsequent developments in some other areas. They give a sharper form of the main

classification theorem, and present related later results, such as a description, due to
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Philips and Raeburn, of the automorphisms of a continuous-trace C*-algebra over X

in terms of elements of the group H #(X ;:). Central to their statement and proof of

the classification results is the theory of Morita equivalence of C*-algebras, which was

developed by Rieffel in the 1970s as a generalisation, in terms of C*-algebras, of

Mackey’s theory of induced representations of locally compact groups.

C*-algebras A and B are Morita equi�alent if there exists a C*-algebra C

containing full projections p and q such that p­q¯ 1, AF pCp and BF qCq. (‘Full ’

means that the closed two-sided ideal of C generated by the projection is C itself.) The

significance of this for the Dixmier–Douady theory is that by a result of Brown,

Green and Rieffel, stable equivalence and Morita equivalence coincide for separable

C*-algebras. Morita equivalence, however, possesses an important functoriality

property which stable equivalence does not.

Although the above definition of Morita equivalence is succinct, it is not always

easy to work with in practice. It is difficult, for example, to show directly that the

relation so defined is transitive. To prove this requires a more fundamental, though

technically more complex, definition involving certain two-sided Hilbert modules,

known as imprimiti�ity or equi�alence bimodules. One of the particular strengths of

this book is the inclusion of a detailed account of the theory of imprimitivity

bimodules, which covers Rieffel’s imprimitivity theorem and its connection with

Mackey’s imprimitivity theorem for groups. Although other books on Hilbert

modules have appeared recently, their emphasis has been different, and they have not

covered this difficult, but important topic. The account here collects together and

clarifies many results on Morita equivalence which cannot otherwise be found in one

place.

The first two-thirds of the book, some seven chapters, forms the body of the work.

There are successive chapters on: the compact operators ; Hilbert C*-modules ;

Morita equivalence; and sheaves, cohomology and bundles. Chapter 5 contains the

main classification results. Further developments and discussion are given in

Chapters 6 and 7, the main theme of which is group actions on continuous-trace C*-

algebras. The final third of the book consists of a number of appendices on a wide

range of topics which, though not all breaking new ground, form a useful reference

compendium. Topics covered include the spectrum of a C*-algebra, tensor products

of C*-algebras, and Rieffel’s imprimitivity theorem and its application to group

representations. The inclusion of this material helps to make the main part of the text

accessible to anyone acquainted with the rudiments of C*-algebra theory, as given in,

say, the first few chapters of [1].

I hope that I have conveyed that what at first sight seems a somewhat specialised

monograph, is in fact of much more general scope. The exposition is stimulating and

well written, and should be regarded as essential reading for any research student in

C*-algebras. Indeed, the book has a strong claim to be on the shelves of anybody,

student or veteran, working in the subject.
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The study of Riemannian manifolds in which all sectional curvatures are non-

positive has flourished in recent decades. Nonpositive sectional curvature proves

to be an excellent condition under which to pursue the interplay between curvature

and global properties of the manifold. There are many interesting examples of

manifolds with nonpositive curvature, the best known and most important of which

are locally symmetric spaces, that is, quotients of symmetric spaces. The symmetric

spaces that have nonpositive curvature are the Euclidean spaces and the spaces of

noncompact type. There is also a variety of constructions giving metrics of non-

positive curvature on manifolds that do not admit locally symmetric metrics. On

the other hand, the restriction on the sign of the sectional curvature imposes strong

restrictions on the manifold. For example, all homotopy groups of the manifold

except for the fundamental group must vanish. In contrast, the analogous condition

on Ricci curvature imposes no restrictions except on surfaces ; it was proved by

Lohkamp [6] that any differentiable manifold with dimension at least 3 admits a

metric with all Ricci curvatures negative.

The book by Eberlein provides a comprehensive introduction to manifolds with

nonpositive curvature, accessible to a reader whose background includes a first

graduate level course in differential geometry and the rudiments of Lie groups. The

book begins with a thorough survey of the foundations. The reader is referred to

references for some proofs, but the treatment is largely self-contained. The con-

sequences of nonpositive curvature are usually easiest to express in the case of a

simply connected manifold. One studies a general manifold M of nonpositive

curvature by lifting the metric to the universal cover Mh and viewing M as the quotient

of Mh by the fundamental group, which acts on Mh by isometries. Nonpositive

curvature implies that geometrically interesting functions on Mh , such as the distance

from any given point, are convex. It follows easily that Mh must be diffeomorphic to

a ball. The picture of a manifold with a metric of constant negative curvature as

the quotient of the Poincare! disc is typical. For any manifold M with nonpositive

curvature, it is possible to define a boundary sphere Mh (¢) that is analogous to the

boundary sphere of the Poincare! disc. The action of the fundamental group on Mh
extends to an action by homeomorphisms on Mh eMh (¢). Much can be learned by

studying the action of the fundamental group on Mh (¢).

The sphere at infinity of a symmetric space (of noncompact type) with rank

greater than 1 has an especially rich structure. The rank of any manifold M with

nonpositive curvature is the least integer k such that every geodesic of Mh lies in a

submanifold, called a k-flat, that is a totally geodesically isometrically embedded copy

of the Euclidean space 2k. For a symmetric space, this geometric definition agrees

with the usual algebraic definition as the dimension of a maximal abelian subalgebra



  509

of the Lie algebra of the isometry group. When the flats have dimension at least 2,

Mh (¢) has a simplicial complex structure in which the boundary of each flat is a finite

union of simplices. This structure is known as a Tits building; the division of the

boundary of the flat corresponds to the partition of the maximal abelian subalgebra

into Weyl chambers. The structure can also be described using the Tits metric on

the sphere at infinity, which was introduced by Gromov. Eberlein provides a wealth

of detail about the symmetric spaces of noncompact type and the associated Tits

structures ; close to half of the book is devoted to these matters. There is no

comparable treatment in the literature. Helgason’s book [5], although it is an

invaluable resource for the theory of symmetric spaces in general, is able to devote

only about 30 pages to the special features of the spaces of noncompact type.

Eberlein’s exposition meets a long-felt need.

The later parts of Eberlein’s book cover many of the results from the last 30 years.

Two themes predominate. The first is the close relationship between the geometry and

the fundamental group of the manifold. A typical result in this direction is the Flat

Torus Theorem, which says that the existence of an abelian subgroup of rank at least

2 in the fundamental group of a compact manifold with nonpositive curvature implies

that the manifold contains a totally geodesic and isometrically immersed flat torus.

The second theme is rigidity. The general idea here is that apparently mild

hypotheses are actually strong enough to force the manifold to be locally isometric

to one of a restricted class of model spaces. The prototypical result is the celebrated

Mostow rigidity theorem [7].

Suppose that M is a compact locally symmetric space that is irreducible (in the sense

that no finite co�ering splits as a product) and is not a quotient of the hyperbolic plane.

Let M « be a locally symmetric space whose fundamental group is isomorphic to that

of M. Then M « is isometric to M up to a scaling factor.

Mostow’s original theorem has been extended in a number of directions. Prasad

and Margulis showed that it is enough to assume that M has finite volume, and

Margulis generalized the result to his super-rigidity theorem. The higher-rank rigidity

theorem extends Mostow’s result in a different direction. It states that if M is a finite-

volume manifold with nonpositive curvature whose rank, in the sense defined above,

is at least 2, then Mh either splits as the Riemannian product or is a symmetric space

of noncompact type. This result also holds if M is homogeneous. Eberlein gives a

simplified proof of Mostow’s theorem along the lines of Mostow’s original proof, and

sketches a proof of higher-rank rigidity. The proofs are based on the Tits structure

discussed above; in the case of higher-rank rigidity, one must first prove the existence

of flats and the Tits structure. A striking and quite different proof of Mostow’s

theorem can be found in [3].

Still another approach to Mostow’s theorem is the subject of Jost’s book:

harmonic mapping methods can be used to prove the Mostow rigidity and Margulis

super-rigidity theorems. This approach to Mostow rigidity was developed in a series

of papers by Jost and Yau. As Jost explains, the rigidity theorems follow rather easily

from results about harmonic mappings, the simplest form of which is as follows.

A harmonic map of a compact locally symmetric space with nonpositi�e cur�ature

into a manifold with nonpositi�e cur�ature operator must be totally geodesic.
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This is a beautiful result in its own right, which is implicit in Jost’s account,

although (surprisingly to me) it is not explicitly formulated in the book. Jost briefly

and efficiently develops the necessary geometric and analytic background; many

proofs are sketched rather than presented in detail. His focus never strays far from

his central theme. The result is an energetic and pleasantly quick introduction to a

wonderful part of modern geometry.

The two books cover several of the highlights of recent work on manifolds of

nonpositive curvature, but is not possible for them to contain the whole subject. The

survey papers [4] and [3] are suggested to the reader interested in other perspectives.

Both books are welcome additions to the literature. They belong in any serious

library, and on the shelf of a geometer interested in manifolds with nonpositive

curvature.
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(Cambridge University Press, 1997).

In string theory, perturbative computations require the use of important tools

from the theory of Riemann surfaces, and algebraic and differential topology.

Although various review articles exist, scattered in the literature, on these topics, this

is the first book with a comprehensive and pedagogical exposition of the many

definitions and main theorems required in understanding and evaluating string

perturbative amplitudes.

Among the topics covered, one can find the theory of harmonic maps, the ζ-

function, evaluation of functional determinants, the study of Gaussian functional

integrals, the theory of determinant bundles, Teichmu$ ller spaces, index theory for

families of elliptic operators, and so on.

The presentation is careful and pedagogical, and the authors have been very

careful in making sure that the reader needs to be acquainted with only the basic

rudiments of string theory. With this necessary prerequisite, the reader does not need
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to go and look in any other sources to understand and follow the definitions and

theorems explained in the book.

The book is clear and elegant, and it represents a very valuable addition to the

literature. It is ideal for graduate students in both physics and mathematics, or for

those professionals who are interested in understanding some of the mathematical

intricacies of string theory.

CERN L A-G
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By M-A K, A M, M R

and J-P T : 593 pp., US$69.00,  0 8218 0904 0

(American Mathematical Society, 1998).

An involution is an anti-automorphism of order two of an algebra. For example,

let K be a field, and let b :V¬V!K be a non-singular symmetric or skew-symmetric

K-bilinear form. Then such an involution, σ
b
:End

K
(V )!End

K
(V ), is given by

sending f to its adjoint with respect to b.

This volume is a compendious study of algebras with involution, a subject with

many facets which becomes particularly interesting for central simple algebras. In the

1930s, A. A. Albert began the systematic study of involutions on central simple

algebras in order to classify Riemann algebras, which are subalgebras of M
#g

(Q)

associated to the study of correspondences on a Riemann surface of genus g. Inter

alia, the authors give a new proof of Albert’s classification.

Throughout the book, the relation between algebras and groups recurs continually

in various manifestations. For example, as observed by A. Weil, the connected

components of automorphism groups of central simple algebras with involution are

generally classical algebraic simple adjoint groups. In fact, in their final chapter, the

authors complete Weil’s classification programme for outer forms of D
%
by means of

their notion of a trialitarian algebra. Recall that triality is a topic of super-gravitas for

physicists working in the super-space of things like super-gravity, and the final

chapter ought to prove very interesting to the super-readers who make it that far !

This is not meant to imply that the volume is hard-going; far from it. Despite

the authors’ protestations to the contrary, the book is excellently written, and the

chapters on algebraic groups and Galois cohomology alone would make the book an

ideal read for aspiring postgraduate students of an algebraic persuasion. In addition,

there is plenty of material to enlighten even those of us who already know something

about the subject. For example, the authors study trace forms on algebras without the

use of Galois descent in a manner which was new to me. Also, they do not discount

the case when the characteristic is equal to two until the last possible moment, which

makes this volume almost unique among books on hermitian forms.

All in all, this book recommends itself to anyone who wants a thorough reference

source, complete with an ample selection of enlightening exercises and historical

notes, which deals with exceptional Jordan algebras, Clifford algebras and modules,

Tits’ algebras and algebraic groups in a modern manner. The authors derive
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considerable inspiration from the classical papers of Jacques Tits and, in recompense,

Tits has donated a very complimentary preface.

University of Southampton V S
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