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Introduction

The importance of recurrence sequences hardly needs to be explained. Their
study is plainly of intrinsic interest and has been a central part of number theory
for many years. Moreover, these sequences appear almost everywhere in mathe-
matics and computer science. For example, the theory of power series representing
rational functions [55], pseudo-random number generators ([48], [49], [50], [74]),
k-regular [8] and automatic sequences [34], and cellular automata [36]. Sequences
of solutions of classes of interesting Diophantine equations form linear recurrence
sequences — see [67], [68], [75], [76]. A great variety of power series, for example
zeta-functions of algebraic varieties over finite fields [33], dynamical zeta functions
of many dynamical systems [12], [30], [35], generating functions coming from group
theory [60], [61], Hilbert series in commutative algebra [39], Poincaré series [11],
[21], [60] and the like — are all known to be rational in many interesting cases. The
coefficients of the series representing such functions are linear recurrence sequences,
so many powerful results from the present study may be applied. Linear recurrence
sequences even participated in the proof of Hilbert’s Tenth Problem over Z ([38],
[79], [80]). In the proceedings [22], the problem is resolved for many other rings.
The article [51] by Pheidas suggests using the arithmetic of bilinear recurrence
sequences to settle the still open rational case.

Recurrence sequences also appear in many parts of the mathematical sciences in
the wide sense (which includes applied mathematics and applied computer science).
For example, many systems of orthogonal polynomials, including the Tchebychev
polynomials and their finite field analogues, the Dickson polynomials, satisfy recur-
rence relations. Linear recurrence sequences are also of importance in approxima-
tion theory and cryptography and they have arisen in computer graphics [40] and
time series analysis [13].

We survey a selection of number-theoretic properties of linear recurrence se-
quences together with their direct generalizations. These include non-linear re-
currence sequences and exponential polynomials. Applications are described to
motivate the material and to show how some of the problems arise. In many sec-
tions we concentrate on particular properties of linear recurrence sequences which
are important for a variety of applications. Where we are able, we try to consider
properties that are particularly instructive in suggesting directions for future study.

Several surveys of properties of linear recurrence sequences have been given
recently; see, for example, [19], [33, Chap. 8], [41], [42], [44], [46], [55], [68],
[69], [72], [75], [76]. However, they do not cover as wide a range of important
features and applications as we attempt here. We have relied on these surveys a
great deal, and with them in mind, try to use the ‘covering radius 1’ principle:
For every result not proved here, either a direct reference or a pointer to an easily
available survey in which it can be found is given. For all results, we try to recall
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vi INTRODUCTION

the original version, some essential intermediate improvements, and — up to the
authors’ limited knowledge — the best current form of the result.

Details of the scope of this book are clear from the table of contents. In Chap-
ters 1 to 8, general results concerning linear recurrence sequences are presented.
The topics include various estimates for the number of solutions of equations, in-
equalities and congruences involving linear recurrence sequences. Also, there are
estimates for exponential sums involving linear recurrence sequences as well as
results on the behaviour of arithmetic functions on values of linear recurrence se-
quences. In Chapters 9 to 14, a selection of applications are given, together with
a study of some special sequences. In some cases, applications require only the
straightforward use of results from the earlier chapters. In other cases the tech-
nique, or even just the spirit, of the results are used. It seems almost magical that,
in many applications, linear recurrence sequences show up from several quite unre-
lated directions. A chapter on elliptic divisibility sequences is included to point out
the beginning of an area of development analogous to linear recurrence sequences,
but with interesting geometric and Diophantine methods coming to the fore. A
chapter is also included to highlight an emerging overlap between combinatorial
dynamics and the theory of linear recurrence sequences.

Although objects are considered over different rings, the emphasis is on the
conventional case of the integers. A linear recurrence sequence over the integers
can often be considered as the trace of an exponential function over an algebraic
number field. The coordinates of matrix exponential functions satisfy linear recur-
rence relations. Such examples suggest that a single exponential only seems to be
less general than a linear recurrence sequence. Of course that is not quite true, but
in many important cases links between linear recurrence sequences and exponen-
tial functions in algebraic extensions really do play a crucial role. Michalev and
Nechaev [42] give a survey of possible extensions of the theory of linear recurrence
sequences to a wide class of rings and modules.

For previously known results, complete proofs are generally not given unless
they are very short or illuminating. The underlying ideas and connections with
other results are discussed briefly. Filling the gaps in these arguments may be
considered a useful (substantial) exercise. Several of the results are new; for these
complete proofs are given.

Some number-theoretic and algebraic background is assumed. In the text, we
try to motivate the use of deeper results. A brief survey of the background material
follows. First, some basic results from the theory of finite fields and from algebraic
number theory will be used. These can be found in [33] and [45], respectively.
Also standard results on the distribution of prime numbers, in particular the Prime
Number Theorem π(x) ∼ x/ ln x, will be used. All such results can easily be found
in [59], and in many other textbooks. Much stronger results are known, though
these subtleties will not matter here. The following well-known consequences of the
Prime Number Theorem,

k ≥ ϕ(k)� k/ Log log k, ν(k)� Log k/ Log log k

and

P (k)� ν(k) Log ν(k), Q(k) ≥ exp ((1 + o(1))ν(k))

will also be needed.
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A second tool is p-adic analysis [1], [11], [32]; in particular Strassmann’s Theo-
rem [73], sometimes called the p-adic Weierstrass Preparation Theorem. Section 1.2
provides a basic introduction to this beautiful theory. At several points in the text,
results about recurrence sequences will be given where the most natural proofs seem
to come from p-adic analysis. We can offer no explanation for this phenomenon. For
example, in Section 1.2, we give a simple proof of a special case of the Hadamard
quotient problem using p-adic analysis. The general case has now been resolved
and the methods are still basically p-adic. Similarly, when it is applicable, p-adic
analysis produces very good estimates for the number of solutions of equations;
compare the estimate of [64] based on new results on S-unit equations with that
of [57] obtained by the p-adic method. On the other hand, a disadvantage of this
approach is its apparent non-effectiveness in estimating the size of solutions.

The simple observation that any field of zero characteristic over which a linear
recurrence sequence is defined may be assumed to be finitely generated over Q will
be used repeatedly. Indeed, it is enough to consider the field obtained from Q by
adjoining the initial values and the coefficients of the characteristic polynomial.
Then, using specialization arguments [55] and [56], we may restrict ourselves to
studying sequences over an algebraic extension of Qp or even just over Qp, using a
nice idea of Cassels [18]. Cassels shows that given any field F, finitely generated
over Q, and any finite subset M ∈ F, there exist infinitely many rational primes p
such that there is an embedding ϕ : F −→ Qp with ordp ϕ(µ) = 0 for all µ ∈ M .
A critical feature is that the embedding is into Qp, rather than a ‘brute force’
embedding into an algebraic extension of Qp. The upshot is that for many natural
problems over general fields of zero characteristic, one can expect to get results
that are not worse than the corresponding one in the algebraic number field case,
or even for the case of rational numbers. Moreover, there are a number of examples
in the case of function fields where even stronger results can be obtained, see [10],
[15], [16], [17], [31], [37], [43] [47], [52], [58], [66], [77], [78], [81], [84].

Thirdly, many results depend on bounds for linear forms in the logarithms of
algebraic numbers. Section 1.3 gives an indication of the connection between the
theory of linear recurrence sequences and linear forms in logarithms by consider-
ing the apparently simple question: How quickly does a linear recurrence sequence
grow? After the first results of Baker [2], [3], [4], [5], [6], [7], and their p-adic
generalizations, for example those of van der Poorten [53], a vast number of further
results, generalizations and improvements have been obtained; appropriate refer-
ences can be found in [81]. For our purposes, the modern sharper bounds do not
imply any essentially stronger results than those relying on [7] and [53]. In certain
cases more recent results do allow the removal of some logarithmic terms; [83] is
an example. We mostly content ourselves with consequences of the relatively old
results.

Fourthly and finally, several results on growth rate estimates or zero multi-
plicity are based upon properties of sums of S-units. Specifically, linear recurrence
sequences provide a special case of S-unit sums. Section 1.5 gives a basic account of
the way results about sums of S-units can be applied to linear recurrence sequences.
This does not do justice to the full range of applicability of results about sums of
S-units — applications will reverberate throughout the text.
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In surveys such as this, it is conventional to attach a list of open questions.
Rather than doing this, the best current results known to the authors are pre-
sented; if a generalization is straightforward and can be done in the framework of
the same arguments that is noted. Other generalizations or improvements should
be considered implicit research problems. We do however mention attempts at
improvements which seem hopeless in the light of today’s knowledge.

Finally, we add several words about what we do not deal with. First, it is
striking to note that the binary recurrence u(n + 2) = u(n + 1) + u(n), one of
the simplest linear recurrences whose solutions are not geometric progressions, has
been a subject of mathematical scrutiny certainly since the publication of Leonardo
of Pisa’s Liber abaci in 1202 [70]. Indeed, this recurrence has an entire journal
devoted to it [9]. This volume is more egalitarian; with a few exceptions, no special
properties of individual recurrences will be discussed. Several specific sequences
arise as examples; the most important of these are listed with their identifying
numbers in Sloane’s Online Encyclopedia of Integer Sequences [71] in an Appendix
on page 254.

Second, one could write an enormous book devoted to one particular case of
linear recurrence sequences — polynomials. We do not deal with polynomials per
se; extensive treatments are in [62] and [63]. Nonetheless, this case alone justifies
the great interest in general linear recurrence sequences. Therefore, we give several
applications to polynomials but such applications are obtained using partially hid-
den — although not too deep — links between polynomials and linear recurrence
sequences.

Third, a huge book could be written dealing with exponential polynomials as
examples of entire functions and therefore, ultimately, with analytic properties of
those functions. We barely consider any analytical features of exponential poly-
nomials, though we mention some relevant results about the distribution of their
zeros. We do not deal with analytical properties of iteration of polynomial map-
pings. Thus the general field of complex dynamics, and the celebrated Mandelbrot
set, is outside our scope. (Recall that the Mandelbrot set is the set of points c ∈ C
for which the sequence of polynomial iterations z(k) = z(k − 1)2 + c, z(0) = 0, is
bounded; for details we refer to [14].) However, in Chapter 3 we do consider some
simple periodic properties of this and more general mappings.

Fourth, as we mentioned, general statements about the behaviour — both
Archimedean and non-Archimedean — of sums of S-units lie in the background of
important results on linear recurrence sequences. Nonetheless, we do not deal with
sums of S-units or their applications systematically. On the topic generally, we first
recommend the pioneering papers [23] and [56] which appeared independently and
contemporaneously (the latter as a preprint [54] of Macquarie University in 1982).
We point particularly to the book [68] and the excellent survey papers [24], [25],
[26], [27], [28], [65], [67], [75], [76].

On the other hand, we do present some less well-known results about finitely
generated groups, such as estimates of the size of their reduction modulo an integer
ideal in an algebraic number field, and on the testing of multiplicative independence
of their generators. When results on S-unit sums are applied to linear recurrence
sequences, an induction argument usually allows the conditions on non-vanishing
proper sub-sums to be eliminated (such conditions are unavoidable in the general
study of S-unit sums).
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Despite the large number of references, no systematic attempt has been made
to trace the history of major results that have influenced the subject. No single
book on the history of this huge topic could hope to be definitive. However —
Leonardo of Pisa notwithstanding — it is reasonable to view the modern study of
the arithmetic of recurrence sequences as having been given essential impetus by
the remarkable work of François Édouard Anatole Lucas (1842–1891); many of the
themes developed in this book originate in his papers (see [20] and [82] for some
background on his life and work, and [29] for a full list of his publications and some
of his unpublished work).

The bibliography reflects the interests and biases of the authors, and some of
the entries are to preliminary works. The authors extend their thanks to the many
workers whose contributions have given them so much pleasure and extend their
apologies to those whose contributions have not been cited. The authors also thank
many people for help with corrections and references, particularly Christian Ballot,
Daniel Berend, Keith Briggs, Sheena Brook, Susan Everest, Robert Laxton, Pieter
Moree, Patrick Moss, W ladys law Narkiewicz, James Propp, Michael Somos, Shaun
Stevens, Zhi-Wei Sun and Alan Ward.
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52. Á. Pintér, Exponential Diophantine equations over function fields, Publ. Math. Debrecen 41

(1992), no. 1-2, 89–98. MR 93i:11039
53. A. J. van der Poorten, Linear forms in logarithms in the p-adic case, Transcendence theory:

advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), Academic Press,
London, 1977, pp. 29–57. MR 58 #16544

54. , The growth conditions for recurrence sequences, Macquarie University Mathematical

Reports 41 (1982), 27pp.

55. , Some facts that should be better known, especially about rational functions, Number
theory and applications (Banff, AB, 1988), Kluwer Acad. Publ., Dordrecht, 1989, pp. 497–528.

MR 92k:11011

56. A. J. van der Poorten and H. P. Schlickewei, Additive relations in fields, J. Austral. Math.
Soc. Ser. A 51 (1991), no. 1, 154–170. MR 93d:11036

57. , Zeros of recurrence sequences, Bull. Austral. Math. Soc. 44 (1991), no. 2, 215–223.

MR 93d:11017
58. A. J. van der Poorten and I. E. Shparlinski, On sequences of polynomials defined by certain

recurrence relations, Acta Sci. Math. (Szeged) 61 (1995), no. 1-4, 77–103. MR 97j:11007

59. K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1978. MR 81k:10060
60. N. P. F. du Sautoy, Finitely generated groups, p-adic analytic groups and Poincaré series,
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