
Chapter 1

Lattices and the Space of Lattices

We recall that a (continuous) action of a (topological) group G on a (topo-
logical) space X is a (continuous) map G × X → X , written (g, x) 7→ g.x,
with the property that g.(h.x) = (gh).x and e.x = x for all g, h ∈ G
and x ∈ X , where e is the identity element of G. Furthermore, for any x ∈ X
the set G.x = {g.x | g ∈ G} is called the G-orbit of x.

One of our interests in this volume is to study the relationship between
orbits, orbit closures and arithmetic properties of groups.

In this chapter we discuss discrete subgroups Γ of a locally compact σ-
compact metric group G, the quotient space X = Γ\G, which we will refer
to as a locally homogeneous space, and the question of whether or not there
is a G-invariant Borel probability measure on X . We finish by studying the
central example Xd = SLd(Z)\ SLd(R). In other words, we define the spaces
(and the canonical measures) on which (or with respect to which) we will
later discuss dynamical and arithmetic properties.

1.1 Discrete Subgroups and Lattices

1.1.1 Metric, Topological, and Measurable Structure

In this section, we will always assume that G is a locally compact σ-compact
metric group endowed with a left-invariant metric dG giving rise to the topol-
ogy of G. For example, dG could be the metric derived from a Riemannian
metric on a connected Lie group G, but in fact any topological group with
a countable basis for the topology has such a metric (see Lemma A.2). We
note that the left-invariance of the metric implies that

dG(g, I) = dG(g
−1g, g−1) = dG(g

−1, e)
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8 1 Lattices and the Space of Lattices

for any g ∈ G. Write BGr = BGr (e) for the metric open ball of radius r
around the identity e ∈ G. If Γ is a discrete subgroup (which means that e
is an isolated point of Γ ), then there is an induced metric on the quotient
space X = Γ\G defined by

dX(Γg1, Γ g2) = inf
γ1,γ2∈Γ

dG(γ1g1, γ2g2) = inf
γ∈Γ

dG(γg1, g2) (1.1)

for any Γg1, Γ g2 ∈ X , where both infima are minima if the metric is proper†.
As usual in geometry and number theory, we consider Γ\G instead of G/Γ ;
the latter is also often considered in dynamics. The two set-ups are equivalent
via the bijection sending Γg ∈ Γ\G to g−1Γ ∈ G/Γ .

We note that dX(·, ·) indeed defines a metric on X , and that we will always
use the topology induced by this metric. In particular, a sequence Γgn ∈ X
converges to Γg as n→∞ if and only if there exists a sequence γn ∈ Γ such
that γngn → g as n→∞.

Another consequence of the definition of this metric is that X and G are
locally isometric in the following sense.

Lemma 1.1 (Injectivity radius). Let Γ be a discrete subgroup in G
(equipped with a left-invariant metric dG as above). For any compact sub-
set K ⊆ X = Γ\G there exists some r = r(K) > 0, called an injectivity
radius on K, with the property that for any x0 ∈ K the map

BGr ∋ g 7−→ x0g ∈ BXr (x0)

is an isometry between BGr and BXr (x0). If K = {x0} where x0 = Γh for
some h ∈ G, then

r = 1
4 infγ∈Γr{I} dG(h

−1γh, e) (1.2)

has this property.

Proof. We first show this locally, for K = {x0} where x0 = Γh. Let r be
as in (1.2), which is positive since h−1Γh is also a discrete subgroup. Then,
for g1, g2 ∈ BGr ,

dX(Γhg1, Γhg2) = inf
γ∈Γ

dG(hg1, γhg2) = inf
γ∈Γ

dG(g1, h
−1γhg2).

We wish to show that the infimum is achieved for γ = e. Suppose that γ ∈ Γ
has

dG(g1, h
−1γhg2) 6 dG(g1, g2) < 2r

then
dG(h

−1γhg2, e) 6 dG(h
−1γhg2, g1) + dG(g1, e) < 3r

since g1 ∈ BGr , and similarly

† A metric is proper if any ball of finite radius has a compact closure.
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1.1 Discrete Subgroups and Lattices 9

dG(h
−1γh, e) = dG(e, h

−1γ−1h)

6 dG(e, g2) + dG(g2, h
−1γ−1h)

6 r + dG(h
−1γhg2, e) < 4r.

This implies that γ = e by definition of r.
The lemma now follows by compactness of K. For x0 and r as above it is

easily checked that any y ∈ BXr/2(x0) satisfies the first claim of the proposition

with r replaced by r/2. Hence K can be covered by balls so that on each ball
there is a uniform injectivity radius. Now take a finite subcover and the
minimum of the associated injectivity radii. �

Notice that given an injectivity radius, any smaller number will also be an
injectivity radius. We define the maximal injectivity radius rx0 at x0 ∈ X as
the supremum of the possible injectivity radii for the set K = {x0} as in the
lemma (see also Exercise 1.1.3). If x0 = Γh then

1
4 inf
γ∈Γ

dG(h
−1γh, e) 6 rx0 6 inf

γ∈Γ
dG(h

−1γh, e) (1.3)

by Lemma 1.1.
We also define the natural quotient map

πX : G −→ X = Γ\G
g 7−→ Γg,

and note that πX is locally an isometry by left invariance of the metric and
Lemma 1.1. ClearlyX = Γ\G is a homogeneous space in the sense of algebra,
but due to this local isometric property we will call X a locally homogeneous
space.

One (rather abstract) way to understand the quotient spaceX = Γ\Gmay
be to consider a subset F ⊆ G for which the projection πX , when restricted
to F , is a bijection. This motivates the following definition.

Definition 1.2 (Fundamental domain). Let Γ 6 G be a discrete sub-
group. A fundamental domain F ⊆ G is a measurable† set with the property
that

G =
⊔

γ∈Γ
γF,

(where
⊔

denotes a disjoint union). Equivalently, πX |F : F → Γ\G is a bi-
jection. A measurable set B ⊆ G will be called injective (for Γ ) if πX |B is
an injective map, and surjective (for Γ ) if πX(B) = Γ\G.

Example 1.3. The set [0, 1)d ⊆ Rd is a fundamental domain for the discrete
subgroup Γ = Zd 6 Rd = G.

† Unless indicated otherwise, measurable always means Borel-measurable.
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10 1 Lattices and the Space of Lattices

We will see more examples later, but the existence of a fundamental do-
main is a general property.

Lemma 1.4 (Existence of fundamental domains). If Γ is a discrete
subgroup of G and Binj ⊆ Bsurj ⊆ G are injective (resp. surjective) sets,
then there exists a fundamental domain F with Binj ⊆ F ⊆ Bsurj. More-
over, πX |F : F → X = Γ\G is a bi-measurable† bijection for any fundamental
domain F ⊆ G.

Proof. Notice first that dX(πX(g1), πX(g2)) 6 dG(g1, g2) for all g1, g2 ∈ G.
Therefore, πX is continuous (and hence measurable). Using the assumption
that G is σ-compact and Lemma 1.1, we can find a sequence of sets (Bn)
with Bn = gnB

G
rn for n > 1 such that πX |Bn is an isometry, and G =⋃∞

n=1Bn. It follows that for any Borel set B ⊆ G the image πX(B ∩ Bn) is
measurable for all n > 1, and so πX(B) is measurable. This implies the final
claim of the lemma.

Now let Binj ⊆ Bsurj ⊆ G be as in the lemma. Define inductively the
following measurable subsets of G:

F0 = Binj,

F1 = Bsurj ∩B1rπ−1
X

(
πX(F0)

)
,

F2 = Bsurj ∩B2rπ−1
X

(
πX(F0 ∪ F1)

)
,

and so on. Then F =
⊔∞
n=0 Fn satisfies all the claims of the lemma. Clearly F

is measurable and Binj ⊆ F ⊆ Bsurj. If now g ∈ G is arbitrary we need to show
that (Γg)∩F consists of a single element. If Γg = π−1

X

(
πX(g)

)
intersects Binj

nontrivially, then the intersection is a singleton by the assumption on Binj

and Fn will be disjoint to Γg for all n > 1 by construction. If Γg intersectsBinj

trivially, then we choose n > 1 minimal such that Γg intersects Bsurj ∩ Bn.
By the properties of Bn this intersection is again a singleton, by minimality
of n the point in the intersection also belongs to Fn, and Γg will intersect Fk
trivially for k > n. Hence in all cases we conclude that (Γg)∩F is a singleton,
or equivalently F is a fundamental domain. �

In some special cases, for example Zd < Rd, we will be able to give very
concrete fundamental domains with better properties, where in particular the
boundary of the fundamental domain consists of lower-dimensional objects.
In those situations one could and should also ask about how the various
pieces of the boundary are glued together under Γ . For instance, in the case
of Zd we know that opposite sides of [0, 1)d are to be identified. Another such
situation will arise in the discussion in Section 1.2. As our goal is to consider
more general quotients where this is typically not so easily done, we will not
pursue this further.

† That is, both πX |F and its inverse are measurable maps.
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1.1 Discrete Subgroups and Lattices 11

1.1.2 Haar Measure and the Natural Action on the Quotient

Recall (see [53, Sec. 8.3] for an outline and [54, Sec. 10.1] or the monograph
of Folland [64, Sec. 2.2] for a full proof) that any metric, σ-compact, locally
compact group G has a (left) Haar measure mG which is characterized (up
to proportionality) by the properties

• mG(K) <∞ for any compact K ⊆ G;
• mG(O) > 0 for any non-empty open set O ⊆ G;
• mG(gB) = mG(B) for any g ∈ G and measurable B ⊆ G.

Similarly there also exists a right Haar measure m
(r)
G with the first two

properties and invariance under right translation instead of left translation
as above. For concrete examples it is often not so difficult to give an explicit
description of the Haar measure, see Exercise 1.1.5 and Exercise 1.1.6.

Lemma 1.5 (Independence of choice of fundamental domain). Let Γ
be a discrete subgroup of G. Any two fundamental domains for Γ in G have
the same left Haar measure. In fact, if B1, B2 ⊆ G are injective sets for Γ
with πX(B1) = πX(B2) then

† mG(B1) = mG(B2).

Alternatively we may phrase this lemma as follows. For any discrete sub-
group Γ < G, the left Haar measure mG induces a natural measure mX

on X = Γ\G such that

mX(B) = mG(π
−1
X (B) ∩ F )

where F ⊆ G is any fundamental domain for Γ in G.

Proof of Lemma 1.5. Suppose B1 and B2 are injective sets with

πX(B1) = πX(B2).

Then
B1 =

⊔

γ∈Γ
B1 ∩ (γB2)

and ⊔

γ∈Γ
γ−1 (B1 ∩ γB2) =

⊔

γ∈Γ
(γB1) ∩B2 = B2.

Note that the discrete subgroup Γ < G must be countable as G is σ-compact.
Therefore, we see that

mG(B1) =
∑

γ∈Γ
mG(B1 ∩ γB2) =

∑

γ∈Γ
mG

(
γ−1B1 ∩B2

)
= mG(B2)

† As the proof will show, we only need left-invariance of the measure under Γ . We will use
this strengthening later.
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12 1 Lattices and the Space of Lattices

as required. �

Note that G acts naturally on X = Γ\G via right multiplication

g.x = Rg(x) = xg−1

for x ∈ X and g ∈ G, and that this action satisfies

πX(g1g
−1
2 ) = πX(g1)g

−1
2 = g2.πX(g1)

for all g1, g2 ∈ G. Also note that g2.g1 = g1g
−1
2 for g1 ∈ G is the natural

action of g2 ∈ G on G on the right so that πX satisfies the equivariance
property πX(g2.g1) = g2.πX(g1). We are interested in whether X supports
a G-invariant probability measure, a property discussed in the next proposi-
tion and definition.

Proposition 1.6 (Finite volume quotients). Let Γ 6 G be a discrete
subgroup. Then the following properties are equivalent:

(a) On X = Γ\G there exists a G-invariant probability measure, that is
a probability measure mX which satisfies mX(g.B) = mX(B) for all
measurable B ⊆ X and all g in G;

(b) There is a fundamental domain F for Γ 6 G with mG(F ) <∞;
(c) There is a fundamental domain F ⊆ G which has finite right Haar mea-

sure m
(r)
G (F ) <∞ and m

(r)
G is left Γ -invariant.

If any (and hence all) of these conditions hold, then G is unimodular (that
is, the left-invariant Haar measure is also right-invariant).

Definition 1.7 (Lattices). A discrete subgroup Γ 6 G is called a lattice
if X = Γ\G supports a G-invariant probability measure. In this case we also
say that X has finite volume.

Given a fixed left Haar measure mG on G, we can define the volume of X
as mG(F ) for any fundamental domain F ⊆ G for Γ . Somewhat perversely,
we will often normalize the Haar measure mG to have mX(X) = 1. In the
proof we will use the ‘modular character’ and the ‘pigeonhole principle for
ergodic theory’.

Right multiplication on G may not preserve the left Haar measure mG.
However, there is a continuous homomorphism, the modular character,

mod: G→ R>0

with the property thatmG(Bg
−1) = mod(g)mG(B) for all measurableB ⊆ G

and g ∈ G (see [54, Sec. 10.1] for the details and references).
The modular character may also be defined using a right Haar mea-

sure m
(r)
G via m

(r)
G (gB) = mod(g)m

(r)
G (B) for all measurable B ⊆ G

and g ∈ G, and the left and right Haar measures may be normalized to

have m
(r)
G (B)=mG(B

−1) for any Borel set B⊆G, where B−1={g−1 |g∈B}.
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1.1 Discrete Subgroups and Lattices 13

The pigeonhole principle for ergodic theory is the Poincaré recurrence
theorem, which may be formulated as follows in the metric setting. We refer
to [53, Th. 2.21] and Exercise 1.1.7 for the proof.

Theorem 1.8 (Poincaré recurrence). Let X be a locally compact metric
space, and let µ be a Borel probability measure preserved by a continuous
map T : X → X. Then for µ-almost every x ∈ X there is a sequence nk →∞
with T nkx→ x as k →∞.

Proof of Proposition 1.6. We will start by proving that (a) =⇒ (c).
Suppose therefore that mX is a probability measure on X = Γ\G invariant
under the action of G on the right. Then we can define a measure µ on G via
the Riesz representation theorem by letting

∫
f dµ =

∫ ∑

π(g)=x

f(g) dmX(x) (1.4)

for any f ∈ Cc(G). Here the function defined by the sum

F : x = Γg 7−→
∑

γ∈Γ
f(γg),

on the right-hand side belongs to Cc(X) — indeed the sum vanishes if x does
not lie in π(supp f), and for every given g ∈ G (and also on any compact
neighborhood of g) the sum can be identified with a sum over a finite subset
of Γ , which implies continuity.

By invariance of µ under the action of G, we see that µ = m
(r)
G is a

right Haar measure on G (the reader may check all the characterizing prop-
erties of Haar measures from page 11, or rather their analogues for right

Haar measures). By the construction above, m
(r)
G is left-invariant under Γ .

Finally, (1.4) extends using dominated and monotone convergence to any
measurable non-negative function f on G. Applying this to f = 1F for a

fundamental domain F ⊆ G shows that m
(r)
G (F ) = 1, hence (c).

Now suppose that (c) holds, and let F be the fundamental domain. We
define a measure mX on X by

mX(B) =
1

m
(r)
G (F )

m
(r)
G

(
F ∩ π−1

X (B)
)
.

By Lemma 1.5 (and its footnote), this definition is independent of the par-
ticular fundamental domain used. Thus for g ∈ G and B ⊆ X we have
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14 1 Lattices and the Space of Lattices

mX (Bg) =
1

m
(r)
G (F )

m
(r)
G

(
F ∩ π−1

X (Bg)
)

=
1

m
(r)
G (F )

m
(r)
G

(
F ∩ π−1

X (B)g
)

=
1

m
(r)
G (Fg−1)

m
(r)
G

(
Fg−1 ∩ π−1

X (B)
)
= mX(B),

since Fg−1 ⊆ G is also a fundamental domain. This shows (a). It follows
that (a) and (c) are equivalent.

We also note that (b) =⇒ (c) rather quickly: If F is a fundamental domain
with mG(F ) < ∞ and g ∈ G, then Fg is another fundamental domain.
Therefore, by Lemma 1.5, mG(F ) = mG(Fg) = mG(F )mod(g−1), so G is
unimodular and (c) follows.

In the proof that (a) (or, equivalently, (c)) implies (b), we will again show
that G is unimodular. Note that this implies that (b) and (c) are the same
statement. Also note that by the equivalence of (a) and (c) above and the
uniqueness of Haar measures we know that the measure mX on X is derived

(up to a scalar) from the right Haar measure m
(r)
G on G restricted to a

fundamental domain F ⊆ G. Let B = BGr ⊆ G be a compact neighborhood
of the identity e in G so that r > 0 is an injectivity radius at Γe ∈ X as

in Lemma 1.1. Then mX(πX(B)) = m
(r)
G (B) by (1.4) (for µ = m

(r)
G and the

characteristic function of B). By the properties of the Haar measure we have

also mX(πX(B)) = m
(r)
G (B) > 0.

Let now g be an element of G; we wish to show that mod(g) = 1, and
only know that g preserves a finite measure mX on X (which we may assume
without loss of generality to be a probability measure). By Poincaré recur-
rence (Theorem 1.8) there exists some b ∈ B and sequences (nk), (γk), (bk)
with

nk ր∞, γk ∈ Γ, bk ∈ B
such that

bg−nk = γkbk

for all k > 1. Applying the modular character, and noticing that

mod(Γ ) = {1}

by (c), we see that

mod(g)nk =
mod(b)

mod(bk)

belongs to a compact neighborhood of 1 ∈ (0,∞) for all k > 1. It follows
that mod(g) = 1, as required. �

Proposition 1.9 (Haar measure on X = Γ\G). Let G and Γ be as in
Proposition 1.6, and suppose in addition that G is unimodular. Then the
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1.1 Discrete Subgroups and Lattices 15

Haar measure mG on G induces a locally finite G-invariant measure mX ,
also called the Haar measure on X = Γ\G, such that

∫

G

f dmG =

∫

X

∑

γ∈Γ
f(γg) dmX(Γg) (1.5)

for all f ∈ L1
mG

(G).

The formula (1.5) is sometimes referred to as folding (if used from the left-
hand side to the right-hand side), or unfolding (if used in the other direction).

Proof of Proposition 1.9. Since we assume that G is unimodular, the
argument that (c) implies (a) in the proof of Proposition 1.6 can be used
to define the measure mX . Once again Lemma 1.5 shows that mX is inde-
pendent of the choice of fundamental domain F ⊆ G used in the definition,
and shows that mX is G-invariant. By definition, (1.5) holds for f = 1B

if B ⊆ F or if B ⊆ γF for some γ ∈ Γ . By linearity (1.5) also holds for any
measurable B ⊆ G and hence for any simple function. In particular, the sum
on the right-hand side of (1.5) is a measurable function on X (or equivalently
on F ). The measurability of the sum and the equality of the integrals now
extend by monotone convergence to show that (1.5) holds for any measurable
non-negative function. �

Notice that Lemma 1.1 implies that any compact set KX ⊆ X is the
image KX = πX(KG) of a compact set KG ⊆ G. In particular, this implies
that a compact quotient Γ\G is of finite volume in the sense of Definition 1.7.

Definition 1.10 (Uniform lattice). A discrete subgroup Γ 6 G is called
a (co-compact or) uniform lattice if the quotient space X = Γ\G is compact.

A consequence of this definition and Lemma 1.1 is that there is a choice
of injectivity radius that is uniform across all of Γ\G, which should help to
explain the terminology of ‘uniform lattice’. Roughly speaking, Γ 6 G is a
uniform lattice if the quotient space Γ\G is small topologically (compact) as
well as measurably (of finite volume). At first sight, motivated by the abelian
paradigm from Zd 6 Rd, it seems reasonable to require that Γ\G should
always be compact in defining a lattice. However, as we will soon see, this
would exclude some of the most natural lattices and their quotient spaces.
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16 1 Lattices and the Space of Lattices

1.1.3 Divergence in the Quotient by a Lattice

† In allowing non-compact quotients, it is natural to ask how compact subsets
of X = Γ\G can be described or, equivalently, to characterize sequences (xn)
in X that go to infinity (that is, leave any compact subset of X).

Proposition 1.11 (Abstract divergence criterion). Let Γ < G be a lat-
tice. Then the following properties of a sequence (xn) in X = Γ\G are equiv-
alent:

(1) xn → ∞ as n → ∞, meaning that for any compact set K ⊆ X there is
some N = N(K) > 1 such that n > N implies that xn /∈ K.

(2) The maximal injectivity radius at xn = Γgn goes to zero as n→∞. That
is, there exists a sequence (γn) in Γr{e} such that g−1

n γngn → e ∈ G
as n→∞.

Proof. We note that the two statements in (2) are equivalent due to (1.3).
Suppose that (1) holds, so that xn → ∞ as n → ∞. We need to show

that the maximal injectivity radius rxn at xn goes to zero. So suppose the
opposite, then we would have rxn > ε > 0 for some ε > 0 and infinitely
many n, and by choosing this subsequnce we may assume without loss of
generality that rxn > ε > 0 for all n > 1.

Decreasing ε if necessary, we may assume that BGε is compact (since G is
locally compact). Therefore there is some N1 with

xn /∈ x1BGε

for n > N1. Now remove the terms x2, . . . , xN1−1 from the sequence. Similarly,
there is an N2 > 1 with

xn /∈ x1BGε ∪ xN1B
G
ε

for n > N2. Repeating this process infinitely often, and renaming the thinned-
out sequence remaining (xn) again, we may assume without loss of generality
that d(xn, xm) > ε for all m 6= n. This now gives a contradiction to the
assumption that X has finite volume: if xn = πX(gn) then

X ⊇
∞⊔

n=1

xnB
G
ε/2 = Γ

( ∞⊔

n=1

gnB
G
ε/2

)
,

and ∞⊔

n=1

gnB
G
ε/2

† In the remainder of the section we collect more fundamental results about locally homo-
geneous orbits, but the reader in a hurry could also move on to Section 1.2 and return to
the material here later as needed.
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1.1 Discrete Subgroups and Lattices 17

is a disjoint union of infinite measure, and is an injective set.
Suppose now that (1) does not hold, so there exists some compact K ⊆ X

with xn ∈ K for infinitely many n. By Lemma 1.1 there exists an injectivity
radius r > 0 on K and we see that rxn > r for infinitely many n, so that (2)
does not hold either. �

1.1.4 Orbits of Subgroups

In the following we will also be interested in orbits of subgroups H 6 G.
Given an action of G on a space X , which we will write as (x, g) 7→ g.x
for x ∈ X and g ∈ G, the H-orbit of x ∈ X is the set

H.x = {h.x | h ∈ H} ∼= H/StabH(x) ∼= StabH(x)\H,

where
StabH(x) = {h ∈ H | h.x = x}

is the stabilizer subgroup of x ∈ X and the isomorphisms are sending h.x
to h StabH(x) resp. to StabH(x)h−1. Note that if X = Γ\G and x = Γg,
then

StabH(x) = H ∩ g−1Γg

is a discrete subgroup of H . Fixing a Haar measure mH on H we define
the volume of the H-orbit, vol(H.x) to be mH(FH ) where FH ⊆ H is a
fundamental domain for StabH(x) in H .

Clearly if an H-orbit xH ⊆ X = Γ\G is compact, it is also closed. In fact
the same conclusion can be reached for finite volume orbits.

Corollary 1.12 (Finite volume orbits are closed). Let Γ 6 G be a
discrete subgroup, and let H 6 G be a closed subgroup. Suppose that the
point x ∈ X = Γ\G has a finite volume H-orbit. Then xH ⊆ X is closed
and the map from StabH(x)\H to Γ\G is proper.

We note that Corollary 1.12 can also be shown directly (see Figure 1.1
and Exercise 1.1.9). However, it is also a quick corollary of Proposition 1.11.

Proof of Corollary 1.12. We first show the last claim of the corollary.
Suppose therefore that the sequence

(
StabH(x)hn

)
has StabH(x)hn → ∞

as n → ∞ in Y = StabH(x)\H . Since Y has finite volume, we may apply
Proposition 1.11 to H to see that there exists a sequence (λn) in StabH(x)
such that h−1

n λnhn → e as n → ∞. Let g ∈ G such that x = Γg and hence
also StabH(x) = g−1Γg∩H . Then λn = g−1γng for some sequence (γn) in Γ ,
and

h−1
n g−1γnghn = h−1

n λnhn −→ e
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18 1 Lattices and the Space of Lattices

as n→∞. Again by Proposition 1.11 this shows that Γghn →∞ inX = Γ\G
as n → ∞. Since

(
StabH(x)hn

)
was an arbitrary seqeunce in Y going to

infinity, the properness of the embedding map from Y to X follows.
If now xhn → z ∈ X as n → ∞, then the sequence

(
StabH(x)hn

)
in Y

cannot go to infinity by the last paragraph. Choosing a subsequence (and
re-labeling the sequence) we may assume that StabH(x)hn → StabH(x)h
as n→∞, which implies that z = xh ∈ xH . It follows that xH is closed. �

PSfrag replacements

X

yV

znV

Fig. 1.1: We depict here an alternative to the proof of Corollary 1.12: By assuming
(for the purposes of a contradiction) that the sets znV ⊆ xH approach yV ⊆ xH
transverse to the orbit direction for a given neighbourhood V of e ∈ H, one can
show that vol(xH) = ∞.

Clearly if we are interested in finding finite volume H-orbits (that will
carry finite H-invariant measures), then we need to restrict to unimodular
subgroups H 6 G (by Proposition 1.6). If H is unimodular (and, as before,
we have fixed some Haar measure mH) then the volume measure volxH on
the H-orbit is defined by

volxH(B) = mH ({h ∈ F | xh ∈ B})

where F ⊆ H is a fundamental domain for StabH(x) in H . This measure may
be finite or infinite (and in the latter case it may be locally finite considered
on X or not), but is always invariant under the right action of H due to
Proposition 1.9 applied to StabH(x)\H ∼= xH .

Proposition 1.13 (Closed orbits are embedded). Let Γ 6 G be a
discrete subgroup and let H 6 G be a closed subgroup. Suppose that the
point x ∈ X = Γ\G has a closed H-orbit. Then xH ⊆ X is embedded,
meaning that the map h ∈ StabH(x)\H → xh ∈ xH is a homeomorphism. In
particular, volxH is a locally finite measure on X.
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1.1 Discrete Subgroups and Lattices 19

We note that for finite volume quotients the above also follows quickly
from Corollary 1.12.

Proof of Proposition 1.13. Clearly the map StabH(x)\H → xH ⊆ X is
continuous, and we wish to show that its inverse is also continuous.

Replacing x = Γg and H simultaneously with Γ and gHg−1, we may
assume for simplicity that x = Γ so that StabH(x) = Γ ∩H .

By Exercise 1.1.2 (which also holds for G/H instead of H\G) the quo-
tient G/H is a locally compact complete metric space. We claim that our
assumption that ΓH is closed in Γ\G also shows that ΓH is closed as a sub-
set of G/H (this is actually an equivalence). Indeed, suppose that (γnH)
converges to gH in G/H . Then we can find a sequence (hn) in H such
that γnhn → g ∈ G as n → ∞, showing that Γhn → Γg. However, this
implies by our assumption that Γg ∈ ΓH , so that there is some γ ∈ Γ
and h ∈ H with g = γh. This shows that gH = γH ∈ ΓH as needed.

Next we claim that ΓH is a discrete subset of G/H. If not, then we may
choose a sequence (ηn) in Γ so that ηnH → gH as n → ∞ for some g
in G, but ηnH 6= gH for n > 1. Then gH = ηH for some η ∈ Γ as ΓH
is closed. Multiplying the sequence on the left by γη−1 for an arbitrary γ
in Γ gives a sequence in ΓH ⊆ G/H with limit γH such that the limit
is not achieved in the sequence. This shows that any element of ΓH is an
accumulation point of ΓH (that is, ΓH is a closed perfect subset (1) of G/H).
As Γ is countable (sinceG is σ-compact) we can write ΓH = {γ1H, γ2H, . . . }.
Now On = ΓHr{γnH} is an open dense subset of ΓH , which implies by the
Baire category theorem that

⋂
nOn must be dense in ΓH , which gives a

contradiction as the intersection is empty.
Now suppose that Γhn → Γh as n → ∞ in Γ\G. Then there exists a

sequence (γn) in Γ with γnhn → h ∈ H as n→∞, which implies that

γnH → H

as n→∞ in G/H. By the discreteness of ΓH ⊆ G/H, it follows that γn ∈ H
for large enough n, so that we also have

(Γ ∩H)hn −→ (Γ ∩H)h

as n→∞ in Γ ∩H\H.
For the last claim of the proposition notice that every compact set K ⊆ X

intersects xH in a compact set which has finite measure with respect to volxH
(as K ∩ xH also corresponds to a compact set in StabH(x)\H). �
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20 1 Lattices and the Space of Lattices

Exercises for Section 1.1

Exercise 1.1.1. Let G be equipped with a left-invariant metric, and let Γ be a discrete
subgroup of G. Show that

dX (x, xg) 6 dG(e, g)

for all x ∈ X and g ∈ G, where as usual X = Γ\G.

Exercise 1.1.2. Let H < G be a closed subgroup. Imitate the definition in (1.1) to define
a metric on H\G. Show that H\G is locally compact and σ-compact (assuming, as always,
that G is). Show that both G and H\G are complete as metric spaces.

Exercise 1.1.3. Show that the maximal injectivity radius as defined after Lemma 1.1 is

indeed an injectivity radius. Show the upper bound in (1.3).

Exercise 1.1.4. Show that the topology induced by the metric dX(·, ·) on X = Γ\G is
the quotient topology of the topology on G for the natural map πX : G→ X (that is, the
finest topology on X for which πX is continuous).

Exercise 1.1.5. Show that the bi-invariant Haar measuremGLd(R)
on the locally compact

group
GLd(R) =

{
g = (gij)i,j ∈ Matd(R) | det(g) 6= 0

}
,

which is called the general linear group, can be defined by the formula

dmGLd(R)
(g) =

∏d
i,j=1 dgij

(det g)d
.

Exercise 1.1.6. Let d > 2. Show that

mSLd(R)
(B) = m

Rd2 ({tb : t ∈ [0, 1], b ∈ B})

for any measurable B ⊆ SLd(R) defines a (bi-invariant) Haar measure on the locally
compact group

SLd(R) =
{
g ∈ Matd(R) | det(g) = 1

}
,

which is called the special linear group, wherem
Rd2 is the Lebesgue measure on the matrix

algebra Matd(R) viewed as the vector space Rd2 .

Exercise 1.1.7. Show that Theorem 1.8 follows from the conventional formulation of
Poincaré recurrence: if (X,B, µ, T ) is a measure-preserving system and µ(A) > 0 then
there is some n > 1 for which µ(A ∩ T−nA) > 0 (see [53, Sec. 2.1]).

Exercise 1.1.8. Rephrase Proposition 1.11 as a compactness criterion characterizing com-
pact subsets of X = Γ\G in terms of the injectivity radius.

Exercise 1.1.9. Prove Corollary 1.12 without using Proposition 1.11 by using Figure 1.1.

Exercise 1.1.10. Let G < SLd(R) be a closed linear group, and let

Γ = G ∩ SLd(Z) < G

be a non-uniform lattice in G. Show that Γ must contain a unipotent matrix (that is, a
matrix for which 1 is the only eigenvalue). We note that this is true in general, as con-
jectured by Selberg and proved by Každan and Margulis [93]; also see Raghunathan [148,
Ch. XI]. However, the proof for subgroups of the form Γ = G ∩ SLd(Z) is significantly
easier.
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1.2 A Brief Review of SL2(Z)\ SL2(R) 21

Exercise 1.1.11. Let Γ < G be a uniform lattice in a connected σ-compact locally com-
pact group G equipped with a proper left-invariant metric. Show that Γ is finitely gener-
ated. This again holds more generally, but for connected groups and for compact quotients
the proof is straightforward; we refer to Raghunathan [148, Remark 13.21] for the general
case.

Exercise 1.1.12. Let Γ < G be a discrete subgroup, let x ∈ X = Γ\G, and let H1,H2

be two closed subgroups of G for which xH1 and xH2 are closed orbits. Prove that

x(H1 ∩H2) ⊆ (xH1) ∩ (xH2)

is a closed orbit.

Exercise 1.1.13. Let Γ < G be a discrete, and H < G a closed, subgroup of G. Recall
that a dynamical system is called topologically transitive if there exists a dense orbit, and
is called minimal if every orbit is dense. Show that the action of H on Γ\G is topologically
transitive (or minimal) if and only if the action of Γ on G/H is topologically transitive (or
minimal).

1.2 A Brief Review of SL2(Z)\ SL2(R)

1.2.1 The Space

We recall (see, for example, [53, Ch. 9]) that the upper half-plane

H = {z = x+ iy ∈ C | y = ℑ(z) > 0}

equipped with the Riemannian metric

〈u, v〉z =
(u · v)
y2

for (z, u), (z, v) ∈ TzH = {z}×C is the upper half-plane model of the hyper-
bolic plane (where u · v denotes the inner product after identifying u and v
with elements of R2). Moreover, the group SL2(R) acts on H transitively and
isometrically via the Möbius transformation

g =

(
a b
c d

)
: z 7→ g.z = az + b

cz + d
. (1.6)

The stabilizer of i ∈ H is SO(2) so that

SL2(R)/ SO(2) ∼= H

under the map sending g SO(2) to g.i.
The action of SL2(R) is differentiable, and so gives rise to a derived action

on the tangent bundle TH = H× C by
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22 1 Lattices and the Space of Lattices

D g : (z, v) 7−→
(
g.z, 1

(cz + d)2
v

)

where

g =

(
a b
c d

)
.

This action gives rise to the simply transitive action of

PSL2(R) = SL2(R)/{±1}

on the unit tangent bundle

T1H = {(z, v) ∈ TH | ‖v‖2z = 〈v, v〉z = 1},

so that
PSL2(R) ∼= T1H

by sending g to D g(i, ↑), where we write ↑ for the upward pointing vector of
length 1 at any z ∈ H.

The shaded region E in Figure 1.2 is a fundamental region for the action
of the discrete subgroup PSL2(Z) on H (strictly speaking we should describe
carefully which parts of the boundary of the hyperbolic triangle shaded belong
to the domain but as the boundary is a nullset one usually ignores that issue
— we will comply with this tradition), see Exercise 1.2.4.

PSfrag replacements

−1 − 1
2

1
2

1

(
− 1

2
,
√

3
2

) (
1
2
,
√

3
2

)

Fig. 1.2: A fundamental domain E ⊆ H for the action of SL2(Z).

This shows that we can define a fundamental domain for PSL2(Z) in

PSL2(R) ∼= T1H
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1.2 A Brief Review of SL2(Z)\ SL2(R) 23

by taking all vectors (z, u) whose base point z lies in E, giving the set

F = {g ∈ PSL2(R) | D g(i, ↑) = (z, u) with z ∈ E}.

(Once again, strictly speaking we should describe more carefully which vec-
tors attached to points z ∈ ∂E are allowed in F .) Furthermore, we can lift
the set F ⊆ PSL2(R) to a surjective set F ⊆ SL2(R) for SL2(Z). We claim
that this argument shows that

PSL2(Z)\PSL2(R) ∼= SL2(Z)\SL2(R)

has finite volume. In order to see this, we recall some basic facts from [53,
Ch. 9] (which we will prove in greater generality for SLd(R) in Section 1.3.4):

• SL2(R) is unimodular (see Exercise 1.1.6).
• SL2(R) = NAK with†

N =

{(
1 ∗
1

)}
, A =

{(
a
a−1

)
| a > 0

}

and K = SO(2), in the sense that every g ∈ SL2(R) can be written
uniquely(2) as a product g = nak with n ∈ N , a ∈ A and k ∈ K.

• Let B = NA = AN be the subgroupB =

{(
a t
a−1

)
| a > 0, t ∈ R

}
. The

Haar measure mSL2(R) decomposes in the coordinates g = bk, meaning
that

mSL2(R) ∝ mB ×mK

where ∝ denotes proportionality (with the constant of proportionality
dependent only on the choices of Haar measures). Moreover, the left Haar
measure mB decomposes in the coordinate system

b(x, y) =

(
1 x
1

)(
y1/2

y−1/2

)

with x ∈ R, y > 0, as

dmB =
1

y2
dxdy.

• We also note that b(x, y).i =
(
1 x
1

)
.(iy) = x + iy, and that the Haar

measure mB on B is identical to the hyperbolic area measure on H under
the map b(x, y) 7→ b(x, y).i = x+ iy.

Combining these facts we get

† We sometimes indicate by ∗ any entry of a matrix which is only restricted to be a real
number, and do not write entries that are zero.
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24 1 Lattices and the Space of Lattices

mSL2(R)(F ) <

∫ 1/2

−1/2

∫ ∞

√
3/2

∫ 2π

0

1

y2
dθ dy dx <∞.

The argument above also helps us to understand the space

X2 = SL2(Z)\SL2(R)

globally: it is, apart from some difficulties arising from the distinguished

points i, 12 +
√
3
2 i ∈ E, the unit tangent bundle of the surface† SL2(Z)\H.

This surface may be thought of as being obtained by gluing the two vertical

sides in Figure 1.2 together using the action of

(
1 ±1

1

)
∈ SL2(Z) and the

third side to itself using the action of

(
−1

1

)
∈ SL2(Z). In particular, X2 is

non-compact.

1.2.2 The Geodesic Flow — the Subgroup A

We recall that

gt : x 7−→ x

(
et/2

e−t/2

)
=

(
e−t/2

et/2

)
.x

defines the geodesic flow on X2, whose orbits may also be described in the
fundamental region as in Figure 1.3.

Fig. 1.3: The geodesic flow follows the circle determined by the arrow which inter-
sects R∪{∞} = ∂H normally, and is moved back to F via a Möbius transformation
in SL2(Z) once the orbit leaves F .

The diagonal subgroup

† Because of the distinguished points this surface is a good example of an orbifold, but not
an example of a manifold.
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1.2 A Brief Review of SL2(Z)\ SL2(R) 25

A =

{(
e−t/2

et/2

)
| t ∈ R

}

is also called the torus or Cartan subgroup. We recall that A acts ergodically
on X2 with respect to the Haar measure mX2 (see [53, Sec. 9.5]; we will also
discuss this from a more general point of view in Chapter 2). There are many
different types of A-orbits, which include the following:

• Divergent trajectories, for example the orbit SL2(Z)A which corresponds
to the vertical geodesic through (i, ↑) in SL2(Z)\T1H.
• Compact trajectories, for example SL2(Z)ggoldenA is compact, where the
matrix ggolden ∈ K has the property† that

g−1
golden

(
1 1
1 2

)
ggolden =

(
3+

√
5

2
3−

√
5

2

)
∈ A.

Now notice that

SL2(Z)ggolden

(
3+

√
5

2
3−

√
5

2

)
= SL2(Z)

(
1 1
1 2

)
ggolden = SL2(Z)ggolden

This identity shows that the orbit SL2(Z)ggoldenA is compact (see also

Figure 1.4 in which λ = 1+
√
5

2 ).
• The set of dense trajectories, which includes (but is much larger than) the
set of equidistributed trajectories of typical points in SL2(Z)\ SL2(R).
• Orbits that are neither dense nor closed.

PSfrag replacements

−λ −1/λ 1/λ λ

Fig. 1.4: The union of the two geodesics considered in X2 with both directions
allowed is a periodic A-orbit, and comprises the orbit SL2(Z)ggoldenA.

† The eigenvalues of

(
1 1
1 2

)
are 3±

√
5

2
, and there is such a matrix ggolden ∈ K be-

cause

(
1 1
1 2

)
is symmetric.
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26 1 Lattices and the Space of Lattices

Finally we would like to point out — in a sense to be made precise in
Sections 3.1 and 3.5 — that there is a correspondence between rational (or
arithmetic) objects and closed A-orbits as in the first two types of A-orbit
considered above (see Exercise 1.2.6 and 1.2.7).

1.2.3 The Horocycle Flow — the Subgroup U− = N

We recall that the (stable) horocycle flow on X2 is defined by the action

hs : x 7−→ x

(
1 −s

1

)
= u(s).x

for s ∈ R. Here the matrices
(
1 s
1

)
= u(s)

are unipotent (that is, only have 1 as an eigenvalue) and the corresponding
subgroup

U− =

{(
1 s
1

)
| s ∈ R

}

is precisely the stable horospherical subgroup of the geodesic flow, in the
sense that

U− =

{
g ∈ SL2(R) |

(
e−t/2

et/2

)
g

(
et/2

e−t/2

)
→ I2 as t→∞

}
.

This implies that
d (gt(x), gt(u(s).x))→ 0

as t→∞ for any x ∈ X2 and s ∈ R, see Exercise 1.1.1.
Geometrically, the horocycle orbits U−.x = xU− can be described as

circles touching the real axis with the arrows (that is, the tangent space
component) normal to the circle pointing inwards or as horizontal lines with
the arrows pointing upwards, as in Figure 1.5.

We recall that U− also acts ergodically on X2 with respect to the Haar
measure mX2 (see [53, Sec. 11.3] and Chapter 2). However, unlike the case
of A-orbits, the classification of U−-orbits on X2 is shorter (we will discuss
this phenomenon again, and in particular we will prove the facts below in
Chapter 5 and more general results in Chapter 6). The possibilities are as
follows:

• Compact trajectories, for example SL2(Z)U− is compact and corresponds
to the horizontal orbit through (i, ↑) ∈ T1H.
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Fig. 1.5: The picture shows the two types of horocycle orbits; the orbits in X2 can
again be understood by using the appropriate Möbius transformation whenever the
orbit leaves the fundamental domain.

• Dense trajectories, which are automatically also equidistributed with re-
spect to mX2 .

This gives the complete list of types of U−-orbits (see Section 5.1), and once
more gives substance to the claim that there is a correspondence between
rational objects and closed orbits (see Exercise 1.2.8).

1.2.4 The Subgroups K and B

For SL2(R) there are two more connected subgroups of importance (and up
to conjugation this completes the list of connected subgroups), namely

• K = SO(2) ⊆ SL2(R), and

• B = U−A =

{(
a s
a−1

)
| a > 0, s ∈ R

}

However, we note that for these two there is no correspondence between closed
orbits and rational objects: for example, every K-orbit is compact since K
itself is compact. On the other hand, every B-orbit is dense, independently
of any rationality questions. In fact the latter follows from the properties of
the horocycle flow. If xU− is not periodic, then it is dense by the mentioned
classification of U−-orbits in Section 1.2.3. If xU− is periodic, then one can
choose a ∈ A so that xaU− is a much longer periodic orbit. However, long
periodic U−-orbits equidistribute in X2 (see Sarnak [161] and Section 5.3.1).

This shows that the phenomenon of a correspondence between closed orbits
and rational objects is more subtle. It can only hold in certain situations,
which we will discuss in Chapters 3 and 4.
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28 1 Lattices and the Space of Lattices

Exercises for Section 1.2

Exercise 1.2.1. Show that the action of K = SO(2) on TiH rotates the tangent vectors
at ‘double speed’. That is,

kθ =

(
cos θ − sin θ
sin θ cos θ

)

applied to (i, v) ∈ T1H gives (i, e−2θiv) ∈ T1H.

Exercise 1.2.2. Describe the orbit corresponding to the geodesic just on the left of the

fundamental domain. That is, draw the continuation of the ray from ∞ to − 1
2
+

√
3

2
i

modulo SL2(Z) as a subset of E ⊆ H.

Exercise 1.2.3. (a) Show that every geodesic on SL2(Z)\H intersects the image of the

geodesic segment from − 1
2
+

√
3

2
i to 1

2
+

√
3

2
i.

(b) Show that every geodesic on SL2(Z)\H intersects the periodic horocycle segment de-

fined be {x+ i | x ∈ [− 1
2
, 1
2
)}.

Exercise 1.2.4. Let E be as in Figure 1.2.

(1) Use

(
1 1
0 1

)
and

(
0 −1
1 0

)
to show that SL2(Z).E is ‘uniformly open’, meaning that

there exists some δ > 0 such that z ∈ SL2(Z).E implies that Bδ(z) ⊆ SL2(Z).E.
Conclude that SL2(Z).E = H.

(2) Suppose that both z and γ.z lie in E for some γ ∈ SL2(Z). Show that either γ = ±e
or z ∈ ∂E.

(3) Conclude that E can be modified (by defining which parts of the boundary of E should
be included) to become a fundamental domain.

Exercise 1.2.5. Show that SL2(R) is generated by the unipotent subgroups

{(
1 ∗
1

)}
and

{(
1
∗ 1

)}
.

Exercise 1.2.6. Show that SL2(Z)gA is a divergent trajectory (A ∋ a 7→ SL2(Z)ga is a
proper map) if and only if ga ∈ SL2(Q) for some a ∈ A.

Exercise 1.2.7. Show that to any compact A-orbit in SL2(Z)\ SL2(R) one can attach a
real quadratic number field K such that the length of the orbit is log |ξ|, where ξ in O∗

K is
a unit in the order OK of K. Prove that there are only countably many such orbits.

Exercise 1.2.8. Show that SL2(Z)gU− is compact if and only if g(∞) ∈ Q ∪ {∞}. Show
that if SL2(Z)gU− is compact, then any other compact orbit is of the form SL2(Z)gaU−

for some a ∈ A.

Exercise 1.2.9. Show that SL2(Z)\ SL2(R) ∼= {Z2g | g ∈ SL2(R)} can be identified with
lattices Z2g ⊆ R2 of co-volume det g = 1. Use the isomorphism with SL2(Z)\T1H discussed
in this section to characterize compact subsets K of SL2(Z)\ SL2(R) in terms of elements
of the lattices Z2g for SL2(Z)g ∈ K. More precisely, calculate the relationship between the
shortest vector ng ∈ Z2g and the imaginary part of gi ∈ H under the assumption that the
representative g ∈ SL2(R) has been chosen with gi ∈ E (with E ⊆ H as in Figure 1.2).
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1.3 The Space Xd of Lattices in Rd

In this section we will introduce the most important locally homogeneous
space for ergodic theory and its connections to number theory, namely

Xd = SLd(Z)\SLd(R),

which gives rise to other arithmetical quotients by looking at orbits of sub-
groups of SLd(R) on Xd. Such orbits will be discussed starting in Chapter 3.

1.3.1 Basic Definitions

A lattice in Rd in the sense of Definition 1.7 has the form Λ = Zdg for
some g ∈ GLd(R) (see Exercise 1.3.1). A fundamental domain for Λ is given
by the parallelepiped [0, 1)dg which is spanned by the row vectors of g, and has
Lebesgue measure |det g|. This measure is also called the covolume covol(Λ)
of Λ. A lattice Λ ⊆ Rd is called unimodular if the co-volume is 1. The space
of all unimodular lattices in Rd — the moduli space of lattices — is therefore

Xd = {Zdg | g ∈ SLd(R)},

which is the orbit of Zd under the right action of SLd(R) on the subsets of Rd:
for B ⊆ Rd and g ∈ SLd(R) the right action sends (g,B) to Bg = {vg : v ∈
B}. Notice that

StabSLd(R)(Z
d) = SLd(Z),

so that
Xd = SLd(Z)\SLd(R)

where SLd(Z)g corresponds to the lattice Zdg. We will think of this isomor-
phism as an equality. In particular, the topology, the action of G = SLd(R),
and the Haar measure on Xd are as discussed in Section 1.1. To understand Xd
better, we need to develop a better understanding of lattices in Rd.

1.3.2 Geometry of Numbers

The next result will be almost immediate from the abstract results in Sec-
tion 1.3.1. It is a weak form of a classical result due to Minkowski in 1896
(see [135] for a modern reprinting).

Theorem 1.14 (Minkowski’s first theorem). If Λ ⊆ Rd is a lattice of
co-volume V , then there exists a non-zero vector in Λ of length ≪ d

√
V , with

the implicit constant depending only on d.
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Recall that f ≪ g if there is a constant C > 0 with f 6 Cg, and f ≍ g
if f ≪ g and g ≪ f ; where the constant depends on other parameters these
will appear as subscripts as, for example in the obvious bound

|Λ ∩BRd

1 (0)| ≪Λ 1.

Since we will not be varying d throughout any of our discussions, we will
not indicate dependencies on d in this way. We use this notation here as the
particular value of the constants appearing in Theorems 1.14 and 1.15 will
not be important for our purposes.

Proof of Theorem 1.14. Choose rd > 0 so that BRd

rd
(0) has Lebesgue mea-

sure 2 (any measure exceeding 1 will do). Then d
√
V BRd

rd (0) has measure 2V ,
and so cannot be an injective domain in the sense of Definition 1.2. It follows

that there must exist x1 6= x2 in d
√
V BRd

rd (0) with x1 − x2 = λ ∈ Λr{0} of

length ‖λ‖ 6 2rd
d
√
V . �

A typical goal of lattice reduction theory is to develop algorithms that
start with a set of generators of a lattice and efficiently produce a different
set of generators that are short and almost orthogonal. We note that the three
attributes of efficiency, shortness, and close to orthogonality are in tension
— and hence the subject is an intricate one. We refer to the monographs of
Cassels [13] or Gruber and Lekkerkerker [73] for thorough accounts of the
topic and its history. For our purposes the following result, a consequence
of the reduction algorithm of Korkine and Zolotareff [105, 106, 107], will
suffice. The minima defined below are sometimes referred to as Minkowski’s
successive minima.

Theorem 1.15 (Successive minima). Let Λ ⊆ Rd be a lattice. We define
the successive minima of Λ by

λk(Λ) = min{r | Λ contains k linearly independent vectors of norm 6 r}

for k = 1, . . . , d. Then

λ1(Λ) · · ·λd(Λ) ≍ covol(Λ).

Moreover, if

αk(Λ) = min{covol(Λ ∩ V ) | V ⊆ Rd is a subspace of rank k},

then
αk(Λ) ≍ λ1(Λ) · · ·λk(Λ)

for 1 6 k 6 d.

For a subspace V ⊆ Rd there are two possibilities: either V ∩ Λ spans V
or it does not. In the first case Λ ∩ V is a lattice in V , we say that V is Λ-
rational, and the co-volume covol(Λ∩V ) of Λ∩V in V is finite. In the second
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case, we write covol(Λ ∩ V ) =∞. Strictly speaking we have to mention how
we are normalizing the Haar measures of the different subspaces V ⊆ Rd.
However, we do this as one would expect: The Euclidean norm on Rd induces
a Euclidean norm on V by restriction which in turn induces the Haar measure
on V such that a unit cube in V has volume one.

The proof of Theorem 1.15 is geometric, and relies on starting with a short-
est vector (of size λ1(Λ)) and then extending it with other vectors, chosen to
be almost orthogonal to obtain a basis of Rd. We note that the minimum in
the definition of αk(Λ) is indeed achieved for any k, see Exercise 1.3.4.

Proof of Theorem 1.15. We use induction on the dimension d. For d = 1
(and so also k = 1), it is clear that

λ1(Λ) = α1(Λ) = covol(Λ).

Assume therefore that the theorem holds for d − 1, and let Λ ⊆ Rd be a
lattice. It is clear by definition that

λ1(Λ) 6 λ2(Λ) 6 · · · 6 λd(Λ).

Pick a vector v1 ∈ Λ of length λ1(Λ), and define W = (Rv1)⊥ ⊆ Rd. Also
let π : Rd → W be the orthogonal projection along Rv1 onto W . We claim
that ΛW = π(Λ) ⊆W is a discrete subgroup inW such that all of its nonzero
vectors have length ≫ λ1(Λ), or in symbols that λ1(ΛW )≫ λ1(Λ).

To see the claim, assume for the purpose of a contradiction that

w = π(v) ∈ ΛWr{0}

has length less than
√
3
2 ‖v1‖. Here v = w + tv1 ∈ Λ for some t ∈ R, and we

may assume (by replacing v ∈ Λ with v + nv1 ∈ Λ for a suitable n ∈ Z)
that t ∈ [− 1

2 ,
1
2 ). However, since v1 and w are orthogonal by construction,

this implies that

‖v‖2 = ‖w‖2 + t2‖v1‖2 < 3
4‖v1‖2 + 1

4‖v1‖2 = ‖v1‖2,

which contradicts the choice of v1 as a non-zero vector in Λ of smallest length.
Next we claim that ΛW is a lattice and that

λk(ΛW ) ≍ λk+1(Λ) (1.7)

for k = 1, . . . , d− 1. To see this, consider a fundamental domain FW for ΛW
insideW . Then F = [0, 1)v1+FW is a fundamental domain for Λ. Indeed, for
any x ∈ Rd there exists a unique w ∈ ΛW = π(Λ) with y = π(x) − w ∈ FW .
Choosing v ∈ Λ with π(v) = w, this shows that x − v − y ∈ Rv1, and there
exists a unique n ∈ Z and t ∈ [0, 1) with x − v − nv1 = tv1 + y ∈ F . Using
Fubini’s theorem we get
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covol(Λ) = λ1(Λ) covol(ΛW ). (1.8)

This shows that ΛW is a lattice in W .
Let k ∈ {1, . . . , d− 1}. Given k + 1 linearly independent vectors of length

less than λk+1(Λ), we may replace one of them by v1 (of norm λ1(Λ)) and
assume that these vectors are given by v1, v2, . . . , vk+1 ∈ Λ. In particular,

π(v2), . . . , π(vk+1) ∈ ΛW

are linearly independent and also have length no more than λk+1(Λ). Hence

λk(ΛW ) 6 λk+1(Λ)

for any k = 1, . . . , d− 1. On the other hand, assume that

w1 = π(v2), . . . , wk = π(vk+1) ∈ ΛW

are linearly independent of length no more than λk(ΛW ). As above, we may
assume vj+1 = wj + tjv1 ∈ Λ with tj ∈ [− 1

2 ,
1
2 ) for j = 1, . . . , k, and so

‖vj+1‖ ≪ λk(ΛW ) + λ1(Λ)≪ λk(ΛW ),

since λ1(Λ)≪ λ1(ΛW ) 6 λk(ΛW ).
By the inductive assumption and the statement above, we get that

covol(ΛW ) ≍ λ1(ΛW ) · · ·λd−1(ΛW ) ≍ λ2(Λ) · · ·λd(Λ).

Together with (1.8) this gives covol(Λ) ≍ λ1(Λ) · · ·λd(Λ) as claimed in the
theorem.

To see the last statement in the theorem, we proceed similarly. If vj ∈ Λ
has norm λj(Λ) for j = 1, . . . , k, v1, . . . , vk are linearly independent (over R),
and V = Rv1 + · · ·+ Rvk then

covol(Λ ∩ V ) 6 covol(Zv1 + · · ·+ Zvk) 6 ‖v1‖ · · · ‖vk‖ = λ1(Λ) · · ·λk(Λ),

and so αk(Λ) 6 λ1(Λ) · · ·λk(Λ). Indeed, the first inequality holds as Λ ∩ V
may have more lattice elements than Zv1 + · · · + Zvk ⊆ Λ ∩ V , and the
second follows as the volume of a parallelepiped is less than the product of
the lengths of its sides. On the other hand, if V ⊆ Rn has dimension k and
is Λ-rational, then we may apply the above to the lattice Λ ∩ V in V to get

covol(Λ ∩ V ) ≍ λ1(Λ ∩ V ) · · ·λk(Λ ∩ V ) > λ1(Λ) · · ·λk(Λ),

which shows that αk(Λ)≫ λ1(Λ) · · ·λk(Λ) and proves the theorem. �

Using the same inductive argument (by projection to the orthogonal com-
plement of the shortest vector) we also get the following.
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Corollary 1.16 (Basis of a lattice). Let Λ ⊆ Rd be a lattice. Then there
is a Z-basis v1, . . . , vd ∈ Λ of Λ such that

‖v1‖ = λ1(Λ), ‖v2‖ ≍ λ2(Λ), . . . , ‖vd‖ ≍ λd(Λ).

Moreover, the projection πk(vk) of vk onto the orthogonal complement of

Rv1 + · · ·+ Rvk−1

has
‖πk(vk)‖ ≍ λk(Λ) ≍ ‖vk‖

for k = 2, . . . , d

Corollary 1.16 may seem obvious, but our intuition about lattices does
not extend to higher dimensions without some additional complexities. In
particular, it is not true that there always exists a Z-basis v1, . . . , vd for a
lattice with

‖v1‖ = λ1(Λ), ‖v2‖ = λ2(Λ), . . . , ‖vd‖ = λd(Λ),

see Exercise 1.3.5 for a simple counterexample.

Proof of Corollary 1.16. Assume the corollary for dimension (d−1), and
defineW = (Rv1)

⊥
, π = π1, and ΛW = π(Λ) as in the proof of Theorem 1.15.

Recall that these assumptions lead to (1.7). By assumption, ΛW has a Z-
basis w1 = π(v2), . . . , wd−1 = π(vd) satisfying all the claims. Once more we
may assume that vk = wk−1 + tkv1 ∈ Λ with tk ∈ [− 1

2 ,
1
2 ) so that ‖vk‖ ≪

λk(Λ) as in the proof of Theorem 1.15. It follows that v1, . . . , vd ∈ Λ is a Z-
basis of Λ with ‖v1‖ = λ1(Λ), and ‖vk‖ ≍ λk(Λ) for k = 2, . . . , d.

For the last claim in the corollary, recall that we already showed that

‖v2‖ ≍ ‖w1‖ ≍ λ2(Λ),

which is the claim for k = 2. For k > 2, notice that πkπ = πk is (when re-
stricted to W ) also the orthogonal projection πW,k−1 in W onto the orthog-
onal complement of Rw1 + · · ·+Rwk−2. Therefore, the inductive assumption
applies to give

‖πk(vk)‖ = ‖πW,k−1(wk−1)‖ ≍ λk−1(ΛW ) ≍ λk(Λ) ≍ ‖vk‖,

which proves the corollary. �
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1.3.3 Mahler’s Compactness Criterion

The space Xd = SLd(Z)\ SLd(R) cannot be compact for d > 2, since Xd is
the space of unimodular lattices, and it is possible to degenerate a sequence
of lattices. For example, the sequence of unimodular lattices (Λn) defined by

Λn = ( 1
nZ)× (nZ)× Zd−2

has no subsequence converging to a unimodular lattice. Indeed, if we were to
assign a limit to this sequence, then we could only have

Λn −→ R× {0} × Zd−2

as n→∞, so the putative ‘limit’ is not discrete and does not span Rd.
More generally, any sequence (Λn) of unimodular lattices containing vec-

tors with length converging to 0 (that is, with λ1(Λn)→ 0 as n→∞) cannot
converge in Xd. To see this concretely, suppose that Λn = Zdgn → Zdg
as n → ∞. Then (after replacing gn with γngn for a suitable choice
of γn ∈ SLd(Z) if necessary) we can assume that gn → g as n → ∞ in
the topology of SLd(R) (cf. (1.1) on page 8 and the following discussion).
Thus we can write gn = ghn with hn → Id as n → ∞, which implies
that λ1(Zdgn)→ λ1(Zdg) > 0 as n→∞ (see Exercise 1.3.2).

A reasonable guess is that the argument above is the only way in which
the non-compactness of Xd comes about (that is, a sequence (Λn) of lattices
with no convergent subsequence has λ1(Λn)→ 0 as n→∞; equivalently any
closed subset of Xd on which λ1 has a positive lower bound — a ‘uniformly
discrete’ set of lattices — is pre-compact).

Theorem 1.17 (Mahler’s compactness criterion). A subset B ⊆ Xd has
compact closure if and only if there exists some δ > 0 for which

Λ ∈ B =⇒ λ1(Λ) > δ. (1.9)

That is, B is compact if and only if it is closed and uniformly discrete.

Because of this result, it will be convenient to define the subset

Xd(δ) = {Λ ∈ Xd | λ1(Λ) > δ}

for any δ > 0. The condition in (1.9) will also be described by saying that
elements of B do not contain any non-trivial δ-short vectors. An equivalent
formulation of Theorem 1.17 is to say that a set B ⊆ Xd of unimodular
lattices is compact if and only if it is closed and the height function defined
by

ht(Λ) =
1

λ1(Λ)
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is bounded on B. Even though it is difficult to depict Xd on paper (for exam-
ple, X3 is topologically an 8-dimensional space), it is conventionally depicted
as in Figure 1.6, in part to express the meaning of Theorem 1.17.

PSfrag replacements

Xd

Xd(δ)

XdrXd(δ)

Fig. 1.6: A compact subset of Xd is contained in Xd(δ) = {Λ ∈ Xd | λ1(Λ) > δ}
for some δ > 0. The non-compact part Xd rXd(δ), loosely referred to as a cusp,
is depicted as a thin set to indicate the finite total volume (see Theorem 1.18).
For d > 2 the geometry of the cusp is much more complicated than the cusp in
the d = 2 case.

Proof of Theorem 1.17. We have already mentioned that λ1 is a continu-
ous function on Xd (see Exercise 1.3.2). Since λ1 only achieves positive values,
it follows that a compact subset of Xd must lie in Xd(δ) for some δ > 0. It
remains to prove that Xd(δ) is itself compact. Let

(
Zdgn

)
in Xd(δ) be any

sequence. Then, by Corollary 1.16, the lattice Zdgn has a basis v
(n)
1 , . . . , v

(n)
d

with
δ 6 λ1(Zdgn) = ‖v(n)1 ‖ ≪ ‖v

(n)
2 ‖ ≪ · · · ≪ ‖v

(n)
d ‖

and
‖v(n)1 ‖ · · · ‖v

(n)
d ‖ ≪ 1,

which implies that

‖v(n)i ‖ ≪ δ−(d−1)

for i = 1, . . . , d. As the change of basis of Zdgn corresponds to multiplication
of gn by some γn ∈ SLd(Z), we deduce that the entries of the matrix γngn
are all ≪ δ−(d−1). Thus there is a convergent subsequence

γnk
gnk
−→ g
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36 1 Lattices and the Space of Lattices

as k →∞, so that SLd(Z)gnk
→ SLd(Z)g as required. �

1.3.4 Xd has Finite Volume

Write π for the canonical quotient map π : SLd(R)→ Xd.

Theorem 1.18 (Xd has finite volume). SLd(Z) is a lattice in SLd(R).

We will prove the theorem by showing that Corollary 1.16 gives a surjective
set of finite Haar measure — that is, a measurable set F ⊆ SLd(R) (called a
Siegel domain) with π(F ) = Xd and

mSLd(R)(F ) <∞.

The fact that mSLd(R)(F ) is finite is essentially a calculation, but is con-
siderably helped by the Iwasawa decomposition (this is also referred to as
the NAK decomposition).

Proposition 1.19 (Iwasawa decomposition). Let K = SO(d) and

B = UA =








a1
∗ a2
...

...
. . .

∗ ∗ · · · ad


 | a1, . . . , ad > 0, a1 · · ·ad = 1




,

where

U = N =








1
u21 1
...

...
. . .

ud1 ud2 · · · 1








and

A =







a1

. . .

ad


 | a1, . . . , ad > 0, a1 · · · ad = 1




.

Then SLd(R) = BK = UAK in the sense that for every g ∈ SLd(R) there
are unique matrices u ∈ U , a ∈ A, k ∈ K with g = uak.

Proof. This is the Gram–Schmidt procedure(3) in disguise. Let

g =



w1

...
wd


 ,
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where w1, . . . , wd ∈ Rd are the row vectors of g. We apply the Gram–Schmidt
procedure to define

w′
1 =

1

a1
w1

with a1 = ‖w1‖ > 0,
w̃2 = u21w1 + w2

with u21 ∈ R such that w̃2 ⊥ w1, and

w′
2 =

1

a2
w̃2

with a2 = ‖w̃2‖ > 0 (by linear independence of w1 and w2). We continue this
until

w̃d = ud1w1 + ud2w2 + · · ·+ wd

with ud1, ud2, . . . , ud(d−1) ∈ R such that

w̃d ⊥ w1, . . . , wd−1

(or, equivalently, w̃d ⊥ w′
1, . . . , w

′
d−1) and

w′
d =

1

ad
w

(1)
d

with ad = ‖w̃d‖ > 0 (again by linear independence). This has the following
effect. If

u =




1
u21 1
...

...
. . .

ud1 ud2 · · · 1




and

a =



a1

. . .

ad




then

ug =




w1

w̃2

...
w̃d


 , a−1ug =



w′

1
...
w′
d


 = k.

By construction k has orthogonal rows, so that det(k) = ±1. However,

det(g) = 1 = det(u)
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and det(a) > 0 which gives det(a) = 1 = det(k). This shows the existence of
the claimed u ∈ U, a ∈ A, and k ∈ K with g = u−1ak.

To see that this decomposition is unique, notice that B is a subgroup
with B ∩ K = {Id} so that b1k1 = b2k2 implies b−1

2 b1 = k2k
−1
1 = Id. Simi-

larly, A ∩ U = {Id}, and the proposition follows. �

Our geometric arguments in the proof of Theorem 1.15 and Corollary 1.16
are closely related to the Gram–Schmidt procedure used in Proposition 1.19.
Combining these gives the next result.

Definition 1.20 (Siegel domain for Xd). A set of the form

Σs,t = UsAtK

where s > 0, t > 0,

Us =








1
u21 1
...

...
. . .

ud1 ud2 · · · 1


 | |uij | 6 s




,

and

At =







a1

. . .

ad


 | ai+1

ai
> t for i = 1, . . . , d− 1




,

is called a Siegel domain.

We note that Us is a compact subset of the lower unipotent subgroup
but At is a non-compact subset of the diagonal subgroup.

The next result could again be attributed to Korkine and Zolotareff, while
Siegel extended constructions of this sort to all classical non-compact simple
groups.

Corollary 1.21 (Surjectivity of Siegel domains). There exists some t0
such that for t 6 t0 and s > 1

2 the Siegel domain Σs,t is surjective (that
is, π(Σs,t) = Xd).

A more careful analysis of the proof shows that t0 =
√
3
2 suffices in any

dimension; see also Exercise 1.3.10 which can also be used to prove this claim.

Proof of Corollary 1.21. Let Λ ∈ Xd be a unimodular lattice, and
let w1, . . . , wd be the Z-basis as in Corollary 1.16. Replacing wd by −wd
if necessary, we may assume that det(g) = 1, where

g =



w1

...
wd


 .
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Now apply the Gram–Schmidt procedure as in the proof of Proposition 1.19
to g. By Corollary 1.16 we get

a1 = ‖w1‖ = λ1(Λ)

a2 = ‖w̃2‖ ≍ λ2(Λ)
...

ad = ‖w̃d‖ ≍ λd(Λ)

which satisfy
ai+1

ai
≫ λi+1(Λ)

λi(Λ)
> 1

for i = 1, . . . , d− 1. Choosing t0 and t 6 t0 accordingly gives

a =



a1

. . .

ad


 ∈ At.

Therefore Λ = Zdg and g = uak with u ∈ U and k ∈ K. Notice that by
replacing g by uZg with uZ ∈ U(Z) = U ∩ Matd(Z) we can easily ensure
that u(i+1)i ∈ [− 1

2 ,
1
2 ). Having achieved this we may use another uZ ∈ U(Z)

with (uZ)(i+1)i = 0 for i = 1, . . . , d− 1, which makes it easy to calculate the
next off-diagonal of uZu as follows:

(uZu)(i+2)i = (uZ)(i+2)i + (uZ)(i+2)(i+1)u(i+1)i + u(i+2)i

= (uZ)(i+2)i + 0 + u(i+2)i

for any i = 1, . . . , d− 2. Therefore, we can modify u by some uZ as above to
ensure that u(i+2)i lies in [− 1

2 ,
1
2 ) for i = 1, . . . , d−2. Proceeding by induction

gives
Λ = Zdg = Zduak

for some u ∈ U1/2, a ∈ At, and k ∈ K. �

It remains to show that the Haar measure of the Siegel domains is finite.
For this the Iwasawa decomposition also helps us to understand the Haar
measure mSLd(R) as a result of the following general fact about locally com-
pact groups.

Lemma 1.22 (Decomposition of Haar measure). Let G be a unimod-
ular, metric, σ-compact, locally compact group. Let S, T ⊆ G be closed sub-
groups with S∩T = {I} and with the property that mG(ST ) > 0 (for example,
because ST contains an open neighborhood of I). Then

mG|ST ∝ φ∗
(
mS ×m(r)

T

)
,
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where φ : S × T → G is the product map φ : (s, t) 7→ st.

We refer to [53, Lem. 11.31], [54, Lem. 10.57], and Knapp [103] for the
proof. The above lemma is useful for us because of the following.

Lemma 1.23. SLd(R) is unimodular.

As an alternative to Exercise 1.1.6 (which is quite special but gives the
above lemma) we start with a general lemma about the structure of SLd(K)
over any field K, generalizing Exercise 1.2.5.

Lemma 1.24 (Unipotent Generation). Over any field K, the special lin-
ear group SLd(K) is generated by the elementary unipotent subgroups

Uij(K) = {uij(t) = I + tEij | t ∈ K}

with i 6= j and Eij being the elementary matrix with (i, j)th entry 1 and all
other entries 0.

For K = R (and for K = C), this implies that SLd(R) (and SLd(C)) are
connected as topological spaces, because each subgroup Uij(R) and Uij(C)
is connected. In particular, this shows that SLd(R) carries a left-invariant
Riemannian metric, and by restriction of this metric to any closed subgroup
of SLd(R) (which may be connected or not) one has a left-invariant metric
on the subgroup (which induces the locally compact, σ-compact, induced
topology).

Outline proof of Lemma 1.24. Notice that for i 6= j the row (and col-
umn) operation of adding t times the jth row to the ith row (or t times
the ith column to the jth column) corresponds to multiplication by the ele-
ments uij(t) ∈ Uij(K) on the left (resp. right) of a given matrix g ∈ SLd(K).
This restricted Gaussian elimination can be used to reduce the matrix g to
the identity. To do this we may first ensure that g12 6= 0 with a suitable
row operation, then use another row operation to ensure that g11 = 1. Then
suitable row and column operations can be used to obtain g1i = 0 = gi1
for i > 1, and we may then continue by induction. At the last step the fact
that det(g) = 1 is needed to ensure that the diagonal matrix produced is
in fact the identity. This can be used to express g as a finite product of
elementary unipotent matrices. �

Proof of Lemma 1.23. Recall the unipotent subgroups

Uij = {uij(t) = I + tEij | t ∈ R}

for i 6= j from Lemma 1.24. Let a ∈ A be any diagonal matrix, and notice
that auij(t)a

−1 = uij(
ai
aj
t) for t ∈ R. Therefore, the commutator satisfies

[a, uij(t)] = a−1uij(−t)auij(t) = uij((1− aj
ai
)t).
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Choosing a ∈ A correctly, it follows that the commutator group

[SLd(R), SLd(R)]

contains Uij for all i 6= j. By Lemma 1.24 it follows that

[SLd(R), SLd(R)] = SLd(R).

Since the modular character mod : SLd(R)→ R>0 is a homomorphism to an
abelian group it follows that mod(SLd(R)) = {1}, proving the lemma. �

To complete the proof of Theorem 1.18, it remains to show the following
lemma.

Lemma 1.25. For any s > 0 and t > 0, we have mSLd(R) (Σs,t) <∞.

Proof.Using Lemma 1.22 forG = SLd(R), S = B, and T = K we see thatK
can be ignored and we have to calculate mB(UsAt) (where as usual mB de-
notes the left Haar measure on B). Note that B = UA is not unimodular
so that we cannot apply Lemma 1.22 again (indeed, applying it erroneously
would not give the desired result). On the other hand, U and A are unimod-
ular (see Exercise 1.3.8). Furthermore, the left Haar measure on B is given
by a density function ρ(a) with respect to mU ×mA (using the coordinate
system arising from B = UA). In fact

dmB ∝ ρ(a) dmU × dmA, (1.10)

where

ρ






a1

. . .

ad





 =

∏

i>j

(
aj
ai

)
.

Using the fact that the Haar measure on U is simply the Lebesgue measure
(in the coordinate system implied by the way we write down these matrices)
and that A normalizes U , the relation in (1.10) can be checked directly (see
Exercise 1.3.9).

Using this, we get

mB(UsAt)≪ mU (Us)︸ ︷︷ ︸
<∞

∫

At

ρ(a) dmA(a),

and so the problem is reduced to the integral over At.
Using the relations

aj
ai

=
aj
aj+1

· · · ai−1

ai
=

i−1∏

k=j

ak
ak+1
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for i > j, we also obtain the formula

ρ






a1

. . .

ad





 =

d−1∏

k=1

(
ak
ak+1

)rk
=

d−1∏

k=1

(
ak+1

ak

)−rk

for some integers rk > 0 (here rk = (d − k)k equals the number of tuples of
indices (i, j) with j 6 k < i, but the exact form of rk does not matter).

Next notice that

A ∋ a =



a1

. . .

ad


 7−→ (y1, . . . , yd−1) =

(
log a2

a1
, . . . , log ad

ad−1

)
∈ Rd−1

is an isomorphism of topological groups which maps At to [log t,∞)d−1, so
that† ∫

At

ρ(a) dmA(a) ∝
d−1∏

k=1

∫ ∞

log t

e−rkyk dyk <∞

as claimed. �

The proof presented above is usually referred to as the reduction theory
of SLd, and this generalizes to other algebraic groups by a theorem of Borel
and Harish–Chandra [9] (see Siegel [174]). In Chapter 4 we will give a second
proof which will also lead to the general result for other groups in Chapter 7.

Exercises for Section 1.3

Exercise 1.3.1. Check that any lattice in Rd (in the sense of Definition 1.7) is indeed of
the form Zdg for some g ∈ GLd(R). Also show that for v1, . . . , vd ∈ Rd either

Λ = Zv1 + · · ·+ Zvd

is a lattice, or for every ε > 0 there exists a non-zero integer vector n ∈ Zd with

‖n1v1 + · · ·+ ndvd‖ < ε.

Exercise 1.3.2. (1) Show that λ1(Zdgh) 6 λ1(Zdg)‖h‖ for g, h ∈ GLd(R), where ‖ · ‖
denotes the operator norm.
(2) Conclude that λ1 : Xd → (0,∞) is continuous.
(3) Generalize (2) to λk for 1 6 k < d.

Exercise 1.3.3. Suppose that Λn = Zdgn → Λ = Zg as n → ∞ in the sense of the
quotient Xd and its metric defined by (1.1). Show that

† The symbol ∝ denotes proportionality, and here the constant of proportionality depends
on the choices of the Haar measures on A and on Rd−1.
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Λ =
{
u ∈ Rd | there exists vn ∈ Λn with lim

n→∞
vn = u

}

and conclude once more that λ1 : Xd → (0,∞) is continuous.

Exercise 1.3.4. Show that the minimum in the definition of αk(Λ) in Theorem 1.15 is
indeed achieved.

Exercise 1.3.5. Let d > 5. Let Λ = Zd−1 × {0}+ Zv where v = ( 1
2
, . . . , 1

2
). Show that

λ1 = · · · = λd = 1,

that covol(Λ) = 1
2
, and that there does not exist a basis of Λ consisting of vectors of

length 1.

Exercise 1.3.6. Can Mahler’s compactness criterion also be phrased in terms of λd, or in
terms of λj for 2 6 j < d?

Exercise 1.3.7. Define for every Λ ∈ Xd the covering radius by

ρ(Λ) = inf
({
r > 0 | Λ+ BRd

r = Rd
})

> 0,

and show that ρ : Xd → [0,∞) is a proper continuous function. Here it is necessary to
include 0 in order to give ‘proper’ the correct meaning.

Exercise 1.3.8. Prove that U and A are unimodular (and describe their Haar measures).

Exercise 1.3.9. Let B = UA, mB , mU , mA, and ρ be as in the proof of Lemma 1.25.
Let f > 0 be any measurable function on B, and fix some b ∈ B. Using Fubini’s theorem
and substitution prove that

∫

B

f(bua)ρ(a) dmU (u) dmA(a) =

∫

B

f(ua)ρ(a) dmU (u) dmA(a),

first for b = u0 ∈ U and then for b ∈ A. Deduce that (1.10) holds.

Exercise 1.3.10 (LLL algorithm(4)). In this exercise a different proof of Corollary 1.21
will be given (which will not use Minkowski’s theorem on successive minimas). For this
let v1, . . . , vd be an ordered basis of a unimodular lattice Λ < Rd. For every i = 1, . . . , d
define v∗i to be the projection of vi onto the orthogonal complement of the linear span
of v1, . . . , vi−1. Recall that ‖v∗i ‖ is the ith diagonal entry of the A-component of the NAK-
decomposition of the matrix g whose rows consist of v1, . . . , vd. We may assume that we
have det g = 1.

The basis is called semi-reduced if all linear coefficients of vi − v∗i , when expressed as
a linear combination of v1, . . . , vi−1, are in [− 1

2
, 1
2
) (that is, the N-part of g in the NAK-

decomposition belongs to U 1
2
).

The basis is called t-reduced (for some fixed t > 0) if it is semi-reduced and if
‖v∗

i+1‖
‖v∗

i ‖
> t

for i = 1, . . . , d− 1 (that is, the A-part of g in the NAK-decomposition belongs to At).

Prove that the following algorithm terminates for every fixed t <
√

3
2

with a t-reduced
ordered basis of Λ.

(1) Check if the ordered basis is semi-reduced. If not perform a simple change of basis
(using only a change of basis in U ∩ SLd(Z)) and produce a new ordered basis which
is semi-reduced.

(2) Check if the basis is t-reduced. If so, the algorithm terminates.
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(3) So assume that the ordered basis is not t-reduced but is semi-reduced. Then there

exists a smallest i for which
‖v∗

i+1‖
‖v∗

i ‖ < t. Now replace the basis with the new basis

where the order of vi and vi+1 is reversed (but all other basis elements retain their
place), and start the algorithm from the beginning.

For the proof you may find useful the function θ of the ordered basis defined by

θ(v1, . . . , vd) =

d∏

i=1

covol(Zv1 + · · ·Zvi).

Exercise 1.3.11 (Siegel formula). For any f ∈ Cc(Rd) we define the Siegel transform
at x ∈ Xd by

Sf (x) =
∑

v∈Λxr{0}

f(v),

where Λx = Zdg denotes the lattice corresponding to x = SLd(R)g. In this exercise we
wish to show that there exists some c > 0 (depending on the choice of Haar measures)
such that

∫
Xd
Sf dmXd

= c
∫
Rd f(t) dt for all f ∈ Cc(Rd).

(1) Show that
∫
Xd
Sf dmXd

<∞.

(2) Show that the positive measure µ on Rd defined by Riesz representation and the
functional f 7→

∫
Xd
Sf dmXd

satisfies µ({0}) = 0.

(3) Show that µ is SLd(R)-invariant and conclude the claim.

Notes to Chapter 1

(1)(Page 19) In fact any perfect Polish space allows an embedding of the middle-third
Cantor set into it, so in particular such a space has the cardinality of the continuum. We

refer to Kechris [94, Sec. 6.A].
(2)(Page 23) This is a simple instance of the more general Iwasawa decomposition of a

connected real semi-simple Lie group [85] (see also [103]).
(3)(Page 36) This method was presented by E. Schmidt [162, Sec. 3, p. 442], and he

pointed out that essentially the same method was used earlier by Gram [72]; the modern
view is that the methods differ, and that the Gram form was used earlier by Laplace [112,
p. 497ff.] in a different setting.
(4)(Page 43) This is based on the so-called LLL algorithm of A. K. Lenstra, H. W. Lenstra,

Jr., and Lovász [117].
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